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ABSTRACT

In this paper it is shown that the splitting modulo a prime p of a given monic irreducible cubic
polynomial with integral coefficients is equivalent to p being represented by forms in a certain subgroup
of index 3 in the form class group of discriminant equal to the discriminant of the cubic.

1. Introduction

In this paper we are interested in the number N of solutions x (mod/?) of the
congruence

x3 + Ax2 + Bx + C = 0 (mod/?), (1.1)

where A, B, C are integers such that the cubic polynomial x3 + Ax2 + Bx + C is
irreducible over the field Q of rational numbers and p is a prime greater than 3 which
does not divide the discriminant D of the cubic, which we assume throughout is not
a perfect square. We note that

D = A2B2-4B3-4A3C-27C2 + 18ABC, (1.2)
and that

D = (AB+C)2 = 0or 1 (mod4). (1.3)

Stickelberger's parity theorem [5] asserts that the Legendre symbol I — I is given by

:(-l)fc+1, (1.4)

where k is the number of irreducible factors of x3 + Ax2 + Bx + C (mod/?). Thus we
have

.0 , , i f g ) - , .

"•'. . © • -
It is the purpose of this paper to use the representability or non-representability of/?
by the reduced, primitive, integral binary quadratic forms (a, b, c) = ax2 + bxy + cy2 of
discriminant b2 — 4ac = D to distinguish between N = 0 and N = 3. (Only positive-
definite forms are considered when D < 0.)
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We let H(D) (respectively h{D)) denote the form class group (respectively class
number) of classes of primitive, integral binary quadratic forms of discriminant D.
The main result of this paper is the following theorem.

THEOREM. There is a unique subgroup J = J(A, B, C) of index 3 in H{D) with the
following property.

If p is any prime {greater than 3) such that (D/p) = + 1 then x3 + Ax2 + Bx + C =
0(mod/?) has three solutions if and only if p is represented by one of the forms in
J(A,B,C).

In the special case when D is squarefree, this result has been stated by Shanks [4]
without proof. The case when D is not squarefree does not seem to have been treated
in the literature, and it is precisely the presence of square factors in D which adds
complications to the proof. The proof of the theorem uses class field theory and is
given in §3 after some preliminary results are proved in §2.

2. Preliminary results

Let 9,6', 9" denote the three roots of the cubic polynomial xz + Ax2 + Bx + C, so
that

D = (o-o>)\e'-o")\e"-e)\ (2.1)
and

+ VD = (e-O'W-O'W-e). (2.2)
If D > 0, 6,6', d" are all real, and we order them so that 6 < 6' < 6", in which case

If D < 0, exactly one of 9,6', 6" is real, and we choose 0 to be the real root.
Interchanging the complex conjugate roots 9' and 9", if necessary, we can ensure that
(9-9'W-9")(9"-9)/VD is positive. Hence, in both cases 9,9',9" are uniquely
determined and

VD = (9- 9') (9' - 9") {9" -9). (2.3)

Further, as 9,9', 9" are the roots of x3 + Ax2 + Bx + C, we have

0 + 0'+ 0" = -A,
\ (2.4)

We next determine 9' — 9" in terms of 9 and V A see (2.7) below. From (2.3) we have

Appealing to the first two relations in (2.4), we obtain

e'~°" = B+2A9 + 392' ( 1 5 )

Next, by the well-known formula for the discriminant of a polynomial in terms of its
derivative, we have

(B+2A9+392)(B+2A9' + 39'2)(B + 2A9" + 39"2) = -D.
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Thus (2.5) becomes

(B + 2A9 + 39)(B + 2A9 + 39)
9 -& = — . (2.6)

From (2.4) we obtain
9' + 9" = -A-9,

d'6" = B+A0+62,

0'2 + 9"2 = (A2-2B)-92,
9'9"{9' + 9") = (C-AB)-A29-A92,

so that (2.6) becomes

9' -9" = {{AB2—A
(2.7)

Then, using 9' + 9" = — A — 9, we see that

~~2 2 +

0" = ^ ! - * -
2 2 2V£

(2.8)
We set

K = QWD), L = K(9) = QWD, 9), (2.9)

C=Q{9), C = Q(9'),C" = Q(9"). (2.10)

LEMMA 1. L is a cyclic cubic extension of K.

