
THE DlSTANCE BETWEEN IDEALS 
IN THE ORDERS O F  A REAL QUADRATIC FIELD 

par Pierre KAPL.AN and Kenneth S. \?'ILLIAMS I) 

The notion of the distance between two equivalent, reduced, primitive 
ideals of an order in the ring of integers of a real quadratic field was first 
introduced by Shanks [7] in 1972 in order to develop a more efficient algorithm 
for computing the fundamental unit of the field, although this notion was 
already implicit in the work of earlier authors including Lagrange [2]. Shanks 
used the language of binary quadratic forms to describe the concept of 
distance. This concept, still described in terms of binary quadratic forms, was 
made more precise and exploited by Lenstra [4] (1982) and Schoof [6] (1983) 
in their work on quadratic fields and factorization. In 1986 Williams and 
Wunderlich [I21 gave a treatment of distance in terms of ideals, and used it 
to develop a simple algorithm for use in the continued fraction factoring 
algorithm. Parts of their theory have also been used in numerical studies of 
Eisenstein's problem [9] [ l l ] .  

The aim of this papers is two-fold. We first give a complete treatment of 
the basic theory of the distance between equivalent, reduced, primitive ideals 
in the hope of making this attractive and useful theory better known and more 
readily available for further research. Our treatment is based mainly on the 
presentation of Williams and Wunderlich [12], but, in our view, is simpler in 
some aspects. Our second objective is to define a homomorphism between the 
ideal class groups of different orders and to apply this theory to compare 
distances between corresponding ideals in the two orders. The presentation is 
self-contained in that factorization of ideals in an order of a quadratic field 
is not needed, nor do we use the theory of the units of a real quadratic field. 
Indeed the theory of units is a consequence of our presentation, see 
Corollary 5. We give known results as Propositions and new results as 
Theorems. 

' )  Research supported by Natural Sciences and Engineering Research Council of Canada 
Grant A-7233. 
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Throughout this paper, if A is a unitary commutative ring, and 
a , ,  a 2 ,  ..., a, are elements of A,  the Z-module generated by a l ,  a 2 ,  ..., a, is 
denoted by [ a , ,  a 2 ,  ..., a,] and the A-module (ideal) generated by 
a , ,  a 2 ,  . . ., a, by (a ,  , a 2 ,  . . . , a,,,). The product of the ideals ( a l  , . . . , a,,,) and 
( a  ; , . . . , a L) is the ideal (a ,  a ; , . . . , a, a ;, . . ., a, a:). If I is an ideal, we often 
write the product ideal (a)Z as a I .  

2. BASIC DEFINITIONS 

Let K be a quadratic field of discriminant Do.  As D,, is a discriminant we 
have Do = 0 (mod 4) or Do = 1 (mod 4). In 9 2 and 9 3 K may be real (Do > 0) 
or imaginary (Do < 0) but in the remaining sections K will be assumed to be 
real. An element a of K can be written a = x + y Do, where x and y are 
rational numbers. The conjugate of a is the element a = x - y 1 % of K. 
The norm of a is the rational number N(a)  = aa = x 2  - Doy2.  We define 
the integer wo of K by 

The ring of integers of K is OD, = [ I ,  w o ]  For a positive integer f , we set 

if D = O(mod4) 

(2.2) D = D o f 2 , w  = 

- (1 + l/'D) , if D = 1 (mod 4) . 

and 

It is easy to check that OD is the subring of index f in OD,, called the order 
of discriminant D. We note that 

D 
if D = 0 (mod 4) , 

(2.4) 
( D  , if D - 1 ( m o d 4 ) .  a + -  

4 
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The multiplicative group o f  K is denoted by K * .  
Next we describe the ideals o f  the order OD.  Throughout this paper all 

ideals will be nonzero. 

PROPOSITION 1. ( [ l o ] :  Theorem 5.6, [12]: Theorem 3.2) (i) The 
(nonzero) ideals of the order OD are the Z-modules 

where 

is an integer. 

b' + V D  
(ii) Two ideals I = d and I f  = dl [ a r ,  are equal 

i f ,  and onlv i f ,  I d  = \d'l,lai = lar \ ,  b = b f ( m o d 2 a ) .  

