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Abstract: In a, neighbowhood of s = 1, the Hurwitz zeta function ((s,  a )  has the Laurent 
expansion in powers of s - 1 

wlirre the quantity yn(a)  is the generalized Stieltjes constant. A number of results ahollt 
the generalized Stieltjes constants are proved. 
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1. Introduction. For 0 < a < 1 and rs > 1  the Hurwitz zeta function ((s ,  a )  is defined by 

1 
C(S, a )  = C - s = a + it. 

n=O (n + a).' 

It is well-known (see [2, p.2551 that ((s,  a )  has an analytic continuation to the whole 
coirlplex plane except for a simple pole at  s = 1 with residue 1. 111 a neighbourhootl of 
s = 1, ((s ,  a )  has the Laurent expansion in powers of s - 1 

where the quantities yn(a) are known as the generalized Stieltjes constants. When u = 1 
((s, ( 1 )  reduces to  the Riernann zeta function ((s) and (1.1) becomes 

where yn = y n ( l )  is the (ordinary) Stieltjes constant. Briggs and Chowla [3] and Ha.rdy 
[8] have given expressions for 7,. Berndt [4] has used the same technique as in [3] to derive 
t,he following expression for yn(a)  : for n = 0 , 1 , 2 , .  . . 
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IViltoil [14] has given a similar formula. In Sectioll 4  we prove the followiilg new folliiulii 
fol y , , (a) .  

THEOREM 1. For 0  < a 5 1  and m , n  = 0 , 1 , 2 , .  . . we have 

\\.ll(',.(' f , , ( n . )  = 1 0 ~ " ( " + a '  
= + a  

and P l ( x )  = z - [XI - 
IVc remark t11a.t the formula (1 .3)  follows from (1 .4)  by letting ?TI -t +cm. Tlie 

fi)rliilili~ ( 1 . 4 )  has the advantage that it can be used to estimate the size of y n ( n ) .  111 
111 

;~tldition Theorem 1  can be used to obtain an asymptotic formula for the suin ' o g ' ; ~ ~ " '  
k=O 

\.;~litl for 11% + +w. In Section 5  the following theorein is proved. 

THEOREM 2. For 0  < a  < 1 and 72 = 0 , 1 , 2 , .  . . we have 

logn(X. + a )  log"+'(in + n )  - log"(112 + ( 1 , )  log" 111 
- 

71 + 1 k=O 

i ~ r ,  I I I  + +co, where tlie co i l s ta~~t  implied by the 0-symbol depends only on 12. 

Br.1.iltlt [4] has proved the following inequality for the generalized Stieltjes constants: 
f.01. 1 ,  2 1 ~ l l t l  0 < a  < 1 

It s l~o l~ l t l  be not,ed that Berndt's definition of the Stieltjes constallt is a little differelit f'roili 
ours.  111 Section 6  we improve the inequality (1 .6) .  We prove 

THEOREM 3. Let 0 < a  _< 1.  For n  2 1 we have 

alid for 12 = 0  
1 

17o(a) - < 7 = 0 .577 . .  . , 

where y  denotes Euler's constant. 
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Liailg and Todd [12] have expressed the Stieltjes constants yn = y,,(l) in terms of the 
Beriloulli numbers B k ( k  = 0 ,1 ,2 , .  . .), where Bo = 1, B1 = -+, B2 = $, Bq = -1 3 U  , . . ' , 
and the quantities ~ ~ ( k  = 0 , 1 , 2 , .  . .) defined by 

They proved, for k = 0,1,2,  . . ., that [12, pp.168-1691 

We show in Section 7 that this formula can be simplified by recognizing the first 5~1111 ah 
being the term j = 0 of the second sum. 

THEOREM 4. For k = 0 ,1 ,2 , .  . . we have 

ICeiper 1101 has given a recurrence relation for % which i~lvolves the values of  the 
Hurwitz zeta function at  s = 312. We show that this recurreilce relation is unilecessarily 
com~licated by proviilg in Section 8 the following simpler relation, which inrrolves the 

Riemann zeta function ((n) instead of ( (n ,  f ) .  