Proof. The expressions for 9' and 9" in (2.8) show that
L = K{9) = K{9') = K{9"),

so that L/K is normal. Moreover we have [L:K] = 3 and Gal(L//£) is a cyclic group
of order 3. Thus L is a cyclic cubic extension of K.

LEMMA 2. L is a dihedral extension of Q.

Proof. Let a be the automorphism of L given by

°{9) = 9',

and let T be the automorphism of L given by

Then we have o{9f) = 9", a{6") = 9, x{9') = 9", x{9") = & and

CT3 = T 2 = 1 ) CT2T = T a , (2.13)

and
Gal (L/g) = {\,<7,<j2,T,G-r,a2r} = Dt, (2.14)

where, for n^ 3, Dn denotes the dihedral group of order 2n. Thus L is a dihedral
extension of Q.
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If F is an algebraic number field, we write d{F) for the discriminant of F.

LEMMA 3. There is a positive integer g such that

D = g2d(K).

Proof. Let D = D1 m
2, where Dx is a squarefree integer and m is a positive

integer. Moreover we have

= 0 (mod 2),
We note that

= 0 (mod 4).

d{K) = d(Q(VD)) = diQWiD.m*))) = d{QWDx))

\DX if £>! = 1 (mod 4),

X if D1 = 2,3 (mod 4),

D/m2 i f Z ^ s s l (mod 4),
4D/m2 if D1 = 2,3 (mod 4),

where g is the positive integer given by

_{m if Z)x = 1 (mod 4)
8~{m/2 if D, = 2,3 (mod 4).

If a and b are integers with a ± 0 we write a \ b to mean a divides 6.

LEMMA 4. d(L)\g«d(Kf.

Proof. Clearly the discriminant d(L) divides the discriminant d(l,6,6\ 6', 66', 626')
of the set {1,6,62,0', 66', 626'} of integers of L. We have

d(l,6,62,6',66',626') =

1 6 62 6' 66' 626'
1 6' 0'2 6" 6'6" 6'26"
1 0" 6"2 6 6"6 6"26
1 6 62 6" 66" 626"
1 6' 6'2 6 6'6 6'26
1 6" 6"2 & 6"6' 6"26'

so that

= {6"-6')\6-6")\6'-6f

= (6-6')\6' -6")\6" -6f

d(L)\D\

1 6 62 6' 66' 626'
1 6' 6'2 6" 6'6" 6'26"
1 6" 6"2 6 6"6 6"26
0 0 0 1 6 62

0 0 0 1 0 ' 6'2

0 0 0 1 6" 6"2
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The required result now follows from Lemma 3.

If E and JF are algebraic number fields with E ^ F, the discriminant (respectively
conductor) of the extension F/E is denoted by d{F/E) (respectively j{F/E)). The ring
of integers of the field E is denoted by OE.

LEMMA 5. There exists a rational integer f such that

Proof. See [3, Theoreme 3.5].

LEMMA 6. d{L/K) =f[L/K)\

Proof. This follows immediately from [1, Corollary 17.29] as L/K is cyclic by
Lemma 1.

LEMMA 7. f{L/K)=fOK.

Proof. This follows from Lemmas 5 and 6.

LEMMA 8. / 2 |g 3 .

Proof. By the discriminant relation [1, Theorem 17.3] for the tower of fields
Q cz K c L, we have

d{L) = d{KfNKIQ{d{L/K)).

Appealing to Lemma 5, we obtain

d(L) = d(K)T. (2.15)

From (2.15) and Lemma 4, we deduce that/4 |g6 so that/2 |g3.

LEMMA 9. d{C) = 32ph2d(K), where p = 0,1,2 and h is a positive integer not
divisible by 3.

Proof. See [3, Theoreme 2.3].

If a and b are integers (with a ^ 0) such that ak \ b, ak+1 X b, for some non-negative
integer k, we write ak \\ b.

LEMMA 10. If 3a \\f then a ^ 2.

Proof. We define the non-negative integers /, c and k by

3l\\d{L), y\\d(C), 3k\\d(K),

and note that k — 0,1. From (2.15) we obtain

/=3fc + 4a. (2.16)

By the discriminant relation for the tower of fields Q a C c= L, we have

= d(CYNc/Q(d(L/C)). (2.17)
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Further,

we have

so that

and thus

giving

as

by (2.
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wk = MK) + V(d(K)))e0Kcz0L,

d{L/C) 2 = d(K),

Nc/Q(d(L/C))\d(K)\
17)

d{L)\d{Cfd{K)\

(2.18)

(2.19)

Hence, from (2.16) and (2.19), we deduce that

2a ^ c .