Proof. ( i)  Let I be a (nonzero) ideal o f  OD. The set I n Z is a (nonzero) 
ideal (ao) o f  Z. The set { y  E Z :  x + y o  E I for some X E  Z )  is also an ideal ( d )  
o f  Z, and, as a o o  E I,  we see that dla,, say a. = da. Let a,€ I be such that 
a ,  = b, + d o .  Appealing to  (2.4), we see that 

dD 
- + b o o ,  i f  D = 0 (mod 4)  , 

mao = w (b,  + d o )  = 

+ ( d +  b , ) o  i f  D = 1 ( m o d 4 ) ,  

so that dlb,, say bo = dbl . Thus we have a. = d ( b ,  + o), which shows that 
1 2  d[a ,  b ,  + o ] .  Now let 0 = x + d y w ~ I .  As - soy = x - boy € I n  Z, 
there exists k~ Z such that 0 = kao + soy, which shows that I c [ao, ao]  
= d [ a , b , + o ] .  Hence we have I = d [ a , b l + o ] .  As d N ( b l + o )  
= d ( b ,  + o) ( b ,  + 6) E I n Z = (da), we see that a divides N(b l  + o). 

Now let I = d[a, b l  + o], where c = - N(b l  + o ) \ a  is an integer. W e  
show that I is an ideal o f  OD. It suffices to  prove that o a  and w(b,  + w )  
belong to  [a, b ,  + o]. This follows from 
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o ( b ,  + o )  = - (6, + 6 )  (b, + o )  + (6,  + o + 6 )  (b, + o )  

= cu + (bl  + co + 61) (b l  + W) . 

We have thus shown that  the ideals of OD are the Z-modules d[a,  b l  + o ] ,  
where c = - N(b, + o )  a is a n  integer. Let b be the integer given by 

2 b 1  , if D = 0 (mod 3) , 
b =  { 

2bl  + 1 , if D = 1 (mod 4) , 

so that 

This completes the proof of Proposition 1 (i). 

[ , b +; D ]  

[ b' + 2 ~ " ~ ]  
(ii) If d a -- = d 1  a',- we easily see that d i d ' ,  d ' ld,  

a d a ' d '  and  a'd'lad, from which Proposition 1 (ii) follows. 

[ '+;"'I of Exanzple I .  (i) By Proposition 1 (i) the Z-module A = 3, -- 

45 - 1 
OJS is not an ideal of 04J as  -- is not an integer. Indeed A is not closed 

12 
1 + 1 4 5  

under multipIication by elements of 045 as - E A but 
2 

(ii) By Proposition 1 (i) the Z-module B = [ l l ,?]  of O,, is a n  

45 -- 1 , 
ideal of 04( as  - is a n  integer. 

44 

If I = d [ a ,  fig] is a n  ideal of OD, by Proposition 1 (ii), we see 

that GCD(a, b, c) does not  depend upon the choice of u, b and d. This enables 
us t o  define the concept of a primitive ideal of OO. 
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Definition I .  (Primitive ideal) The ideal I = d [ a . ---- +: Dl o f  0, is 

called primitive i f ,  and only i f ,  

d = GCD(a, b, c) = 1 , 

where c is defined by (2.5). 

Our next result gives some basic properties o f  primitive ideals. 

PROPOSITION 2. (1101: Theorem 5.9) (i) I /  I = [a,  T] is a 

primitive ideal of 0, then 

where I = [ a , - is the conjugate ideal of L 

(ii) If I is a primitive ideal of 0, and a E K* is such that I = aI, 
then a is a unit of 0,. 

(iii) If I = [ . b + l D ]  a --- and J =  [ A -  . :I D l  are primitive ideals 

1 1  
of On s u c h f h a f  -/=-.I then I = J  and ( a ( = ( ~ l .  

a A 

Proof. ( i )  W e  have 

. c )  contains the ideal (a, b, c) = ( 1 ) ,  so 

that I I = (a).  

(ii) As a E K* , there exist E 0; and y E 0; such that a = b i y .  Then, we 
have yI = yaI = bI,  and so, by ( i ) ,  we obtain (y ) (a )  = y l I  = b11 = @)(a) ,  
giving ( b )  = ( y ) ,  so that a = b i y  is a unit o f  0,. 

