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gak2
modulo p
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Kenneth S. Williams∗ and Kenneth Hardy∗∗ (Ottawa, Ont.)

1. Introduction. At the Second Canadian Number Theory Associa-
tion Conference held at the University of British Columbia in August 1989,
Michael Robinson of the Supercomputing Research Center in Bowie, Mary-
land asked the first author for the value modulo p of the sum

∑p−1
k=1 gk2

where p is an odd prime and g is a primitive root (mod p). In this paper we
determine the value modulo p of the more general sum

G(p, a, g) =
p−1∑
k=1

gak2
,

where a is an arbitrary integer. The sum G(p, a, g) has the following two
basic properties:

(i) if a′ ≡ a (mod p− 1) then (as gp−1 ≡ 1 (mod p))

G(p, a′, g) ≡ G(p, a, g) (mod p) ;

(ii) if g′ is another primitive root (mod p) then

G(p, a, g′) ≡ G(p, am, g) (mod p) ,

where g′ ≡ gm (mod p), 1 ≤ m ≤ p− 2, GCD(m, p− 1) = 1.

If a ≡ 0 (mod p− 1) we have gak2 ≡ 1 (mod p) for k = 1, 2, . . . , p− 1 so
that G(p, a, g) ≡ p− 1 ≡ −1 (mod p). Thus, from now on, we suppose that
p is an odd prime, g is a primitive root (mod p), and a is an integer with
a 6≡ 0 (mod p− 1).
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We begin by defining integers d, b, q, α and r, which depend on a and p
but not on g, which will be used throughout the paper. We set

d = GCD(a, p− 1) ,(1.1)
b = a/d , q = (p− 1)/d ,(1.2)

so that b and q are coprime integers with 1 < q ≤ p − 1. We also let 2α

denote the largest power of 2 dividing q and set

(1.3) r = q/2α ,

so that r is a positive odd integer. We note that (p − 1)/r is a positive
even integer and that if α ≥ 1, b is odd. We remark that if a is changed to
a′ = a + (p− 1)w, then d, q, α and r remain unchanged but b is changed to
b + qw.

An important function in our determination of the sum G(p, a, g) modulo
p is the function F (p, a, g) defined by

(1.4) F (p, a, g) =
∏

1≤t<u≤r−1

(g(p−1)t/r − g(p−1)u/r) ,

where the right hand side of (1.4) is understood to be 1 if r = 1. The basic
properties of F (p, a, g) are given in Lemma 1 below, which will be proved
in Section 2. If n is a positive integer we write ζn for the primitive nth root
of unity e2πi/n. We recall that

√
r ∈ Q(ζr) if r ≡ 1 (mod 4) ,

√
−r ∈ Q(ζr) if r ≡ 3 (mod 4) .

As r divides p− 1 we have Q(ζr) ⊂ Q(ζp−1). Clearly Q(ζp−1) ⊂ Q(ζp(p−1))
so that √

(−1)(r−1)/2r ∈ Q(ζp(p−1)) .

Lemma 1. (i) If a′ ≡ a (mod p− 1) then

F (p, a′, g) = F (p, a, g) .

(ii) If g′ is another primitive root (mod p), say g′ ≡ gm (mod p), 1 ≤
m ≤ p− 2, GCD(m, p− 1) = 1, then

F (p, a, g′) ≡
(

m

r

)
F (p, a, g) (mod p) ,

where (m
r ) is the Jacobi symbol.

(iii) F (p, a, g)2 ≡ (−1)(r−1)/2rr−2 (mod p).
(iv) If P is a prime ideal of Q(ζp(p−1)) lying above the prime ideal (1−ζp)

of Q(ζp) and g is a primitive root (mod p) with g ≡ ζp−1 (mod P) then

F (p, a, g) ≡
(
−2
r

)
r(r−3)/2

√
(−1)(r−1)/2r (mod P) .
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It is also convenient to set

(1.5) E(p, a, g) =


1 if α = 0 ,
0 if α = 1 ,
2α(r−2)/2(1 + g(p−1)br/4) if α (even) ≥ 2 ,
2(α(r−2)+1)/2g(p−1)br/8 if α (odd) ≥ 3 .

