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SOME RESULTS ON THE GENERALIZED STIELTJES CONSTANTS
Zhang Nan-Yue and Kenneth S. Williams*

Received: May 21, 1993; revised: September 15, 1993

Abstract: In a neighbourhood of s = 1, the Hurwitz zeta function ((s, a) has the Laurent
expansion in powers of s — 1

1 = (_1)71771(‘1)
((Sva): + (S.'l)nv
s—1 ; n!

where the quantity yn(a) is the generalized Stieltjes constant. A number of results about
the generalized Stieltjes constants are proved.

AMS 1991 Mathematics Subject Classification Number: 11M06.

1. Introduction. For 0 < a <1 and ¢ > 1 the Hurwitz zeta function {(s, a) is defined by

> 1 A
C(s,a)Zg—(n+a)s, s = g+ 1L,

It is well-known (see [2, p.255] that ((s,a) has an analytic continuation to the whole
" complex plane except for a simple pole at s = 1 with residue 1. In a neighbourhood of
s =1, ((s, a) has the Laurent expansion in powers of s — 1

(1) o) = o+ 3 E gy
n=>0 :

where the quantities v,(a) are known as the generalized Stieltjes constants. When a =1
¢(s,a) reduces to the Riemann zeta function {(s) and (1.1) becomes

12 o) = 5+ 3 By,
n=0 :

where 7, = ¥a(1) is the (ordinary) Stieltjes constant. Briggs and Chowla [3] and Hardy
[8] have given expressions for v,. Berndt [4] has used the same technique as in [3] to derive
the following expression for y,(a) : for n = 0,1,2,...
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m

(Z log"(k + a) _ log™t'(m + a))
k+a n+1 '

(1.3) Yn(a) = lim
m—0o0
k=0
Wilton [14] has given a similar formula. In Section 4 we prove the following new formula
for yp(a).

THEOREM 1. For0 < a <1 and m,n=0,1,2,... we have

m

B log"(k +a) log"t'(m+a) log™(m+a) o e
(1.4) 7,l(a)—Z P s T Tamta) +/1:) Py(2) fn(a)da,

k=0

hore ) = S22 and Py(a) = 2~ o] -

We remark that the formula (1.3) follows from (1.4) by letting m — +oc. The
formula (1.4) has the advantage that it can be used to estimate the size of y,(«). In

m n 3
addition Theorem 1 can be used to obtain an asymptotic formula for the sum > log”{k+a) k(::a]
r=0

valid for m — +o00. In Section 5 the following theorem is proved.

THEOREM 2. For0 <a<1landn=0,1,2,... we have

m

log"(k 4+ ¢a) log™ ' (m+a)
1.5 =
(1.5) Z k+a n+1

logn(rn + (L) 1 O(logh m ) ‘

+mla) + 2(m + a) m?

k=0

as m — +o0o, where the constant implied by the O-symbol depends only on n.

Berndt [4] has proved the following inequality for the generalized Stieltjes constants:
forn>land0<a<1

(1.6) (@) - log™ a < B+ (=1)")(n-1!

a n

It shiould be noted that Berndt’s definition of the Stieltjes constant is a little different from
ours. In Section 6 we improve the inequality (1.6). We prove

THEOREM 3. Let 0 < a < 1. Forn > 1 we have

log™ a‘ < B+ (-1)")(2n)!

(11) bt nn+1(27r)n ?

Yala) —

and for n =0
-1
‘70(a) - —‘ <y =0577...,
a

where v denotes Euler’s constant.
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Liang and Todd [12] have expressed the Stieltjes constants 'yn = 'y,,(l) in terms of the
Bernoulli numbers Bx(k = 0,1,2,...), where By = 1, B; = —2, B; = B4 = —
and the quantities 74(k = 0,1,2,...) defined by

ﬁ_U‘a-"v

™
og n k>,

J

—log 2.

They proved, for k =0,1,2,..., that [12, pp.168-169]

log 2)k+1 522 (¥171) Bt 1 k41 X
(1.8) Tk = (log 2) Z ( . ) Ly Z ( ; )Bk+1—j(log2)"“’7'].

kvl &+l k414

We show in Section 7 that this formula can be simplified by recognizing the first sum as
being the term j = 0 of the second sum.