(iii) W e  have A l  = aJ so that, by (ii), a / A  = k 1 and I = J. 

Next we define the notion o f  equivalent ideals. 

Definition 2. (Equivalent ideals) Two  ideals I and /' o f  0, are said to  be 
equivalent i f  there exists p E K* such that I' = pI. 
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Example 2. The ideals 

[ 12+:m] = [7 ,6+j /%]  and I =  I = 7, = [2, k'To] 

of Ozoo are equivalent as 

- 16 + 1/'200 
where a = E K * .  

4 

It is clear that the notion of equivalence given in Definition 2 is an 
equivalence relation. The equivalence classes are called ideal classes. The ideal 
class of the ideal Zis denoted by C(Z). If I' E C(Z) and J' E C ( 4  then I'J' E C(Z4, 
and we can define multiplication of ideal classes by C(Z) C(J) = C(ZJ). 

Definition 3.  (Primitive class) An ideal class of OD containing a 
primitive ideal is called a primitive class. 

It follows from Proposition 2(i) that the primitive classes are invertible, 
and so form a group CD with respect to multiplication. 

Definition 4. (Ideal class group) The group CD of primitive classes of the 
order OD is called the ideal class group of OD. 

The unit class of the ideal class group is called the principal class and 
consists of all the principal primitive ideals of OD. In fact CD is a finite 
group. 

Next we give a necessary and sufficient condition for two ideals I and I' 
of OD to be equivalent, and, when I and Z' are equivalent, a means of 
calculating p in the relationship I' = pl. It suffices to consider ideals of the 

form [ a , - + J D ]  that is with d = I 
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PROPOS~TION 3. ( [ l o ] :  Theorem 5.27) Let 

[ , +JD] and J = A ------- I =  a -  [ . 
be two ideals of OD. Set 

(i) The ideals I and J are equivalent if, and only if, there exists a 2 x 2 

integral matrix of determinant E = ps - qr = + 1 such that 

PQ, + 4 V,=- 
rQ, + s 

(ii) If I and J are equivalent the numbers p E K* such that J = pI 
are given by 

and satisfy 

Proof. We have J = pI, that is A [ 1 ,  W] = pa[l ,  @I, if, and only if, there 

exists an integral matrix of determinant E = + 1 such that 

A = rpacp + s p a ,  

AV, = PPQQ, + qpa 

The equations (2.8) are equivalent to 

This establishes (i) and the first equality of (2.6). 

Taking conjugates in (2.8), we have 

A = rpa6 + spa , 

~ i j  = ppa6 + qpa , 
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so that (2.8)  and (2.9) are equivalent to the matrix equality 

Taking determinants we obtain 

A:(" - (I) = & p p a 2 ( @  - 6) , 
I '0 1 0 A 

which gives, as - i j ~  = - and @ - @ = -, p p  = E - , proving (2.7). 
A u a 

Then the first equality in (2.6) shows that p = ~ ( r @  + s ) ,  establishing the 
second equality in (2.6). 

C O R ~ L , L , ~ Y  I.  Let I = [a ,  -1 be a primitive ideal of  O,], 

b + \ D  
nnd set @ = - . For 4 E Z define a', b'a' and I' by 

2a 

Then 

and I' is a prirrzitive ideal of  O,, such that 

Proof. The formulas in (2.11) for a' and @' are easily proved by a 
straightforward calculation, and Proposition 3 with p = 0, q = 1 ,  r = 1, 
s = - q gives 

1 
which is equivalent to  (2.12) as @' = -- . 

@-'I 
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By Proposition 1 a primitive ideal I of OD can be written in the form 
I = a [ l ,  @] (@ = ( b  + ] D ) /2a) ,  where a is an integer uniquely determined up to 
sign by I and a@ is determined modulo a by I. 

Definition 5. (Representation of a primitive ideal). Let I be a primitive 
ideal of O n .  A pair {a,  b }  such that I = a l l ,  @I, where @ = ( b +  I D) /2a,  is 
called a representation of I. 