We note that α(r−2)/2 is an integer for α even and that (α(r−2)+1)/2 is
an integer for α odd. If α ≥ 2 we have p ≡ 1 (mod 4) so that (p− 1)br/4 is
an integer. If α ≥ 3 we have p ≡ 1 (mod 8), so that (p−1)br/8 is an integer.
The basic properties of E(p, a, g) are given in Lemma 2 below, which will
be proved in Section 2.

Lemma 2. (i) If a′ ≡ a (mod p− 1) then

E(p, a′, g) ≡ E(p, a, g) (mod p) .

(ii) If g′ is another primitive root (mod p), say g′ ≡ gm (mod p), 1 ≤
m ≤ p− 2, GCD(m, p− 1) = 1, then

E(p, a, g′) ≡ E(p, am, g) (mod p) .

The following determination of G(p, a, g) modulo p is proved in Section 3.

Theorem.

G(p, a, g) ≡ −
(

b

r

)(
2
r

)α+1

d(r−1)/2E(p, a, g)F (p, a, g) (mod p) .

In Section 4 we examine some special cases of this theorem.

2. Properties of E(p, a, g) and F (p, a, g). We recall that for any
positive integer n, ζn denotes the primitive nth root of unity e2πi/n. We
will need the following result: if n is a positive odd integer and k is an
integer with GCD(k, n) = 1 then∏

1≤t<u≤n−1

(ζkt
n − ζku

n ) =
(

k

n

)
i(n−1)/2n(n−3)/2

√
n(2.1)

=
(
−2k

n

)
n(n−3)/2

√
(−1)(n−1)/2n ,

where (n ) is the Jacobi symbol. The result (2.1) can be proved as in [3,
pp. 462–465] making use of the following result (see for example [2, p. 186]):

(2.2)
(n−1)/2∏

t=1

2 sin
2πkt

n
=

(
k

n

)√
n .

P r o o f o f L e m m a 1. (i) This follows immediately from the remark
following (1.3) and the definition (1.4).
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(ii) The result is clearly true for r = 1 as in this case F (p, a, g) =
F (p, a, g′) = 1 and (m

r ) = 1. Hence we may suppose that r ≥ 3 so that
ζr 6= ±1.

Let P be a prime ideal of Q(ζr) lying above p. Then we have
r−1∏
s=0

(g(p−1)/r − ζs
r ) = gp−1 − 1 ≡ 0 (mod P )

so that
g(p−1)/r ≡ ζs

r (mod P )
for some integer s with 0 ≤ s ≤ r − 1. Clearly we have GCD(s, r) = 1 as
g is a primitive root (mod p). Let g′ be another primitive root (mod p), say
g′ ≡ gm (mod p), 1 ≤ m ≤ p− 2, GCD(m, p− 1) = 1. Then we have∏

1≤t<u≤r−1

(g′
(p−1)t/r

− g′
(p−1)u/r

)

≡
∏

1≤t<u≤r−1

(g(p−1)mt/r − g(p−1)mu/r) (mod P )

≡
∏

1≤t<u≤r−1

(ζsmt
r − ζsmu

r ) (mod P )

≡
(

m

r

) ∏
1≤t<u≤r−1

(ζst
r − ζsu

r ) (mod P ) (by (2.1))

≡
(

m

r

) ∏
1≤t<u≤r−1

(g(p−1)t/r − g(p−1)u/r) (mod P ) ,

so that

F (p, a, g′) ≡
(

m

r

)
F (p, a, g) (mod P ) .

As P | p and both sides of this congruence are integers, the congruence holds
(mod p), proving (ii).

(iii) Let P be a prime ideal of Q(ζp(p−1)) lying above the prime ideal
(1− ζp) of Q(ζp). Let g be a primitive root (mod p). Then we have

p−2∏
s=0

(g − ζs
p−1) = gp−1 − 1 ≡ 0 (mod P) ,

so that g ≡ ζs
p−1 (mod P) for some integer s with 0 ≤ s ≤ p − 2. As g

is a primitive root (mod p) we must have GCD(s, p − 1) = 1. Let s′ be an
integer such that ss′ ≡ 1 (mod p− 1), and let g′ denote the primitive root
gs′ (mod p). Then, as

g′ ≡ gs′ ≡ ζss′

p−1 ≡ ζp−1 (mod P) ,
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by (iv) (to be proved next), we have

F (p, a, g′) ≡
(
−2
r

)
r(r−3)/2

√
(−1)(r−1)/2r (mod P) ,

so that
F (p, a, g′)2 ≡ (−1)(r−1)/2rr−2 (mod P) .

