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ABSTRACT. It is shown how to determine all the proper rep- 
resentations of a positive integer by a given integral, primi- 
tive, positive-definite, binary quadratic form of discriminant 
-A. The method requires finding the representations of cer- 
tain positive integers, which are bounded independently of n, 
by the principal form of discriminant -A. 

Let a x 2  + bXY + cY2 be an integral, primitive, positive-definite, binary 
quadratic form, so that a, b, c are integers such that 

It is convenient to set 

A = 4ac - b2, so that A 2 3, A = 0 or 3 (mod 4), (2) 

d = {  0, 
if A = 0 (mod 4), 

1, if A = 3  (mod 4), 

A/4, if A = 0 (mod 4), 

(A+1) /4 ,  if A = 3  (mod4),  

if A =  0 (mod 4), 
f = (b - d)/2 = 

(b - l) /2,  if A z 3 (mod 4). 
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The form a x 2  + bXY + cY2 has discriminant b2 - 4ac = -A. The 
principal form of discriminant -A is 

2 x2 + (A/4)y2, if A = 0 (mod 4), x + dry + ey2 = 
x2 + x y +  ( ( A +  1)/4)y2, if A =  3 (mod 4). 

Let n be an integer > 2. We are interested in determining the integral 
solutions (u, v) (if any) of 

In this paper we show how the integral solutions of (6) can be determined 
from the integral solutions (x, y) of a finite number of equations 

where each positive integer Q1 is bounded independently of n. It  is shown 
in the Theorem below that each Q1 satisfies the inequality 

In view of (8), when n is large in comparison with a ,  b, c, solving (7) is 
much easier than solving (6). The algorithm of [I] (see also (31) suitably 
modified can be used to solve (7). Thus we have a procedure for solving 
(6). Before giving this procedure, we note that if (u, v )  is a solution of (6) 
then 

Moreover the inverse v-I of v modulo n exists and the integer z given by 

uv-I z (mod n), O 5 z < n, (10) 

is a solution of 

az2 + bz + c z  0 (mod n), 

0 < z < n,GCD(z ,n)  = 1. 
(11) 

The number of integers Q1 is just the number of solutions z of (11). 

Procedure: This procedure determines all integral solutions (u, v) (if any) 
of (6). 

Step 1. Determine all solutions z of (11). Then carry out Steps 2-5 for each 



Step 2. Apply the Euclidean algorithm to z and n (begin by dividing r by 
n)  to  obtain quotients {qi)i20 and remainders {ri),>o, - as well as the 
denominators {Bi),>o of the convergents to z/n. Stop a t  the first 
remainder rk(k  2 0 jwhich is less than or equal to Ja. Set 

Q = arf + b ~ k ( - l ) ~ B k  + C B ~ ,  Q1 = Q/n. (12) 

Then Q1 is a positive integer satisfying the inequality 

where 

Step 3. Determine the solutions (x, y) of 

For small Q1 this can be done by direct search. For larger values of 
Q1 (remember Q,  _< M )  this can be done, for example, by applying 
the algorithm of [I] (wIth minor adjustments if GCD(A, Q1) > 1) t o  

X 2  + (A/4)Y2 = Q1/K2, (XI Y) = 1, if A = 0 (mod 4), 

X 2  + AY2 = 4Q1/K2, (x, Y) = 1, if A = 3 (mod 4), 

for each positive integer K whose square divides Q1, if A = 0 (mod 4), 
4Q1, if A i~ 3 (mod 4). The required solutions are 

(KX,  KY)l if A = 0 (mod 4), 
(xIY) = 

(K(X - Y)/2, KY),  if A r 3 (mod 4). 