Definition 6. (q-neighbour). When the representation { a ,  b }  of the 
ideal I and the representation {a ' ,  b ' }  of the ideal I '  are related as in (2.10), 
we say that {a ' ,  b ' }  is q-neighbour to {a,  b } .  

Definition 7. (Lagrange neighbour). When D > 0 and {a ' ,  b ' }  is q- 
neighbour to {a,  b }  with q = [@I, we say that {a ' ,  b ' }  is the Lagrange neighbour 
of { a ,  b }  and write {a,  b }  5 {a ' ,  b ' } .  

Definition 8. (Gauss neighbour). When D > 0 and {a' ,  b ' }  is q-neighbour 

to  {a ,  b }  with q = - a [F @ ]  , we say that {a ' ,  b ' )  is the Gauss tneighbour of 
l a  la1 

{a ,  b }  and write {a ,  b }  5 {a ' ,  b ' } .  

Lagrange's reduction process using Lagrange neighbours is described in 5 5 
and Gauss's reduction process using Gauss neighbours in 5 8. 

-b+l  D 
COROI,L.ARY 2. The ideals I = and J = [c, ] . 

where c is given by (2.5), are equivalent and satisfy 

1 b + ] D  - b + l D  
Proof. We have w = - , where @ = - and w = , SO 

4, 20 2c 
- b + l D  

that, by Proposition 3 (ii), we have J = pI with p = ( -  1)6 = 
2a 

B + [ D  [ , +: and J = [ A .  -1 are two COROLLARY 3. If I = a - 

equivalent ideals of O,, with I primitive then J is also primitive. 

b + I  D B + I  D 
Proof. Set @ = - and w = - . As I and J are equivalent, 

2a 2A 
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P@ + 4 A 1  
by Proposition 3, we have J = PI, where I J J  = -, p - - - 

r@ + s a r @ + s  
- 

= ~ ( r @  + S )  and E = ps - qr = + 1. Clearly we have 

A = ~ a ( r @  + s) (rd, + S )  = &(as2+ bsr - cr2) , 

B = A(w + W )  = E ~ ( W  + W )  (r@ + s) ( r i  + s) 

= E ~ ( ( P @  + 4) 0-6 + s) + (pd, +q)  (r@ +s))  

= ~(2asq  + b(sp + rq) - 2cpr), 

- c = A I J J ~  = ~avW(r@ +s)  (rd, +s)  = ~ a ( p @  + q )  + 4) 

= ~ ( a q  Q bqp - cp 9 . 
Thus A, B, C are integral linear combinations of a, b, c. Similarly, a, b, c are 
integral linear combinations of A,  B, C. Hence CCD(A, B, C )  = CCD(a, b, c) 
= 1 so that J is primitive. 

3. THE HOMOMORPHISM 8 

Let OD and OD, be two orders of OD, with OD. C OD. Then we have 
D' = D f 2  for some positive integer f .  This notation will be used throughout 
the rest of the paper. Our aim is to define a surjective homomorphism 8 from 
the ideal class group CDr onto the ideal class group CD. After proving three 
lemmas, we will prove the following theorem. 

THEOREM 1. (i) Every class C of CDr contains a primitive ideal I [ fb;:1'D7] 
of the form I = a, , where GCD(a, f )  = 1 ,  such that the 

[ , +: is a primitive ideal of OD. ideal J = a - 

[ f b  
(,,(a, f )  = 1) and I' = (ii) If I = a, -- 

(GCD(a', f )  = 1 )  are two primitive ideals in the same class C of CDr 

with I ' =  pI(p€K*),  then the ideals 

b'+!,D 
and J' = [ a f ,  -1 

of OD satisfy J' = pJ and are in the same class 8(C) of CD. 
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(iii) The mapping C -+ 8(C) is a homomorphism of CDr to on C, . 
Part (ii) of Theorem 1 will be the main tool in relating distances between 

ideals of different orders of the same real quadratic field. 

LEMMA 1. A primitive ideal I = contains a number 

where x and y are coprime integers, such that 

the integer N(a) / a  is prime to a given nonzero integer m. 

Proof. We begin by noting that - N xu + y - = ax2 + bxy ( ib+:"")) a 
- cy2 in view of (2.5). If Itnl = 1 we take x = 1, y = 0, a = xu 

= a, so that GCD(N(a)/a, m)  = GCD(a, 1 )  = 1, as required. 