THEOREM 4. For k =0,1,2,... we have

k+1
1 k+1 ki
(1.9) 7k=m,§,( ;) Beatiogt

Keiper [10] has given a recurrence relation for 2 which involves the values of the
Hurwitz zeta function at s = 3/2. We show that this recurrence relation is unnecessarily
complicated by proving in Section 8 the following simpler relation, which involves the

Riemann zeta function ((n) instead of C(n, %)

THEOREM 5. Forn =0,1,2,3,... we have

n
Tn 1 Yi—10n—j
1.10 —_— = —{ - .7},
( ) n!l n+1l an — (7-1)!
i=
" with
anzc(n—i—l)(l— 2,,) +ony1—1, n2>1,
ao =7,
and

where p runs through the nontrivial zeros of the Riemann zeta function (suitably paired
when n = 1 to ensure convergence).
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This theorem leads to the Laurent expansion of %:)) in the form

¢'(s)

a1

= —s—-% +v+ i(—l)“{ C(n+ 1)(1 — 51—) + On41 *1}(«9 - 1"
n=1

2. An integral representation of ((s,a). We need the following form of the Euler-
Maclaurin formula:

T n q Bk n )
(2.1) Zf(k):/ flz)dz + ) (—1) f("“)() +(—1)q+1/ Py(z) fO(2)de,
k=m m k=1

m

where ¢ is a fixed positive integer, f(z) € C%m,n], and P(z) is the k-th periodic Bernoulli
function defined by

1
Pil(z) = 5 Bilz —[e]),
where Bi(z) is the k-th Bernoulli polynomial (see [9, p.490]).
Taking f(z) =

we have

(H_a,,() <a<1 0=Re(s)>1, ¢=1and letting n — oc in {2.1).

& 1 (m+a)= (mta)™ [T P(z)
C(sva)—go(k+a)s+ s—-1 - 2 _J/ I+“)S+l h

m

where
1

Pi(z) = Byle~ ) =2~ [a] - 5.

Since Py (z) = Pe(z) (k > 1) (see [1, 23.1.5]) we have

< Pi(z) _ B
/m Gra T Grapil, HSH)/,

In view of the boundedness of Py(z), the function defined by the last integral is analytic
in the half plane Re(s) > —1, that means

- T e R T el i E
( C(Sa) Zk+a s 1 — D) —S/ (I—_:u)mdl o> —1.
k=0 m

In particular, taking m = 0 in (2.2) gives

dz, o > -1,

(2.3) C(s,a) = a~’ at S/0°° Pi(z)

(z + a)s+!

which appears for example in Berndt [4, (2.3)]. We make use of (2.2) in Section 4.
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3. The Hurwitz formula. In [4, Theorem 4] Berndt gives a simple proof of the Hurwitz
formula, namely, for o < 0

nl—e

n=1

cos2nma = sin2nwa

. — P TS S Zn 7

(3.1) Cls,a) = 2°m* 71T — ) —§ +eos -y 1
K 2 D] ]Ll—'.!

Here we note that Berndt’s proof can be made even simpler. Since

o _ -
Pi(z) al™ a7
S/—amdl‘:_(;_lﬁ-2),whcn—1<n<(l.

we have

(3.2) ((s,a) = —5/ igi)———dw = —s/ L;“)d:z', ~1<ao<0
— a €T?

o (¢ +a)t!

From (3.2) and the Fourler expansion of Pi(z)

sin2nwr )
= - g —, 2 #£ integer.

n=1

o —

e o]
1 1 . .
((s,a)=s g — {cos nwasin2nre — s 2nTa cos 'Zum'}r/.r
nmw fo ast!

n=1
cos2nma [ sin2nma s11 2n7wa cos 2ura
=s g { dx — //J'}
nm 0 xstl nw o Faad
n=1 ) N

s

s
{ S111 > cos2nwa + cos 5 S11 207 .u}

which is (3.1). The inversion of summation and integration can be justified as i [13.
p.15]. Since the two series in (3.1) converge for o < 0. the formula (3.1) holds for all
o < 0. A proof of (3.1) using the evaluation of a loop integral can be found iu [13. p.37]
or [2, pp.257-259].

4. The generalized Stieltjes constants v,,(a). In this section, we consider the Lau-
rent expansion of the Hurwitz zeta function at s = 1. It is well-knowi that (s~ 0] s @
meromorphic function and its only pole is a simple pole at s = 1 with residue 1.0 In the

neighbourhood of s = 1,

(4.1) ((s,a) =

1 < (=1)"vu(a) . n
—1+Z n! (s =1)"%
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where the v,(a) are called generalized Stieltjes constants. If @ = 1, {(s, @) reduces to ({s)
and (4.1) becomes

(42) C(S Z 711 _ 1)11.