Step 4. Set 

= f r k  f c ( - I ) ~ B ~ ,  

122 = ark + (d + f ) ( - ~ ) ~  ~k 

If A = 3 or 4 dcfine in addition 



Eliminate all those ( x ,  y) determined in Step 3  which do NOT satisfy 
the following seven conditions: 

Tkx - L l y  > 0,  

rkx - L l y  = 0  (mod Q I ) ,  

( - l ) k ~ k x  + L2y = 0  (mod Q 1 ) ,  

and the additional condition 

Step 5. If no pairs ( x ,  y )  remain after the completion of Step 4 there are no 
solutions ( u ,  u )  of (6 )  satisfying (10). 

Otherwise exactly one pair remains and 

is a solution of ( 6 )  satisfying (10). 

Step 6. All the solutions of (6 )  are given by 

f ( u ,  7 ~ 1 ,  if A > 4,  

f  ( u ,  u ) ,  f ( $ u  + CU, -au - $u) ,  if A = 4 ,  
(b+l) u ) ,  f ( u ,  u ) ,  f ( v u  + C U ,  -au - (28) 

f ( w u  + cv, -au - V u ) ,  if A = 3, 

where (u, u )  runs through the solutions determined in Step 5. 

Before proving the validity of this procedure, we give three examples. 

Example 1. We seek all solutions in integers u  and u  of 



This example was discussed in [2],  however, the algorithm developed 
there gives only some of the solutions of (29).  

Here 

Step 1. zl  = 462, q = 495. 
zl = 462. Step 2. k = 2,r2  = 2,  B2 = 5 , Q  = 577,Q1 = 1. 

Step 3. x2  + 2y2 = 1 + ( x ,  y )  = (*I,  0 ) .  
Step 4. L1 = 99, L2 = 41. 

(19)  22 - 99y > 0 eliminates (-1,O). 
(19)-(25) are satisfied by (1,O). 

Step 5 .  ( u ,  v )  = ( 2 , 5 ) .  

z2 = 495. Step 2. k = 2, r 2  = 3 ,  B2 = 7 ,  Q = 1154, Q 1  = 2. 
Step 3. x2 + 2y2 = 2 + ( x ,  y )  = (0, f 1 ) .  
Step 4 .  L1  = 140, L2 = 58. 

(19 )  32 - 140y > 0 eliminates ( 0 , l ) .  
(19)-(25) are satisfied by (0 ,  -1). 

Step 5. (u, v) = (70,  -29). 

Step 6. All solutions of (29) are given by 
f ( 2 , 5 ) ,  f (70,  -29). 

Example 2. We seek all solutions in integers u and v of 

This example was discussed in [2] where it was solved using the a lge  
rithm developed there. (Note that in (2,  Example 31 the remainder 
5999 is missing for .y = 12393 and the remainder 7 is missing for 
y = 18169.) Here 

Step 1. zl = 745, z2 = 3197, z3 = 4165, z4 = 8973, 
2.5 = 9 9 4 1 , ~ s  = 12393, z7 = 13361, z8 = 18169. 

zl = 745 Step 2. k = 3, r3 = 46, B3 = 74, Q = 73568, Q 1  = 4.  



Step 3. x2  + 40y2 = 4 + (2 ,  y)  = ( f  2,O). 
Step 4. L1 = -656, L2 = 544. 

(22) 32 - 22y r 0 (mod 4 )  eliminates ( f  2,O). 

t 2  = 3197 Step 2. k = 3, rs = 37, B3 = 23, Q = 18392, Q 1  = 1. 
Step 3. x2  + 40y2 = 1 + ( x ,  y )  = ( f  1,O). 
Step 4. L1 = -272, L2 = 328. 

(19) 373: + 272y > 0 eliminates (-1,O). 
(19) - (25) are satisfied by (1,O). 

Step 5. ( u ,  v )  = (37, -23). 
z3 = 4165 Step 2. k = 4,r4 = 41, B4 = 53, Q = 18392, Q ,  = 1. 

Step 3. x 2  + 40y2 = 1 + ( x ,  y) = ( f  1,O). 
Step 4. L ,  = 248, L2 = 128. 