Hence we may suppose that I m I > 1. Let p,(i = 1 ,2 ,  ... , n) be the distinct 
prime factors of m. For i = 1, 2, ..., n we set 

so that pi,/'ax' + bx,yi - cy:. Let .Y' and y' be integers such that 
x' = xi(modpi)  and y' = y,(modp,) for i = 1 . n,  so that 
GCD(a.ur2+ bxly'- cyi2, m)  = 1 .  The required number a is given by a = xu 

xi + y (T) , where Y = , Y =  Y' 
GCD(xl, y') GCD(.Y', y') 

LEMMA 2. Let m be a given nonzero integer. Every class C of CD 

contains a primitive ideal with GCD(a, m)  = 1 .  

Proof. 
b' + ]/D 

Let [an,  -1 be a primitive ideal of the class C. By 

Lemma 1 there exist coprime integers x and y such that 

(3.1) GCD(ak2 + b'xy - c'y', tn) = 1 . 

Set a = a'x2 + b'xy - c'y2 and let r and s be integers such that xs - yr = 1 .  

Next set 
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so that 

and 

Then we have 

b f + l  D 

[a,  y] = p 
+ y , raf + s (?)I 

b + l  D 
so that [a ,  is an ideal equivalent to the primitive ideal 

[ d ,  y] . Hence, by Corollary 3, la ,  f ] is primitive. 

LEMMA 3. Let C and C' be two classes o f  C D .  Then there exist 
B + ~ D  

primitive ideals I = E C and I' = [ d ,  E C' 

with GCD(a, a') = 1 .  Moreover the ideal 11' is prirnitive and 

Proof. By Lemma 2 there exist primitive ideals I = 

b ' + l  D 
and I' = [a ' ,  -2-] E C" with GCD(a, a') = 1 As b - D - br(mod 2) 

b - b' 
and GCD(a, a') = 1 there are integers k and k' such that k'a' - ka = . 

L 

Set B = b + 2ka = b' + 2k'a' so that 

[ > B + 2 '  "1 B + I D  
I =  a -  and I f  = [ d ,  
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Now D - A2 is divisible by both 4a and 4af ,  and so, as GCD(a, a') = I ,  
D - B2 

D -- B2 is a multiple of 4aa', so that c" = - 
4aa' 

is an ideal of OD and we have 

( ( " ' z ' D ) , ~ ~ ( ~ ) , ( ~ ) ~ )  II '  = aa', a - 

Finally, any prime divisor of aa', B,  c" must divide GCD(a, B,  a'c") = 1 

or GCD(af,  B, ac") = 1 ,  as GCD(a, a') = 1 ,  which is impossible. Hence the 
ideal 11' is primitive. 

We are no\+' ready to prove Theorem 1. 

Proof of  Theoretn I .  (i) By Lemma 2 the class C contains a primitive 

b' + I D' 
ideal I = l a ,  ] with GCD(a, f )  = I Let I. be an integer such that 

( 2rrk = - b' (mod f )  , if f = 1 (mod 2) , 

. As I is an ideal of and set b = (b'+2ak)/  f ,  so that I = 

On,, (D' - f ?b2)/4a is an integer, and so, as GCD(a, f )  = 1, c = ( D -  b2)/4a 

[ is an ideal of 0,. Further. is also an integer, showing that J = a, -- 

as I is primitive, we have GCD(a, b f ,  c f 2, = 1, and so GCD(a, 6, c) = 1, 
showing that J is primitive. 

(ii) If I' = p I ,  by Proposition 3, there exist integers p, q, r, s with 
ps - qr = f 1 such that 

(3.3) 

fb '  + 1 D' 
- 

fb- I D' 
-- - 

f b + \  D 2a' 
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Rearranging the first equation in (3.3), we obtain the following equality 
among elements of OD 

from which we deduce that f 1 qua'. As GCD(aar, f )  = 1 there exists an integer 
q' such that q = q'f ,  so (3.3) can be rewritten as 

which, by Proposition 3, shows that J' = pJ. 