We follow the method given in [15] to obtain a new formula for 7,(a), see Theorem 1.

PROOF OF THEOREM 1. We expand each term on the right side of (2.2) in powers
of s —1:

11 K (=DlogMkt+a), .
(k-}—a)’—k'—f—az n! (S 1)7

n=0

(m+a)1_3 1 el (__1)n+1 logn+1(m+a)
_ + Z

s~1 s—1 {n+1)!

(s =17,

(mta) 1 i(—l)"log"(mw)(s—l)",

n!

(4.3) + i { i log™(k +a) log"(m+a) log"(m + a) } (—1)n(s — 1)

n!

vl St k+a n+1 2(m + a)

Next, set

P(z)

mdl‘, g > -1

(44) o) =s [
We have

(n) (8) = o(-1)" /oo 1(z) log™(z +a)d +n(——1)"‘1 /00 Pl(:v)log"-l(l +a)(l;r,

I + a)stl ('l‘ +a)st!

m

¢M(1) = (—1)"~ / Pi(z)f'(z)d

Theorem 1 follows immediately from (4.1), (2.2) and (4.3).
REMARK 1. Letting m — +oc0 in (4.3), we obtain

n n+1
lOg (k+a) log (m-}—a)}’ 3071,2,...

(45)  m(e) = lim {3 -

m— 00 k+a n+1

which appeared in {4, Theorem 3], and with a = 1

n+1
m
}, n=012....

(4.6) Yo = 1a(1l) = lim {z"‘: log__

m—oo pot n+1
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In particular,

m

o = a5

k=0

~ ~log(m +a)} = —¥(a)
(see [T, 8.362,2]) and

=1
(4.8) == lim g;—logm}

is Euler’s constant.

5. A generalization of Euler’s asymptotic formula. We note that

Py(z) = O(1), fi(z) = O(loiz I), w(z) = (log ), as x — +00,

where the constants implied by the O-symbols depend at most on n. Then, integrating by
parts, we obtain as Pj(z) = Pi(z)

/OOPI(I)f,II(I)dI = O(log"m)'

2
m m

This completes the proof of Theorem 2.

6. Estimation of the quantities C,(a) = yn(a) — 'ﬁsa"—“ Taking m = 0 in (4.3) gives

log"a log"t'a it
(6.1) yn(a) = 5a " il +/0 Pi(z)fy (z)dz,
where log™( )
og"(z+a
. 08 TTA 01,2, .
fuley =T

Since for n > 1

l1—a 1-a 7 n+1
, . _1 , _ log"a log a
| p@saa = [ (- 3) fatarar - 224 2E2,
we have log™ -
@)= [ P@)fiad
l-a
that is
1 n [ o]
(6.2) yala) = —& 4 / Pi(z — a)h!y(z)dz
a 1
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where N
ho(z) = 082
T
Forn =0 in (6.1), we have
6.3 =—-1 - ——=dz.
( ) 70((1) % oga ‘/(; (T + a)z g
Comparing this with (4.7) gives
1 e P](.’L')

4 =——+log ————du.

(6.4) ¥la) 2a +loga +/0 (z +a)? !

Noticing that /z$1k)(oo) = hi,k)(l) =0,0<k<n-1, n>1 and integrating by parts
n — 1 times, we obtain for n > 1

log" a
a

(6.5) yla) = + (=1 / Pi(z — a)R\(z)dz.
|

Hence, it s natural for 0 < @ <1 to introduce the quantities

(6.0) Cola) = mla) — B0 nm123,.
a
andd
— 1
(G.7) Co(a):%(a)—;

In [4, Theorem 2], Berndt proved for 0 < @ <1 and n > 1 that

n —1)!
(6.8) Cula)] < (3 4+ (—ym =LY

7Tn

However, we can improve this inequality.