THEOREM 5. For 12 = 0 , 1 , 2 , 3 , .  . . we have 

with 

j an = n + ( 1  - ) + o n +  - 1, 71 > 1, 

where p runs through the nontrivial zeros of the Riemann zeta function (suitably paired 
when n = 1 to ensure convergence). 



This theorem leads to the Laurent expansion of '0 in the for111 
( ( 5 )  

2. An integral representation of C(s,a). We need the followillg for111 of ill(. Elll(91- 
Maclaur i~~  formula: 

where q is a fixed positive integer, f (x )  E C*[m, n ] ,  and Pk(x)  is the k-th pel-iodlc Bc11iol1111 
function defined by 

1 
Pk(x) = -Bk(x - [XI), k! 

where Bk(x)  is the k-th Bernoulli polynomial (see [9, p.4901) 

Taking f (x)  = &,O < a 5 1, o = Re(s) > 1, y = 1 and lettills 11 -t x i l l  (2 1 J. 

we have 

where 

Pl (z)  = B1 ( z  - [s]) = z - [z] - I, 
2 

Since P;+,(x) = Pk(x) (k > 1) (see [I ,  23.1.51) we have 

In view of the boundedness of Pz(z ) ,  the function defined by the last il~tegral is analytic 
in the half plane Re(s) > -1, that means 

1 
(2.2) C(s,a) = x - + ( m  + a)'-" - ( m  + a)-' 

(k + a)" 2 
ds, m > -1. 

s - 1  k=O ( z  + (,)"+I 

In particular, taking m = 0 in (2.2) gives 

which appears for example in Berndt 14, (2.3:1]. We make use of (2.2) in Section 4 
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3. The Hurwitz formula. In [4, Theorem 41 Be~.litlt gives a siinpli* l~roof o f  t l 1 ( 3  H1111\-itz 
formula,, namely, for u < 0 

00 ,x cos 2nncc 7i.s ~ i l i " 7 1 7 i ( /  

(3.1) ( a )  = 2 3 n 3 ( 1  - s ){s iny  x 7 + cos x e] 2 d n=l 11= 1 

Here \Ire 11ote that Berndt's proof can br made even  simple^. Sincr 

we have 

Froni (3.2)  and the Fourier expansioll of PI ( r c )  

we ol~tain for -1 < u < 0 

OC 
sin 21znu 

n= 1 

which is (3.1).  The ir~version of sun~inat~ic~)n aiitl i l~tegratiol~ call I ) ( .  ,jn5tifi(,(l ; I ,  i l l  (1::. 

p.15]. Since the two series in (3.1) conlrerge for cr < 0. tlir f o i i n ~ ~ l i ~  (:1.1) 1101(!-- S < I ~  i l l 1  

u < 0. .A proof of (3.1) using the evaluation of a lool~ integral ( . ; I I I  I ) ( ,  f(>iliitl ill [1:3. l l . 3 ; ]  

or [2: 11p.257-2591. 

4. The generalized Stielties collstallts - ,Jar.  In this sectiol~. I\.(, (~i , l is i t l (~~ t I i ( .  I . ;III- 
rorit espai~sion of the Hurwitz zeta function at s = 1. It is \v~:ll-lil~o\\.ll t l i i ~ t  ( ( , . ( I  J i b  ; )  

niero~ilorphic function a11ci its only pole is a sitn1)le l~i~lc, a t  s = 1 \\.it11 i ~ , s i t l l ~ i ,  1. 111 r l ~ ~ .  
~~e ighboi~rhood  of s = 1, 



where the y n ( a )  are called generalized Stieltjes constants. If a = 1 ,  ((s, (1)  reducc.5 t o  i i . 5 )  

and (4 .1)  becomes 

We follow the method given in [15] to obtain a new formula for ?,(a), see Theole111 1 

PROOF OF THEOREM 1. M'e expand each term on the right side of (2.2) 111 l,o\\.(.~\ 
of s - 1: 