(iii) Let C E CDr and C' E CDr.  By Lemma 2 and (i), we can choose an 

ideal I = [a, f ( 1  in C with GCD(a, f )  = 1 and then an ideal 

I f =  [ a ' , f  (b '  - +2L D)]  in Cr  with CCD(ar, a f )  = I .  By (i) 

~ ' + I , D  
and [ar ,  -1 are ideals of 0, and so we have b - bl(mod 2). We 

b - b' 
choose integers K' and K such that K'a' - Ka = - , and set B = b + 2Ka 

2 

= b' + 2K'a1, so that I = [ a, f ( - " +; ")I and I' = [u, f (q)] . 

By Lemma 3 we see that 11' = [ aa', f ( B  - +; ')I is a primitive ideal of the 

B +  1 D B + L D  
class CC'. But the primitive ideals J = 

[a, 
, J *  = [at, , 

belong respectively to the classes 0(C), 8(C1), O(CC1), 

and, as JJ '  = J" by Lemma 3, we have 0(C) O(C1) = O(CC1), showing that 0 
is a homomorphism: CDr - CD. 

Finally we show that 0 is surjective. Let C be a class of CD and let 

J =  a -  [ . +':"] be a primitive ideal of C with GCD(a, f )  = 1 (Lemma 2). 
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D b2  
Then we have GCD(a, 6, c) = 1, where - - - c, and so GCD(a, b f ,  c f ?) = 1, 

4a 

showing that I = is a primitive ideal of On.. Hence C is 

the image of the class of I under 0. 

COROI LARY 4. If the cluss C o f  On. contains the pr~rnitive ideal 

I = a, -- [ D l ]  , where f I I a [hen f I b and rhe class O(C) 

b 

corztains the prirn~tive ideal J = 

Proof. As D' = D f = b 2  + 4uc, and f I a, we see that f 6, and  50 

- b + l  D' 
GCD( f ,  c.) = 1. By Corollary 2 we have I = 

* 

showing that J E 0(C).  

4. REDUCED IDEALS 

From now o n  in this paper we suppose that Do > 0 so that we are only 
considering ideals in orders of a real quadratic field. An ideal I of OD can be 

b + 1  D 
written in the form I = a d [ l ,  $1, where 4 = - . By Proposition 1 (ii), 

2a 
if I = a l d ' [ l ,  4'1 is another representation of I, then a' = + a and 

a b + l  D D b 2  
(I' = ; 4 (mod 1 ) .  A real number of the form - , where c = - 

a 2a 4a 
is a n  integer and  GCD(a,  6,  c )  = 1 is called a quadratic irrationality of 
discriminant D. 
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b+1;D 
Definition 9. (Reduced number). The quadratic irrationality 4, = - 

2a 
of discriminant D is said to be reduced if 

(4.1) $ > I ,  - 1 < C p < o .  
It is easy to check that (4.1) is equivalent to each of the inequalities in (4.2) 

(4.2) (i) 0 < ~ ~ - b < 2 a < l ~ + b ,  

(ii) O < L D - b < 2 c < I , D + O .  

Moreover (4.2) implies 

(4.3) O < a < v ~ ,  O < b < l ~ ,  O < C < \ D .  

Definition 10. (Reduced ideal). The ideal J = a d [ l ,  Q,] of OD, where 

Q,=- + D ,  is said to be reduced if, and only if, 4, can be chosen to be 
2a 

reduced. 

From (4.3) we see that the number of reduced, primitive ideals of OD is 
finite. 

PROPOSITION 4. ([12]: Definition and Theorem 3.5). The ideal 

of OD, where a > 0 and d > 0 ,  is reduced i f ,  and only if ,  J does not 
contain a nonzero element a satisfying / a I < da, / a 1 < du. 

Proof. It suffices to  prove that J is reduced if, and only if, the Z-module 
[1, 4,] does not contain a nonzero element h = x + y4, such that 

(4.4) l h l <  1 ,  I X 1 <  1 .  

If J is reduced we can suppose that Q, > 1, - I < 6 < 0.  Let x and y be 
integers such that 0 < h = x + y4, < 1 .  