(19) 412 - 248y > 0 eliminates (-1,O). 
(19)-(25) are satisfied by (1,O). 

Step 5. ( u ,  v )  = (41,53).  
t 4  = 8973 Step 2. k = 2,r2 = 53, R2 = 41, Q = 18392, Q 1  = 1. 

Step 3. x2  + 40y2 = 1 + ( x ,  y) = ( f  1,O). 
Step 4. L1 = 128, L2 = 248. 

(19) 532 - 128y > 0 eliminates (-1,O). 
(19)-(25) are satisfied by (1,O). 

Step 5. ( u ,  v )  = (53,41). 
25 = 9941 Step 2. k = 5,rs = 23, B5 = 37, Q = 18392, Q1  = 1. 

Step 3. x2  + 40y2 = 1 + ( x ,  y )  = ( f  1,O). 
Step 4. L1 = -328, L2 = 272. 

(19) 23x + 328y > 0 eliminates (-1,O). 
(19)-(25) are satisfied by (1,O). 

Step 5. ( u ,  v )  = (23, -37). 
t6 = 12393 Step 2. k = 4, r4 = 25, B4 = 233, Q = 349448, Q 1  = 19. 

Step 3. x2 + 40y2 = 19 has no solutions. 
z7 = 13361 Step 2. k = 7,r7 = 1, B7 = 223, Q = 349448, Q1  = 19. 

Step 3. x2  + 40y2 = 19 has no solutions. 
zs=18169 Step2. k = 3 , r ~ = 1 1 , B 3 = 1 6 5 , Q = 2 0 2 3 1 2 , Q 1 = 1 1 .  

Step 3. x2  + 40y2 = 11 has no solutions. 

Step 6. All solutions of (30) are given by 
(u, V )  = f (37, -23), f (41,53),  f (53,41),  

f (23, -37). 

Example 3. We seek all solutions in integers u and v o f  



This example illustrates the case A = 3. 

Here 

Step 1. zl = 1 1 0 1 , ~ ~  = 1812. 
21 = 1101 

Step 2. k = 2,rz = 54, Bz = 7, Q = 1155603, Q1 = 453. 
Step 3. x2 + xy + y2 = 453 + 

( x , ~ )  = f(4,-23),f(4,19),f(l9,-23),f(19,4), 
f (23, -19), f (23, -4). 

Step 4. L1 = 4899, L2 = 20765, L3 = -4953. 
(19) 542 - 4899y > 0 eliminates (-23,4), (-23,19), 

(-19,23), (-4,231, (4,19), (19,4). 
(20) 542 - 4899y = 0 (mod 453) eliminates 

(-19, -4), (4, -23), (23, -19). 
(26) 48992 + 4953y > 0 eliminates (-4, -19), (19, -23). 
(19)-(26) are satisfied by (23, -4). 

Step 5. (ZL, v) = (46, -183). 
z2 = 1812 

Step 2. k = 3,rg = 71, B3 = 7, Q = 1793353, Q1 = 703. 
Step 3. x2 + xy + y2 = 703 + 

( x ~ Y )  = 26)7f ('1 -27)1f (6?23)l * (6,-29)1 
f (23,6), f (23, -29), f (26, I) ,  f (26, -27), 
f (27, - l ) ,  f (27, -26), f (29, -6), f (29, -23). 

Step 4. L1 = 6101, L2 = 25860, L3 = -6172. 
(19) 712 - 6101y > 0 eliminates (1,26), (-1,27), 

(6,231, (-6,291, (23,6), (-23,29), (26,111 (-26,271, 
(-27, I) ,  (-27,26), (-29,6), (-29,23). 

(20) 712 - 6101 y = 0 (mod 703) eliminates (-1, -26), 
(1, -27), (6, -29), (-23, -6), (-26, -I),  (26, -27), 
(27, -I),  (27, -26), (29, -23). 