Next, from Lemma 9, we obtain

c = 2p + k^ 2-2+1 = 5,
so that

a ^ 2 .

LEMMA 11. f\ gglt where gr = g/y, V || g.

Proof. L e t / = 3%,g = 3pgv where a ^ 0,)5 ̂  0, 3^/1 5 3 ^ ^ . By Lemma 8 we
have 2a < 3)8 and/J | ̂ J. Thus/i | g\ and, as a ^ 2 by Lemma 10, we have a < ft. Hence
we have

3. Proof of Theorem

Throughout this section p denotes a prime such that p > 3 and I — I = + 1, so that
\PJ

by Lemma 3 I 1 = 1 and p J(g. In addition & denotes a prime ideal of OK dividing
V P )

p, so that NKIQ{^) = p. We also let $ be a prime in OL lying above &. As L/A^ is an
abelian extension (Lemma 1) and as fPJfg, & is unramified in L by Lemmas 7 and 8

and the Artin symbol 1 I is defined. Since I ^ 1 is an automorphism of

Ga\(L/K) = <a> ̂  Z/3Z, we have

= 0,1,2. (3.1)

Further, for all a e OL, we have

^ \ # (3.2)
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LEMMA 12. x3 + Ax2 + Bx + C = 0(modp) has three solutions if and only if

Proof If x3 + Ax2 + Bx + C = 0(modp) has three solutions then p splits
completely in OL. Then NL/Q($) =p and, appealing to (3.2) and Fermat's theorem,
for any ae OL we have

(f^Xai) = OLN^9) = <xp = a (mod#).

By the uniqueness of the Artin symbol, we see that <fm is the identity automorphism,
that is, e(&>) = 0.

On the other hand, if x3 4- Ax2 + Bx + C = 0 (mod/?) does not have three solutions,

then as I — I = +1 and p > 3, it does not have any solutions. Thus & remains a
\PJ _

prime ideal & in OL with NLIQ{@) = p3. Since (OJ0*)* is a cyclic group of order
p3 — 1, there exists an element a of OL of order p3 — 1 modulo ^ . Clearly we have
ap £ a(mod#). Now suppose that e(̂ >) = 0. Then, by (3.2), we have

a =

which is a contradiction. Hence e(&>) ^ 0 in this case.

Next we define for any non-zero ideals M of OK the group IK(M) by

IK{M) = group of all fractional ideal of OK which are relatively prime to M.

We also set

PK Z(M) = subgroup of IK(M) generated by principal ideals <xOK with <XEOK and

oc = a (mod M) for some integer a coprime with M
and

PK j(M) = subgroup of IK(M) generated by principal ideals ccOK with <xeOK and

a = l(modM).

If M = aOK we write IK(<x) for IK(aOK), PKZ{OL) for PKZ(<xOK), and PK1(a) for
PKil(ocOK). If M is divisible by all primes of K which ramify in L (note that the
extension L/K has no ramified infinite primes) and / is a prime ideal OK not dividing

M, the Artin symbol (—— I e Gal (L/K) is defined, and can be extended by

multiplicativity to a homomorphism

which is called the Artin map for the extension K a L and the ideal M.
We denote the order [1, nwK] of index n in OK by On, so that Ox = OK. (We defined

wK in (2.18).) The discriminant of On is n2d(K). We also let C(On) denote the ideal
class group of the order On, h(On) = |C(OJ| the class number of the order On, and
Fn the ring class field of the order On.

LEMMA 13. L^FOO.
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Proof. By Lemmas 7 and 11, we have

AL/K)\gglOK,

and so, by the conductor theorem (see for example [2, Theorem 8.5, p. 162]),

is a congruence subgroup for ggv that is,

PK1(ggl) <= H ^ IK(ggl),

and, by the Artin reciprocity theorem (see for example [2, Theorem 8.2, p. 161]), the
Artin map $ t / K w induces an isomorphism

Next we show that if a,/?e#K are prime to g then

£OKe/O. (3.3)

We choose yeOK such that ay = 1 (modggx OK). Then we have fiy = 1 (modg^ OK),
and so (xyOK and fiyOK both belong to PKtX{gg^ £ H, which proves (3.3).