PROOF OF THEOREM 3. From (4.7) and (6.7)

1 1 I
(6.9) Co(a) = yola) — = = —¢(a) — = = —(1 + a), where ¥(a) = (a)’
a a I(a)
see [1. G.3.5]. Since ¥(z) is increasing on the interval [1,2] and (1) = —5, ¥(2) =1 — 5.

we have

(6.10) |Cola)| < v =0577... .

which is the second inequality in Theorem 3. Next we prove (1.7). Since
n+1 I)I7

1
ho(z) =log" z/2 = ——(log
(z) =log" z/2 p— l(log
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we have from (6.5)

_1)71—1

(6.11) Cpla) = ( / Pi(z —a)(log" 1 2)0dz, > 1.
n 1

According to the result in [11, Lemmal]

Z loi' s(n,n — k),
il :

k=0

(6.12) (log™ )™ =

where s(n, k) is the Stirling number of the first kind, we obtain

n+1 &
1, —k K
Cula) = (~1)~1 ,Zs(n+ Z“Ll )/ Pulz §+qu:, n> 1.

In view of the fact (see [4, (3.7)])
(6.13) Py < BEEDYD
(2r)"

we obtain

,Ln+1

)‘<(3+( Y, 7§|(n+1n+1—k)[/°°10g ¢

B+(-1)") |s(n + 1,n+1—k)
= (2 n! Z nk+1

(3+ 1 n+1
= 27r)(" - Z| (n + 1, k)",

Now, using the formula (see [5, p.213])

(6.14) Z| nk)e* =z + 1)z +2). .. (x+n—1)
k.—

we have (34 (1)")(2n)!

+(=1)")(2n)!

|Cn(a)| < T @rint n>1.

REMARK 2. Sinceforn=1,2,3,...

Cr)t

2nnn T

our estimation (6.10) is better than Berndt’s. Furthermore, from Stirling’s asymptotic
formula for n!, we have

CO YR NI 7 .

nntl(2m)n/ nan pl2npn
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REMARK 3. Since

we have

(6.15)

In order to prove

(6.16)

{(s,a) Z s—l)",

n=0

_ 1, (=1)*log" a
s _ 2 ,—(s—1l)loga _ =) P8 Y
e’ = ae = E (s

nla
n=0

C(s,a) —s Z l)nc (a)

n=0

e

1,

ZHANG-WILLIAMS

-1"

and then to prove that ((s,a) — a™* has no zeros on the closed disk |s — 1| < 1, Berndt
[4] proved the estimation |Co(a)| < 0.617 (as well as estimates for Cy(a) and Cy(«)). We
observe that Co(a) = —¥(1 + a) and |Co(a)| < v.

7. A linear relationship between v,, and r,. The following result is due to Briggs and

Chowla [3]. Another proof has been given in [15].
PROPOSITION 1. For k = 0,1,2,. .. we have

(1.1)

log 2)k+1 k-1
T = — (Of+)1 + ()logZ

3=0

Theorem 4 follows by inverting the relation (7.1).
PROOF OF THEOREM 4. We set

(7.2)

Since

(1.3)

L(s) = Z (_nls)ﬂ, Re(s) > 0.

L(s)=(2'7* = 1)((s),

L(s) can be continued analytically to the whole complex plane. Consider the power series
expansion of L(s) at s = 1,

(1.4)

Lk)(1)

Differentiating (7.2) k times we obtain

and

L(s)= ) — (s =D~
k=0
(k)(s _( 1 ki lOg n RC(S) >0
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2 (-1)"logh n
L) = (—1)* (4
W= =
For k =1,2,3,... we set
o~ (=1)"log*n o~ (="
(7.3) Tk ; - 2:: log 2,
so that
S 1)‘L k
L(s) = Z —1)*,
k=0
On the other hand, we have
1 1 -1 ( 1 Bk+1 lOg, & 27
— = —(s—=1)%, |s—1
21=s =1  e~(s—Dleg2 ] (s-l)log2+k§ (k+1) ( " | log 2
From (7.3) we obtain
1 o~ (=1 % k
=3 + Z X (s—1)
- = (=1)*Byilogh 2 ‘
— 1 5 — .
\é s (3-1)1og‘>+§0 Grip ol
and comparing the coefficients on both sides gives Theorem 4.
REMARK 4. Liang and Todd [12] set
Jil)- 1<y <.
A = (aij)nxn. where a;; =
0, ] >
and inverted the matrix form of (7.2), namely
1/2
Yo o
Y1 / log 2 1/3 TTI//II()?Z.;
9 Q <
Al 72/log’2 og24 | 8
: n— : T'” 1" ).“ 2
Yn—1/log" ™2 1/(n+1) oy
to obtain
Yo 1/2 71/ 1log?2
71/ log2 1/3 T4/ log® 2
. =47t log2+ A™! / -g,
Yn—1/log" ™12 1/(n+1) 7./ log" 2
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where

A_l = (bij)nxn, bz] =

so that
k+1

(10g2)’<+1 k+1 (k+1> Biii—; 1 <k+1> v
7.6 =225 e ) ") Bigi—j(log 21,
(7.6) k4l S\ J ) g+l k1N pi-illos 2T,

We show that the forms (7.2) and (7.6) are in fact the same. This follows from the next
proposition which we have been unable to locate in the literature on Bernoulli numbers.