(26) 6101x + 6172y > 0 eliminates (-6, -23), (23, -29). 
(19)-(26) are satisfied by (29, -6). 

Step 5. (ZL, v) = (55, -221). 

Step 6. All solutions of (31) are given by 
f (46, -183), f (205, -871), f (251, -1054), 
f (55, -221), f (199, -846), f (254, -1067). 

The validity of the procedure described above is a consequence of the 
following theorem. 



Theorem Let a,  b, c be integers satisfying (1). Define A, d ,  el f, M as 
in (2), (3), (41, (5), (14) respectively. Let n be an integer 1 2. Let z be 
a solution of (I I). Apply the Euclidean algorithm to z and n (begin by 
dividing z by n )  to obtain quotients {q,)i20 and remainders { T , ) , ~ ~ ,  as  
well as the denominators { B i ) i > ~  of the convergents to z l n .  Let r k ( k  1 0 )  
denote the first remainder which is less than or equal to Define 
L1,  L2 ,  L3, Q ,  Q1 as in (16), (17), (18), (12), (12) respectively. Then Q 1  is 
a positive integer satisfying the inequality (13). Moreover there is a t  most 
one pair ( x ,  y )  of integers satisfing (15) and (19)-(26). If one such pair 
( x ,  y )  exists then 

is a solution of (6) satisfying ( lo) ,  and all solutions of (6) and (10) are given 
by 

*(uI ' ) 1  i f A  > 4, 
b f ( u ,  u ) ,  f (:u + cv, -au - 5 u ) ,  i f A = 4 ,  

*(u, u ) ,  f ( v u  + m, -au - W u )  , (33)  

* ( w u  + m, -au - if A = 3. 

If no such pair exists then there is no solution (u, u )  of (6) satisfying (10). 

Before giving the proof of this theorem we prove a lemma. 

Lemma Let a,  b, c be integers satisfing (1). Let n be an integer 1 2. Let 
z be a solution of (11). Suppose ( u ,  u )  is a solution of (6) for which (10) 
holds. Then all solutions of (6) satisfying (10) are given by (33). Morever 

if A > 4 exactly one of the two solutions in (33)l  satisfies u > 0; 

if A = 4 exactly one of the four solutions in (33)2 satisfies u > 0 ,  
; u + c v  > 0;  

if A = 3 exactly one of the six solutions in (33)3 satisfies u > 0 ,  
y u + m > o .  

Proof: Suppose (u, v )  and ( u l ,  u l )  are two solutions of (6) satisfying (10) .  
We have 

so that 



Now from (10) we have uv-I = u l v ~ l  (3 z )  (mod n) so that 

vul - uv1 G 0 (mod n). (35) 

Hence, from (34) and (35), we see that there exist integers X and Y such 
that 

As A 2 3 we see that the only solutions of (38) are 

Solving the two linear equations in ul and vl which result from (36) and 
(37) with (X, Y) = f (2,O), we obtain 

Both f(u, v) are integral solutions of (6) and (10). 

Next, solving the two linear equations for u1 and vl resulting from (36) 
and (37) with A = 4 and (X, Y) = f (0, I), we obtain 

A straightforward calculation shows that both f (iu + cv, -au - $v) are 
integral solutions of (6) and (10). 

Further, from (36) and (37) with A = 3 and (X, Y) = f (1, I) ,  f (1, -I), 
we obtain 

Again a simple calculation shows that these are integral solutions of (6) 
and (10). 

This completes the proof that all integral solutions of (6) and (10) are 
given by (33). 