The next step is to prove that for any ideal AeIK(gg^), we have

NKtQ(A)0KeH. (3.4)

As L is a dihedral extension of Q (Lemma 2), for Ael^ggJ we have x(A)H =
{AH)~\ and so Az(A)eH. Since Ax{A) = NK/Q(A)OK, we have (3.4).

Now we prove that
if r is a prime Jfg then rOKeH. (3.5)

First we treat the case when r splits or ramifies in K. In this case r = NK/Q(R) for some
prime ideal R of OK. Then, by (3.4), we have

rOK = NK/Q(R)OKeH.

Secondly we treat the case when r remains prime in K, so that (d(K)/r) = — 1. Thus
r splits as rOL = RR'R" in L, where /?, R' and iT are prime ideals of OL with norms
r and r2 respectively. Then, for all a e C ,̂ we have

(a) = a"*/e(r) = ar" = a (mod R),

and so ( -4-1 = 1 and thus rOKsH. This completes the proof of (3.5).

We see immediately from (3.5) by multiplicativity that

if c is an integer coprime with g then cOKeH. (3.6)

Next we show that PK<z(ggl) ^ H. (3.7)

If ot.OKePK ziggj, so that a = ctmodggj for some integer c coprime with gg^ we
deduce from (3.3) and (3.6) that <xOKeH. This proves (3.7).

Finally we show that L<=,Fgg. We have established the chain of inclusions

PKMSX) £ PKMSI) = ker(OFffi/KiWi) s ker(Ot/ltiWi) = //.

Thus, by [2, Corollary 8.7], we have L c i ^ .
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In fact a stronger result than Lemma 13 is true. We prove the following.

LEMMA 14. L g Fg.

Proof. For convenience we treat the cases D < 0 and D > 0 separately.
Case (i): D < 0. By Gauss's formula for the class number of an order in an

imaginary quadratic field (see for example [1, Corollary 15.40]), we have

and

where q runs through all the primes dividing g and

w=

3 if d(K) =-3,
2 if d(K) =-4,
I otherwise

so that

Then, because of the isomorphisms H(D) ~ C(Og) and H(Dgl) ~ C(Ogg), we have

Since 3J(g1 and H{D) is a surjective image of H(Dgl), it follows that the 3-parts of
H{D) and H(Dgl) are isomorphic. Now, as Fg (respectively /£ ) is the ring class field
of the order Og (respectively Ogg) we have

H{D) ~
and

so that the 3-parts of Gal (î /AT) and Gal {FggJK) are isomorphic. Thus, by Galois
theory, Fg/K and Fgg /K contain the same number of subfields of degree 3 over K.
Since Fg s FgH (as ojffi £ 0ff) a n d ^ c l c ^ ^ [L:^] = 3, it follows that L^Fg.

Case (ii): D > 0. By Gauss's formula for the class number of an order in a real
quadratic field (see for example [1, Corollary 15.40]), we have

and

JiJ

where en denotes the fundamental unit (greater than 1) of the order On and q runs
through all the primes dividing g, so that

h(O,,)_ logs,
^ ( 3 8 )
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Next let £1 o (ug > 0) (respectively E\«H {ugg^ > 0)) denote the least power of ex which
belongs to Og (respectively Ogg). Then (by [1, Corollary 15.40]) we have

£
0 = ^ £m = « ? - - (3-9)

A straightforward argument using the minimality of ug shows that ug \ ugg, so that
v = uggjug is a positive integer. Then, from (3.8) and (3.9), we deduce that

g) = glh(Og)/v. (3.10)

Further, because of the isomorphisms

H(D) « C*{Og\ H(Dgl) ~ C+(Ogg),

where C+(On) denotes the strict ideal class group of the order On, and the equalities

i f N K " > ( " ' ) = ~ ' '

we have
KDgg) = uglKD)/v, (3.11)

where

" = 1 2

We note that the case NK/Q(eg) = +1, NK/Q(egg) = — 1 cannot occur as «J «w • Let
3r || H(D), 3* || /i(Dg?), 3( || v. Then, from (3.11), as 3^«, 3^gl s we have s = r-t. But
7/(D) is a surjective image of H(Dgl), so that s^r. Hence we have t = 0 and J = r.
Since 3r || h(Dgl), 3r || /i(D) and H{D) is a surjective image of H(Dgl), we see that the
3-parts of H(D) and H(Dg\) are isomorphic. From the following isomorphisms

(H(D) c
\<?(Og)/Eg «

and

where £„ (respectively £"w) denotes the subgroup generated by the strict class
containing the principal ideal y/DOg (respectively \/DOgg) (note that \Eg\ = 1 or 2,
\Eg9i\ = 1 or 2), we see that Gal(i<;/#) and Ga\(FggJK) have the same 3-part. Then,
exactly as in the case when D < 0, we can conclude that L £ Fg.