PROPOSITION 2. For k =1,2,..., we have

k

k
®n >

By, =
PROOF. Recall ([1, p.804, 23.1.7))

Bi(x + h) :Z( )B (z)h*=7.

j=0

Integrating this equality gives

h k
k 1
B, h)dh = Bi(z)————hF1+1
[ B4 g(}) @
In view of
B’k+1(z) = (k +1)By(z)
we have
k 1
/ Bi(s + hdh = - (Bisa(z + ) = Braa(a)].
0 +1
Hence

]CIT[B;H_l(I +h)~ B2 = Y (;“) ]{%hnm,

=0

Taking z = 0, h = 1 and observing that Bi(0) = B, Bi(1l) = (—=1)*B(0), we obtain

Z‘ < >] ¥1- k%lBkH(l) — Brs1(0)] = 0.
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8. The relation between «; and o;. It is well-known that the Riemann function £(s)
is an entire function and has the infinite product expansion

S
(8.1 &(s ebos 1— Z)esl?,
) ()=3 1;( )
where
(8.2) by = “logm +log2 — L —1
. v = logm+log 5 ,

and p runs through the nontrivial zeros of ((s) (see [13, pp.30-31]). From (8.1) and the
functional equation for £(s):

(8.3) £(s) = &(1 = s),
we have
(8.4) E1)=€0) = 3.

Taking the logarithmic derivative of (8.1) gives

—be( S_p)

Taking s = 0 in (8.5) we obtain from (8.3) and (8.4)

(8.5)

b

(8.6) €1 =€) =3

Since 1 — p is also a zero of {(s), we obtain from (8.5) with s =
1_¢1)
) Y LI
zp: p &L
that is

(8.7) zi = —bo,

which was given by Davenport in [6, pp.81-82].
From (8.5) and (8.7), we have

gslc(ss))z”"*;(%*l'lia):bﬁZ(l—Z )

P P PR

that is

oo

S
ZZ prst
k=0
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If we set

1
(8.8) akzg - k=1,23,...,
P
p

then, we have

(s.9) CO) LS ot

and by (8.3)

£(s) _ < ‘
1 = a1 (1 —38)",
(8.10) o éaul( )
Taking s = 1 in (8.9) gives
(811) Zak:'—ﬂl Zbo or de:'zbg.
k=1 k=2

Theorem 5 gives the relationship between the o4 and v¢.

PROOF OF THEOREM 5. It is natural to start from

(8.12) £(s) = %(s - 1)#“”(%)((3)-
Let
(8.13) €(s) = (s = 1)¢(s).

The logarithmic derivative of (8.12) gives

(s 4 1 1 1 /s
E(): (s)——logr+;+§d)<§>

(8:14) €s) ~ Us) 2

Next we consider the Taylor expansion of 1[1(%) at s = 1. From the duplication formula
for ¥(z):

P(2z) = %-(Ll)(z) + ¢<z + %)) + log 2,
we have
1) gu(3) = uls) - pu (S - log2

= —y/2—log2+ 3 _(~1)"¢(n + 1)(1 - %)(s 1y

n=1
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{see [1, 6.3.8 and 6.3.14]). Hence from (8.9) and (8.14), we obtain

(8.16) =7+ Y (-1 an(s — )™

On the other hand,
= (s =100 =1 = 3 (G
o(s) =0 + 3 E O Iy

so that, from (8.16), we have

+Z( 1 (n+1)7"7- 1 {1 > 7"1 1 111 - 111 o
Yok ) (s S E o 3 1) s -
n=1 n=1 n=1
By comparing the coeflicients, we obtain Theorem 5.
REMARK 5. Since
) _ 1 1)
6s) ~s-17 ¢y
(8.16) can be written in the following form
iy S Loy Z r{em+ (1= 37) + 0w —1f(s -1
' o) ~ an/ T '

9 s S r {1 ) 4 owes - 1)t
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