If A > 4, as u # 0  by ( 9 ) ,  we can choose a unique solution ( u l ,  v l )  of ( 6 )  
and (10) with u 1  > 0  by 

If A = 4, as u  # 0  and $U + cu # 0  by ( 9 ) ,  we can choose a unique 
solution ( u l , v l )  of ( 6 )  and (10) with u1 > 0  and $u1 + CUI  > 0  by 

If A = 3, as u  # 0 ,  v u  + cu # 0  and v u  + cu # 0  by ( 9 ) ,  and 
(b--l) noting that u+ ( U+CU)  = ?U+CU, we can choose a unique solution 

( u l , v l )  of ( 6 )  and (10) with u1 > 0  and v u l  + C U ~  > 0,  by 

This completes the proof of the Lemma. 

Before proceeding we note two relations which follow easily from ( 2 ) ,  (3), 
(4 )1  ( 5 ) ,  (1211 (16) and (17): 

We are now ready to prove the Theorem. 

Proof of Theorem: We begin with some preliminaries on continued frac- 
tions. Let z be a solution of (11).  Applying the Euclidean algorithm to z 



and n, we obtain 

where 

and 

The continued fraction for z/n is 

The ith convergent to z/n is 

so that 

and 

An easy induction argument on i shows that 

and 



so that  

ri = ( - l ) i ~ i ~  (modn)  ( i = O l l l . . . l s ) .  (52) 

From (11)i and (52) we obtain 

This completes the preliminaries on continued fractions. 
Let rk(O 5 k I s) be the first remainder 5 d w .  From (12) and (53) 

we have 
Q = a r i  + b r k ( - l ) k ~ k  + C B ~  0 (mod n )  

so that Q1 = Q/n is a positive integer. We show that Q1 satisfies the 
inequality (13). We consider two cases according as k = 0 or k >_ 1. If 
k = 0 we have 

(as n >_ 2) 

If k >_ 1, appealing to  (50), we have 

so that 
r k -  1 Bk 5 n. 

we obtain - 

Then we have 



This completes the proof of (13) .  

We now prove that there is at most one pair ( x ,  y )  of integers satisfying 
( 1 5 )  and (19)- (26) .  Suppose ( x i ,  yi)  ( i  = 1 , 2 )  are two such pairs of integers. 
Set 

It is clear from (20) ,  (21)  and (54)  that u,, v ,  ( i  = 1 , 2 )  are integers. Further, 
for i = 1 ,2 ,  we have 

so that (u i , v , )  (i = 1 , 2 )  is a soll~tion of ( 6 ) i .  Clearly from (23) ,  (24 ) ,  (25)  
and (54) ,  we have 

G C D ( u , ,  v,) = G C D ( u ; ,  n)  = G C D ( v , , n )  = 1  ( i  = 1 , 2 )  

so that (u , , v i )  (i = 1 , 2 )  satisfies (6)2 .  Further, from (22)  and (54) ,  we see 
that 

so that as G C D ( v , , n )  = 1  we have u i v i l  = z (mod n) ,  showing that 
(ui, v )  ( i  = 1 , 2 )  satisfies (10) .  From (19)  and (54)  we see that 

and from (16) , (18) , (19) ,  (26 )  and (54)  we see that 

IIence, by the Lemma, we have 

Then, from (54) ,  we deduce 



we deduce from (55) as Q # 0 that X I  - x 2  = y ,  - y2 = 0 ,  so that ( x , ,  y l )  = 
( 2 2 ,  92) as asserted. 

It is clear from the above argument that if (x, y )  is an integral solution of 

(15)  satisfying (19)-(26) then (u, v )  = ('L"-L'y (-'Ik '*"' L2v 
Q1 ' Q1 ) is an integral 

solution of ( 6 )  and (10)  for which 

Hence by the Lemma all solutions of ( 6 )  and (10) are given by (33) .  