As both sides of this congruence are integers, we must have

F (p, a, g′)2 ≡ (−1)(r−1)/2rr−2 (mod p) .

Finally, as F (p, a, g′) ≡ ±F (p, a, g) (mod p), by (ii), we deduce that

F (p, a, g)2 ≡ (−1)(r−1)/2rr−2 (mod p) ,

which is (iii).
(iv) Let P be a prime ideal of Q(ζp(p−1)) lying above the prime ideal

(1−ζp) of Q(ζp), and let g be a primitive root satisfying g ≡ ζp−1 (mod P).
Then we have

g(p−1)/r ≡ ζ
(p−1)/r
p−1 ≡ ζr (mod P)

so that

F (p, a, g) =
∏

1≤t<u≤r−1

(g(p−1)t/r − g(p−1)u/r)

≡
∏

1≤t<u≤r−1

(ζt
r − ζu

r ) (mod P)

≡
(
−2
r

)
r(r−3)/2

√
(−1)(r−1)/2r (mod P) ,

by (2.1), as asserted.

P r o o f o f L e m m a 2. (i) If a is changed to a′ = a + w(p − 1), the
integers d, q, α and r remain unchanged while b becomes b′ = b+wq, so that
E(p, a, g) = E(p, a′, g) if α = 0 or 1. If α ≥ 2 then q ≡ 0 (mod 4) so

g(p−1)b′r/4 ≡ g(p−1)(b+wq)r/4 ≡ g(p−1)br/4(gp−1)w(q/4)r

≡ g(p−1)br/4 (mod p) ,

showing that E(p, a′, g) ≡ E(p, a, g) (mod p) if α (even) ≥ 2. If α (odd) ≥
3, then q ≡ 0 (mod 8), and thus

g(p−1)b′r/8 ≡ g(p−1)(b+wq)r/8 ≡ g(p−1)br/8(gp−1)w(q/8)r

≡ g(p−1)br/8 (mod p) ,

proving E(p, a′, g) ≡ E(p, a, g) (mod p) in this case.
(ii) If a is replaced by am, where GCD(m, p − 1) = 1, then d, q, α and

r remain unchanged while b becomes bm. Hence we have E(p, am, g) ≡
E(p, a, gm) (mod p).
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3. Proof of the Theorem. Let P be a prime ideal of Q(ζp(p−1)) lying
above the prime ideal (1− ζp) of Q(ζp). As in the proof of Lemma 1(iii), we
may choose g to be a primitive root (mod p) satisfying

(3.1) g ≡ ζp−1 (mod P) .

If α ≥ 2, so that p ≡ 1 (mod 4), we have

(3.2) g(p−1)/4 ≡ ζ4 (mod P) ,

and if α ≥ 3, so that p ≡ 1 (mod 8),

(3.3) g(p−1)/8 ≡ ζ8 (mod P) .

Hence we have

G(p, a, g) ≡
p−1∑
k=1

ζak2

p−1 (mod P) (by (3.1))

≡
dq∑

k=1

ζbk2

q (mod P) (by (1.2))

≡ d

q∑
k=1

ζbk2

q (mod P) .

Appealing to the multiplicative property of Gauss sums (see for example
[1, p. 163]), we have as q = 2αr

(3.4) G(p, a, g) ≡ d
( 2α∑

k=1

ζrbk2

2α

)( r∑
k=1

ζ2αbk2

r

)
(mod P) .

Next, appealing to the well-known evaluation of the Gauss sum (see for
example [1, pp. 166–167]), we have

(3.5)
2α∑

k=1

ζrbk2

2α =


1 if α = 0 ,

0 if α = 1 ,

2α/2(1 + ζrb
4 ) if α (even) ≥ 2 ,

2(α+1)/2ζrb
8 if α (odd) ≥ 3 ,

and

(3.6)
r∑

k=1

ζ2αbk2

r =
(

2αb

r

)√
(−1)(r−1)/2r .