LEMMA 15. There exists a unique subgroup M = M(A, B, C) of index 3 in IK{g)
such that
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Proof. As L^Fg (Lemma 14) and Gal (Fg/K) ~ IK(g)/PKtZ(g), by the classi-
fication theorem of class field theory there exists a unique subgroup M = M{A, B, C)
of IK{g) with

and
IK{g)IM~G2A{L/K),

where the isomorphism is induced by the Artin map Q>L/K r Thus we see that

proving Lemma 15.

We are now ready to prove the theorem.

Proof of theorem. Let JU: IK(g) -* C(Og) be the standard homomorphism passing
from ideals to ideal classes and let X: C+(Og) -> H{D) be the standard isomorphism
between ideal classes and form classes. We have

C+(O = f ( ^ } if Z>< 0 or Z) >0 , NK/Q(eg) = - 1 ,

and set

_ (X(M(M(A, B, C))) if D< 0 or D > 0, NKIQ(eg) = - 1 ,
J-J(A, B, C) - | ^ ( M ( 4 ^ c ) ) y VD/l{M(A B c))) if D > 0, A K̂/Q(£ff)

Clearly 7 is of index 3 in H(D). We have 0>eM(A, B, C) if and only if/? = NK/Q(&)
is represented by a form in / . The presence of \/D^(M) in the definition of J
guarantees that p (and not just ±p) is represented by a form in / in the case when
D > 0, NK/Q(eg) = +1. The theorem now follows from Lemmas 12 and 15.

COROLLARY 1. IfH(D) has 3-rank equal to 1 then x3 + Ax2 + Bx + C = 0 (mod/?)
has three solutions if and only if p is represented by the cube of a form of discriminant
D.

Proof This is clear from the theorem as H{D) contains a unique subgroup of
index 3, namely the subgroup of cubes, which must therefore be J(A,B, C).

COROLLARY 2. Let D be the discriminant of a monic irreducible cubic polynomial
f{x) with integral coefficients. Letp be aprime (p > 3,p)( D) which is represented by the
cube of a form in H{D). Thenf[x) splits into three linear factors modulo p.

Proof. The subgroup of cubes of H(D) is contained in every subgroup of index
3 in H{D). The result now follows from the theorem.

The next two corollaries show that in certain circumstances the splitting of
x3 + Ax2 + Bx + C modulo p can be characterized using forms of discriminant smaller
than D in absolute value. Before stating these corollaries we introduce notation for
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the Gauss surjective homomorphism between form class groups. If E is an integer
= 0,1 (mod 4) and F is a positive integer we let K = K{EFZ, E) denote the surjective
homomorphism

K:H(EF2) >H(E)

given by
K([a,bF,cF2]) = [a,b,c],

where [a, b, c] denotes the class of the form (a, b, c).

COROLLARY 3. If E is an integer such that
(i) £ = 0,1 (mod 4),
(ii) D = EF2 for some integer F> 1,

(iii) [H(E):K(J(A,B,C))] = 3,

then x3 + Ax2 + Bx + C = 0 (mod/?) has three solutions if and only ifp is represented by
a form in K(J(A,B,C)).

Proof Suppose that x3 + Ax2 + Bx + C = 0 (mod/?) has three solutions. Then, by
the theorem, p is represented by a form in J(A,B,C). Replacing this form by an
equivalent one, if necessary, we may suppose that it is of the form (a, bF, cF2), so that
p = ax2 + bFxy + cF2y2 for some integers x and y, and thus p = ax2 + bx(Fy) + c(Fy)2

is represented by the form (a,b,c) in K(J(A,B, C)).
Suppose now that/? is represented by a form (a,b,c) in K(J(A,B,C)). We may

suppose that K([a, bF, cF2]) = [a, b, c]. Now, as I —1 = 4-1, p is represented by
\PI

some form class in H(D). Without loss of generality this form class may be taken as
[al,b1F,c1F

2]. Using the Gauss map K: H(D) ->H(E) we see that p is represented
by [ax,bx,Cj\ in H{E). It follows that for some choice of sign [a, ±b,c] = [a^b^c^.
Hence we have

[a,, b, F, cx F
2} = [a, ± bF, cF2] o [r, s, t],

where [r, s, t] e ker K. Since

[H{D): J{A, B, C)] = [H(E): K(J(A, B, C))] = 3,

elementary group theory shows that ker K C J{A, B,C). Thus p is represented by
[a1,b1F,c1F

2]eJ(A,B, C), and so, by the theorem, x3 + Ax2 + Bx + C = 0(modp)
has three solutions.