If there is no integral solution of (15) satisfying (19)-(26) we show that, 
there is no integral solution of (6 )  and (10).  We do this by proving that if 
( 6 )  and (10) have an integral solution then there is an integral solution of 
(15) for which (19)-(26) hold. Let (11,  v )  be an integral solution of ( 6 )  for 
which (10)  holds. By the Lemma (u, v )  can be chosen uniquely so that (56) 
holds. Appealing to  ( 5 ) ,  ( l o ) ,  (1  and (52) ,  we have for i = 0 ,  1,  . . . , s 

r i (au+ f v )  + ( - l ) i B i ( ( d +  f ) u +  ~ 2 1 )  - 0 (mod n) ,  

riv - (-l)i13,u - 0 (mod n).  
(57) 

Hence we can define integers c, and d, for i = 0 ,  I ,  . . . , s, by 

A straightforward calculation making use of (2), (3), ( 4 ) ,  ( 5 ) ,  ( 6 ) 1 ,  (11)l  
and (58)  shows that for i = 0, I , .  . . , s we have 

From ( 5 ) ,  (58)  and (59) we obtain for i = 0 ,  1, . . . , s 



We set 

where the integer k ( 0  5 k < s) is such that rk is the first remainder 
< d m .  Clearly x  and y  are integers with ( x ,  y )  # (0,O).  We show 
that ( x ,  y )  is a solution of ( 1 5 )  satisfying (19)-(26).  

First we show that (x, y)  satisfies (15 ) .  This is clear as 

x 2  + d x y  + ey2  = c i  + dckdk + edz = ( a r i  + b ~ k ( - l ) ~ ~ k  + c B i ) / n  

= Q / n =  Q 1 ,  

b y  ( 6 1 ) ,  ( 5 9 )  and (12 ) .  
Next we show that ( 2 ,  y )  satisfies (19 ) .  We have 

as required. 
The congruence (20 )  holds as 

b y  ( 1 2 )  and (59 ) .  
The congruence (21)  holds as 

( - l I k B k x  + L2y = ( - l ) k ~ k ~ k  + (ark + (d  + f ) ( - ~ ) ~ ~ ~ ) d ~  
( b y  (17 ) , (61 ) )  

= V ( C ~  + dckdk + e d t )  ( b y  (6012) 

= v(ar:  + b ~ k ( - l ) ~ B k  + c B i ) / n  
( b y  ( 5 9 ) )  

= v Q l n ,  ( b y  ( 1 2 ) )  

that is 

Next we show that the congruence ( 2 2 )  holds. We first show that ( r k  - 
~ ( - l ) ~ B k ) / n  and ( L 1  + z L z ) / n  are integers. We have 

k ~ ( r k  - z ( - I ) ~ B ~ )  s r k v  - ( -1 )  Bku (mod n) 

( b y  ( 1 0 ) )  - 0 (mod n) ,  ( b y  (57 )  2 )  



so that (as GCD(v,n)  = 1) r k  - Z ( - ~ ) ~ U ~  - 0 (mod n) .  Also 

v(L1 + zL2) -- ~ ( f r k  + ~ ( - - l ) ~ n k )  +u(ark + (d+  f)(- l ) lcnk)  (mod n )  
(by (10),(16),(17)) 

= 0 (mod n) ,  (by (57) 1) 

so that L1 + zL2 = 0 (mod n) .  Then 

where (u - zv)/n is an integer by (10) and thus 

completing the proof of (22). 
The equalities (23), (24) and (25) hold as, by (62), (63) and (6)2, we have 

GCD ( rkx - L l ~  (-l)kBkx + ' 2 ~  = G c D ( ~ ,  v) = 1, 

Q1 ' Q1 

Finally we show that (x, y) satisfies (26) when A = 3 or 4.  We have 

This completes the proof of the Theorem. 

We conclude by remarking that the detailed analysis carried out in the 
proof of the Theorem in [2] shows that if a ,  b, c satisfy 



then we must have (u, u) = (rk, ( - l ) k ~ k )  in (32), that is, 

Solving for x and y, we obtain x = Q1, y = 0. Then, from (15), we deduce 
Qy = Q1 so that Q1 = 1 and (2, y) = (1,O). 

The author would like to  thank the referee for valuable comments on the 
first draft of this paper. 
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