Next, set 

We have 

Theorem 1 follows immediately from (4 .1) ,  (2 .2)  and (4 .3 )  

REMARK 1. Letting m + +co in (4 .3) ,  we obtain 

which appeared in 14, Theorem 31, and with a = 1 

m 

(4.6) 
logn k logn+' in J 

7,,=7,,(1)= m-oo lim {Z--- , 1 z = 0 , 1 , ?  . . . . .  
k = l  

k n + l  
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(see 17, S.362,2]) and 

is Euler's constant 

5 .  A generalization of Euler's asvmptotic formula. We note that 

where the constants implied by the 0-symbols depend at most on n,. Then, integrating by 
parts,  we obtain a.s P;(x) = Pl(x) 

PI (x) fA(x)dx = 0 

This completes the proof of Theorem 2 

6. Estimation of the quantities Cn(a) = ?,(a) - F. Taking m = 0 in (4.3) gives 

where 

Since for n > 1 

that is 

(6.2) 



w1lel.r 
log" x 

hn(5)  = - 
T 

For 77 = 0 in (6.11, we have 

C'o~l~lialing this with (4.7) gives 

Noticing that l ~ ! ) ) ( c o )  = h i k ' ( l )  = 0, 0 _< k 5 n - 1, 12 > 1 and integrating 1iy parts 
I /  - 1 tiiues, we obtain for 72 > 1 

Hence, i t  is 11atura1 for 0 < a 5 1 to introduce the quantities 

log" a 
iG.G) C,,(a) = ?,,(a) - - , 71=1,2 ,3  , . . . ,  

111 [4. Thcorern '71. Berndt proved for 0 < a 5 1 and 17 > 1 that 

Ho\vc,\-el, we call improve this inequality. 

PROOF OF  THEOREM 3. From (4.7) and (6.7) 

1 1 ~ ' ( c L )  
( G  9 )  Co(n)  = yo(n) - - = -$(a) - - = -$(I + a) ,  whele + ( a )  = - 

a a ~ ( c L )  ' 

scv [ l .  G.3.51. Since (~(n.) is increasing on the interval [ I ,%] and $ ( l )  = --,, d l ( % )  = 1 - 7 .  

we ha 1-c 

n-hich is the second inequality in Theorem 3. Next we prove (1.7). Since 

1 
h,,(x) = logn z / x  = -- (logn+' x) ' ,  

71 + 1 
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we hi11e from (6.5) 

.4ccol.dilig to the result in [ll, Lemma] 

n! 2 10;; I 
(logn I)(") = - - s(n,  7 1  - k), 

I 
k=O 

where s(rz, k) is the Stirling number of the first lcind, we obtain 

n+l s ( n + l , n + l - k )  logk .c 
C,l(c~j = ( - I ) ~ - ~  n! - Pn(x  - a)- x"+l d n ,  11 2 1. 

k=O 
k! 

In view of the fact (see [4, (3.7))) 

No\v, using the formula (see [5, p.213]) 

REhlARK 2. Since for n = 1 ,2 ,3 , .  . . 

(2n)! 
- < n!, 
2nnn - 

our estimation (6.10) is better than Berndt's. Furthermore, from Stirling's asynil,totic 
formula for n!, we have 



REMARK 3. Since 

we have 

In order to prove 

and then to prove that ( ( s ,a )  - aPs  has no zeros on the closed disk 1s - 11 5 1, Berilclt 
[4] proved the estimation ICo(a)J < 0.617 (as well as estimates for Cl (a)  and C2(ci)). We 
observe that Co(a) = -+(I + a )  and (Co(a)l 5 y. 

7. A linear relationship between yn and 7,. The following result is due to Briggs and 
Chowla 131. Another proof has been given in [15]. 

PROPOSITION 1. For k  = 0,1 ,2 , .  . . we have 

Tk = - 
(log 2) k + l  + ( ~ ) ( 1 0 9 2 ) ~ - 1 h .  

k + l  ]=o 

Theorem 4 follows by inverting the relation (7.1). 