From (3.2), (3.3) and (3.5) we obtain

2α∑
k=1

ζrbk2

2α ≡


1 (mod P) if α = 0 ,

0 (mod P) if α = 1 ,

2α/2(1 + g(p−1)rb/4) (mod P) if α (even) ≥ 2 ,

2(α+1)/2g(p−1)rb/8 (mod P) if α (odd) ≥ 3 ,
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that is, appealing to (1.5),

(3.7)
2α∑

k=1

ζrbk2

2α ≡ 2α(3−r)/2E(p, a, g) (mod P) .

Next from (3.6) and Lemma 1(iv) we obtain
r∑

k=1

ζ2αbk2

r ≡
(

2αb

r

)(
−2
r

)
r−(r−3)/2F (p, a, g) (mod P) .

As d2αr ≡ −1 (mod p) we have

r−(r−3)/2 ≡ (−1)(r−3)/2d(r−3)/22α(r−3)/2 (mod P) ,

so that

(3.8)
r∑

k=1

ζ2αbk2

r

≡ (−1)
(

b

r

)(
2
r

)α+1

d(r−3)/22α(r−3)/2F (p, a, g) (mod P) .

Hence, from (3.4), (3.7) and (3.8), we obtain

G(p, a, g) ≡ (−1)
(

b

r

)(
2
r

)α+1

d(r−1)/2E(p, a, g)F (p, a, g) (mod P) .

As both sides of this congruence are integers and P | p we have

G(p, a, g) ≡ −
(

b

r

)(
2
r

)α+1

d(r−1)/2 E(p, a, g)F (p, a, g) (mod p)

for any primitive root g ≡ ζp−1 (mod P). Now let g′ be any primitive root
(mod p) so that g′ ≡ gm (mod p) for some integer m satisfying 1 ≤ m ≤
p− 2, GCD(m, p− 1) = 1. Then, working modulo p, we have

G(p, a, g′) ≡ G(p, am, g)

≡ −
(

bm

r

)(
2
r

)α+1

d(r−1)/2 E(p, am, g)F (p, am, g)

≡ −
(

b

r

)(
m

r

)(
2
r

)α+1

d(r−1)/2 E(p, a, g′)F (p, a, g)

≡ −
(

b

r

)(
2
r

)α+1

d(r−1)/2 E(p, a, g′)F (p, a, g′)

as asserted.

4. Special cases of the Theorem. An obvious interesting special
case arises when r is a square, say r = R2, R > 0. If P is a prime ideal of
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Q(ζp(p−1)) lying above the prime ideal (1− ζp) of Q(ζp) and g is a primitive
root (mod p) with g ≡ ζp−1 (mod P) then, by Lemma 1(iv), we have, as
r = R2 ≡ 1 (mod 8)

F (p, a, g) ≡ RR2−2 (mod P) .

As both sides of this congruence are integers and P | p, we must have

(4.1) F (p, a, g) ≡ RR2−2 (mod p) .

By Lemma 1(ii) we see that (4.1) holds for any primitive root g (mod p).
Further, as r = R2 ≡ 1 (mod 8), we see that

E(p, a, g) =


1 if α = 0 ,

0 if α = 1 ,

2α(R2−2)/2(1 + g(p−1)b/4) if α (even) ≥ 2 ,

2(α(R2−2)+1)/2g(p−1)b/8 if α (odd) ≥ 3 .

Hence, by the Theorem, we obtain (as d 2αR2 ≡ −1 (mod p))

Corollary 1. If r is a square, say r = R2, where R > 0, then

G(p, a, g) ≡


−1/R (mod p) if α = 0 ,

0 (mod p) if α = 1 ,

−(1 + g(p−1)b/4)/R2α/2 (mod p) if α (even) ≥ 2 ,

−g(p−1)b/8/R2(α−1)/2 (mod p) if α (odd) ≥ 3 .