COROLLARY 4. If E is an integer such that
(i) £ = 0,1 (mod 4),
(ii) D = EF2 for some integer F> 1,
(iii) 3-rank of H(D) = 3-rank of H(E),

then x3 4- Ax2 + Bx + C = 0 (mod/?) has three solutions if and only ifp is represented by
a form in K{J{A,B,C)).

Proof. By elementary group theory the preservation of the 3-rank ensures
that all the elements of ker/c are cubes. Since cubes are contained in any subgroup
of index 3, in particular they are contained in J(A,B,C). It now follows that
ker>c £ J(A,B, C) and a simple argument shows that [H(E): K(J(A,B, C))] = 3, and
the result follows from Corollary 3.
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The following example shows that if E is an integer satisfying conditions (i) and
(ii) of Corollary 3, the hypothesis (iii) cannot be weakened to h{E) = 0 (mod 3).

EXAMPLE 1. Let ,4 = - 6 , 5 = 3, C = - 5 . Here D = -3159. We take E = -351
SO that F= 3. The group #(-3159) = Ux Vx W, where U (respectively V, W) is
a cyclic group of order 3 (respectively 3, 4) generated by [16,13,52] (respectively
[22, 19, 40], [8, 3, 99]) and the subgroup J(-6, 3, -5)=VxW. However,
K(J{ — 6,3, — 5)) = #( — 351) and therefore it is impossible to use the representation of
/? by forms of discriminant-351 to characterize the splitting of x3 — 6x2 + 3x—5
modulo/?. The prime 367 is represented by the principal form (1,1,88) of discriminant
— 351 but x3 — 6x2 + 3x — 5 does not split modulo 367. However the prime 3163 is also
represented by the principal form and does split the cubic:

JC3-6JC2 + 3JC-5 = ( X - 1 4 1 9 ) ( X - 2 3 7 9 ) ( X - 2 5 3 4 ) (mod 3163).

We conclude with three further examples.

EXAMPLE 2. Let A = 3, B = 7, C = 13. Here D = -1984 and #(-1984) =
UxVxW, where U (respectively V, W) is a cyclic group of order 2 (respectively 2, 3)
generated by (16,0,31) (respectively (16,16,35), (20,4,25)). The group #(-1984)
contains a unique subgroup of index 3, namely Ux V, so that by the theorem
J(3,7,13) = Ux V. Taking E = — 31, F = 8, we see that conditions (i), (ii), and (iii)
of Corollary 4 are satisfied since h( — 31) = 3. Hence x3 + 3x2 + 7x +13 = 0(mod/?)
has three solutions if and only if/? is represented by (1,1,8).

EXAMPLE 3. Let A = 0, B = - 9 , C = 1. Here we have D = 2889 = EF2

with £ = 321, ^ = 3 , and 3-rank of #(2889) = 3-rank of #(321) = 1. Moreover
#(321) ca Z6 has a unique subgroup of index 3 so that, by Corollary 4, JC3 — 9x+1 =
0(mod/?) has three solutions if and only if/? is represented by either (1,1, —80) or
(-1,1,80).

EXAMPLE 4. The polynomials

= x3-2x2+l0x-\,

all have discriminant D = — 3299. Here #( — 3299) = U x V, where Uis a cyclic group
of order 3 generated by u = (23,17,39) and V is a cyclic group of order 9 generated
by v = (29,23,33). The group #(—3299) contains four subgroups of index 3, namely,
<u>, <wu>, <MI>2>, <M, v3), and it is easy to check that

J(-2,10,-1) = <y>, /(0, -16,27) = (uv2).

The intersection of these four subgroups is the subgroup of cubes, namely, S = <y3>.
The theorem gives: all four cubics f^x), /2(x), f3(x), /4(x) split modulo/? if and

only if/? is represented by the cube of a form in #( — 3299), that is, by (1,1,825),
(27, ±7,31).
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