PROOF OF THEOREM 4. We set 

Since 

(7.3) 

L(s) can be continued analytically to the whole complex plane. Consider the power selirs 
expansion of L(s)  at s = 1, 

Differentiating (7.2) k  times we obtain 

and 
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Fork  = 1,2 ,3 ,  . . .  weset 

03 m 

(7.5) 
(-1)" 

and r0 = x - = - log?,  
n=l n 12 

n = l  

so that 

On the other hand, we have 

From (7.3) we obtain 

( s  - l)k 
s - 1  k=O 

1 (-1)"*+, lopA' 2 
(S - I ) * [ -  +F ( k + l ) !  ( r  - l l k j  

k=O k! ( s  - 1) log 2 *=o 

and comparing the coefficients on both sides gives Tlieore~ll 4. 

REMARK 4. Liang and Todd [12] set 

A = where a,J = 

and inverted the matrix form of (7.2), namely 

Yo 112 
TI / log 2 

Yl / log22 [ 7 / 1 2  [ j , ? + )  

T,, / log" 2 
y,Z-l/logn-' 2 l / ( n  + 1) 

to obtain 

Yo 71 / log il 

log 2 + A-I 

~ n - 1 1  logn-' I / ( II  + 1) T,,/ log" % 
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where 

so that 

We show that the forms (7 .2 )  and (7 .6)  are in fact the same. This follows from t,lle ~ ~ o x t .  
proposition which we have been unable to locate in the literature on Bernoulli nuilll)c-~.s. 

PROPOSITION 2. For k = 1 , 2 , .  . ., we have 

PROOF. Recall ( [ l ,  p.804, 23.1.71) 

Integrating this equality gives 

In view of 

B ; + , ( x )  = ( k  + l ) B l i ( x )  

we have 
1  lh B k ( x  + h ) d h  = - J B L + I ( x  k + l  + h )  - B k t l ( z ) ] .  

Hence 

Taking z = 0, h  = 1  and observi~lg; that B k ( 0 )  = B k ,  B k ( 1 )  = ( - l ) k  BI;(o) ,  we o l~ tn i~ l  



GENERALIZED STIELTJES CONSTANTS 159 

8. T h e  relation between yk a n d  uk. It is well-known that the Riemann function ( [ a )  

is an entire function and has the infinite product expansion 

where 
1 

(8.2) 
Y 

bo = - l o g ~ + l o g 2 -  2 - 2 - 1, 

and p runs through the nontrivial zeros of ((s) (see [13, pp.30-311). Fro111 (8.1) and the 
functional equation for ((s): 

(8.3) E(s) = ((1 - 5-1, 
we have 

(8.4) 
1 

((1) = ((0) = -. 
2 

Taking the logarithmic derivative of (8.1) gives 

Taking s = 0 in (8.5) we obtain from (8.3) and (8.4) 

(8.6) 
bo ('(1) = (l(0) = - -. 
2 

Since 1 - p is also a zero of ((s), we obtain from (8.5) with s = I 

that is 

which was given by Davenport in [6, pp.81-821. 

From (8.5) and (8.7), we have 

that is 
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If we set 

then, \ve have 

Taliing s = 1 in (8.9) gives 

Tlieorrm 5 gives the relationship between the uk and -('. 

PROOF OF THEOREM 5. It is natural to start from 

(8.12) ( ( s )  = $ ( A  - l)a-:F 
4 

Let, 

The logal.ith~llic derivative of (8.12) gives 

(S. 11) 

Nest \\.e consider the Taylor expa~lsioll of II, a t  s = 1. Flolll the duplicat~on f u l n ~ ~ i l a  

f a  I&:): 

( 2 )  

1 1 
4(2z)  = :.($(z) + 4 (z + -)) + log 2. 

2 2 

\VP have 



GENERALIZED STIELTJES CONSTANTS 

(see [ I ,  6.3.8 and 6.3.141). Hence from (8.9) and (8.14), we obtain 

On the other hand, 

so that,  froin (8.16), we have 

By comparing the coefficients, we obtain Theorem 5. 

(5.16) can be written in the following form 
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