A particular case of Corollary 1 is the following result:
If p = M2 + 1 (M > 0) is a prime then

p−1∑
k=1

gk2
≡

{
M − 1 (mod p) if g(p−1)/4 ≡ M (mod p) ,

M + 1 (mod p) if g(p−1)/4 ≡ −M (mod p) .

Next we examine the relationship between G(p, l, g) and G(p, 4l, g),
where l is an integer such that GCD(l, p − 1) = 1, as in this case the two
values of r given by (1.3) with a = l and a = 4l are the same.

Corollary 2. If GCD(l, p− 1) = 1 and p ≡ 1 (mod 4) then

G(p, 4l, g) ≡ ε(p, l, g)G(p, l, g) (mod p) ,

where

ε(p, l, g) =


2 if p ≡ 1 (mod 16) ,

0 if p ≡ 9 (mod 16) ,

1− gl(p−1)2/16 if p ≡ 5 (mod 8) .

If GCD(l, p− 1) = 1 and p ≡ 3 (mod 4) then

G(p, l, g) ≡ 0 (mod p) .
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P r o o f. With a = 4l, where GCD(l, p− 1) = 1, we have

d = GCD(a, p− 1) = GCD(4l, p− 1) = GCD(4, p− 1)

=
{

4 if p ≡ 1 (mod 4) ,
2 if p ≡ 3 (mod 4) ,

b = a/d =
{

l if p ≡ 1 (mod 4) ,
2l if p ≡ 3 (mod 4) ,

q = (p− 1)/d =
{

(p− 1)/4 if p ≡ 1 (mod 4) ,
(p− 1)/2 if p ≡ 3 (mod 4) , α ≥ 2 if p ≡ 1 (mod 16) ,

α = 1 if p ≡ 9 (mod 16) ,
α = 0 if p ≡ 5 (mod 8) or p ≡ 3 (mod 4) ,

r =
{

(p− 1)/2α+2 if p ≡ 1 (mod 4) ,
(p− 1)/2 if p ≡ 3 (mod 4) ,

and with a′ = l, where GCD(l, p− 1) = 1, we have

d′ = GCD(a′, p− 1) = GCD(l, p− 1) = 1 ,

b′ = a′/d′ = l ,

q′ = (p− 1)/d′ = p− 1 ,

α′ =
{

α + 2 if p ≡ 1 (mod 4) ,
1 if p ≡ 3 (mod 4) ,

r′ = q′/2α′ = r ,

so that: F (p, 4l, g) = F (p, l, g) in all cases, and

if p ≡ 5 (mod 8)

E(p, 4l, g) = 1 , E(p, l, g) = 2r−2(1 + g(p−1)lr/4) ;

if p ≡ 3 (mod 4)
E(p, 4l, g) = 1 , E(p, l, g) = 0 ;

if p ≡ 9 (mod 16)

E(p, 4l, g) = 0 , E(p, l, g) = 2(3r−5)/2g(p−1)lr/8 ;

if p ≡ 1 (mod 16)
E(p, l, g) = 2r−2E(p, 4l, g) .

Corollary 2 now follows from the Theorem.

We observe that Corollary 2 can be proved directly without appealing
to the Theorem. We first treat the case p≡ 3 (mod 4). We have, modulo p,

G(p, l, g) ≡
p−1∑
k=1

glk2
≡

p−1∑
k=1

gl(k+(p−1)/2)2 ≡ gl((p−1)/2)2
p−1∑
k=1

glk2
≡ −G(p, l, g),
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so that G(p, l, g) ≡ 0 (mod p).
Next we treat the case p ≡ 1 (mod 4). We have

G(p, l, g) ≡
p−1∑
k=1

glk2
≡

p−1∑
k=1

gl(k+(p−1)/4)2 (mod p) ,

that is,

(4.2) G(p, l, g) ≡ gl((p−1)/4)2
p−1∑
k=1

(−1)kglk2
(mod p) ;

and working modulo p we have

G(p, 4l, g) ≡
p−1∑
k=1

g4lk2
≡

p−1∑
k=0

k 6=(p−1)/2

g4lk2
≡ 2

(p−3)/2∑
k=0

g4lk2

≡ 2
p−2∑
k=0

k even

glk2
≡

p−2∑
k=0

(−1)kglk2
+

p−2∑
k=0

glk2
,

that is,

(4.3) G(p, 4l, g) ≡
p−1∑
k=1

(−1)kglk2
+ G(p, l, g) (mod p) .

Eliminating
∑p−1

k=1(−1)kglk2
from (4.2) and (4.3), we obtain

G(p, 4l, g) ≡ (1 + g−l((p−1)/4)2)G(p, l, g) ≡ ε(p, l, g)G(p, l, g) (mod p) .

Corollary 3.

G(p, a, g)G(p,−a, g) ≡

−d (mod p) if α = 0 ,
0 (mod p) if α = 1 ,
−2d (mod p) if α ≥ 2 .

P r o o f. We have by (1.4)

F (p, a, g) = F (p,−a, g)

so that by Lemma 1(iii) we obtain

F (p, a, g)F (p,−a, g) ≡ F (p, a, g)2 ≡ (−1)(r−1)/2rr−2 (mod p) .

From (1.5) we deduce

E(p, a, g)E(p,−a, g) =
{

1 if α = 0 ,
0 if α = 1 ,

E(p, a, g)E(p,−a, g) ≡ 2α(r−2)+1 (mod p) if α ≥ 2 .
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Hence by the Theorem we have

G(p, a, g)G(p,−a, g) ≡
(
−1
r

)
dr−1(−1)(r−1)/2rr−2

×

 1 if α = 0
0 if α = 1
2α(r−2)+1 if α ≥ 2

 (mod p)

≡

−d if α = 0
0 if α = 1
−2d if α ≥ 2

 (mod p) ,

as d 2αr ≡ −1 (mod p).
This result can also be proved directly. We have working modulo p

G(p, a, g)G(p,−a, g) ≡
p−1∑
k=1

gak2
p−1∑
l=1

g−al2 ≡
p−1∑

k,l=1

ga(k2−l2)

≡
p−1∑

l,m=1

ga((l+m)2−l2) ≡
p−1∑

l,m=1

ga(2lm+m2) ≡
p−1∑
m=1

gam2
p−1∑
l=1

g2aml

≡
p−1∑
m=1

g2am≡1 (mod p)

gam2
(p− 1) ≡ −

p−1∑
m=1

2am≡0 (mod p−1)

gam2
,

that is,

G(p, a, g)G(p,−a, g) ≡ −
p−1∑
m=1

2m≡0 (mod q)

gam2
.

If α = 0 we have

G(p, a, g)G(p,−a, g) ≡ −
dr∑

m=1
m≡0 (mod r)

gbdm2
≡ −

d∑
n=1

gbdr2n2

≡ −
d∑

n=1

g(p−1)brn2
≡ −d .

If α = 1, so that b ≡ 1 (mod 2), we have

G(p, a, g)G(p,−a, g) ≡ −
2dr∑

m=1
m≡0 (mod r)

gbdm2
≡ −

2d∑
n=1

gbdr2n2

≡ −
2d∑

n=1

(g(p−1)/2)brn2
≡ −

2d∑
n=1

(−1)n ≡ 0 .
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If α ≥ 2, so that b ≡ 1 (mod 2), we have

G(p, a, g)G(p,−a, g) ≡ −
2αdr∑
m=1

m≡0 (mod 2α−1r)

gbdm2
≡ −

2d∑
n=1

gbd22α−2r2n2

≡ −
2d∑

n=1

(gp−1)b2α−2rn2
≡ −2d .

We conclude with two other special cases which follow easily from the
Theorem.

Corollary 4. If GCD(l, p− 1) = 1 and p ≡ 5 (mod 8) then

G(p, 2l, g) ≡ 0 (mod p) .

Corollary 5. If GCD(l, p− 1) = 1 then

G(p, al, g) ≡
(

l

r

)
δ(p, a, l, g)G(p, a, g) (mod p) ,

where

δ(p, a, l, g) =

{
g(p−1)br(l−1)/8 if α (odd) ≥ 3 ,
g−(p−1)br/4 if α (even) ≥ 2 and l ≡ 3 (mod 4) ,
1 otherwise.
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