Clearly we have y + 0.  If y 3 1, then we have yQ, > 1, s o x  < - 1, showing 
- 

that h = x +  < - 1. If y < - 1, then we have y4, < - 1 ,  so x 3 2, 
showing that % = x + y$ > 2. This proves that [ l ,  Q,] does not contain an 
element h Z O  such that Ill< 1 , 1 % / <  1 .  

Now suppose the Z-module [ I ,  $1 does not contain an element h z 0 
satisfying (4.4). We can choose $I so that - 1 < 4, < 0 ,  in which case 
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- I ' D  
Q, = Q, + - > - 1 .  Hence, as Q, cannot satisfy (4.4), we must have Q, > 1, 

a 
so I is reduced. 

LEMMA 4.  If I = d [ a .b+:'"] -- is an ideal of OD with 0 < a 

10 < - then I is reduced. 
2 

Proof. We can write I = d a [ l ,  Q] with - 1 < Q, < 0.  Then we have 
- 

- I D  Q, = Q, + - > 1 so that I is reduced. 
a 

In this section we describe Lagrange's reduction procedure which was first 
introduced in [2].  This procedure uses Lagrange neighbours and so is based 
on the continued fraction algorithm. The procedure, when applied to a given 
primitive ideal I of OD, gives all the reduced ideals of OD which are 
equivalent to  I. 

Let {a ,  b }  be a representation of the primitive ideal I of OD. The 
Lagrange neighbour of {a ,  b )  is the representation {a ' ,  b ' )  of the primitive ideal 
I' of OD given as follows: 

1 

(5.1) 
D - b f 2  D -  b2  

b' = - b + 2 a q ,  a' = - - + b q -  a q 2 ,  - 

4a 4a 

(see (2.10) and (2.11)). We write {a ,  b }  5 {a ' ,  b ' } .  The primitive ideal 
I' = a f [ l ,  Q,'] is also called the Lagrange neighbour of I. 

We note that 

as q = [@I. We also remark that if a is kept fixed and Q, is changed modulo 1 
then Q,', b' and a' do not change. Hence the Lagrange neighbour of {a ,  b }  

depends only upon the sign of a. If {a ,  b }  {a ' ,  b ' )  then by Corollary 1 the 
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ideals I =  a [ l , @ ]  and I ' =  a'[1,(Pf] are equivalent and I ' =  pJ with 

P R O P O ~ I T ~ O N  5. I f  { a ,  b }  4 {a ' ,  b ' } ,  where a > 0 and the ideal 
I  = a [ l ,  ( D l  i.s reduced, then the number (I)' i.s reduced and the ideal 
I' = ~ ' [ l ,  d ) ' ]  is reduced. 

Proof. As a > 0 and the ideal I  is reduced, we may assume that @ is 
1 

reduced, so that - 1 < (b' = < 0,  where q = [(PI, showing that (b' is 
@ - 4 

reduced. The ideal I '  is reduced as  @' is reduced. 

Remark. If {a ,  b }  5 {a ' ,  b ' ) ,  where a < 0 and the ideal I = a [ ] ,  @ ]  is 
reduced, it may happen that the Lagrange neighbour I' = a ' [ ] ,  @ ' I  of I  is 
not reduced. For  example the ideal I  = [3,  7+1 821 of Oizx is reduced and 

{ -  3 , 1 4 } 5 { 1 3 , 2 2 } ,  but the Lagrange neighbour I' = [13,11+j 821 of I  is 
not reduced. 

The next proposition gives information about the ideals having a specified 
Lagrange neighbour. 

PROPOSITION 6. (i) I f  { a , ,  b , }  5 {a ' ,  b ' }  and {a , ,  b,} 5 {a ' ,  b ' }  then 
the primitive ideals a ,  [ I ,  ( P I  1, a- [ I ,  are equal. 

(ii) I f  a' [1,  cb'] is a prirni~ive ideal with a' > 0 and @' reduced, 
then there exists a unique reduced primitive ideal a [ l ,  (b] such [hat 

{ a ,  b }  5 {a ' ,  b ' } .  

1 
Proof. (i) Let q ,  = [ ( D l ]  and q ,  = [@,I .  Then we have d ) ,  = q, + and 

Q, 
1 b , + ~  D b ,+I  D 

$2 = q ,  + -; , so  that - = ( 4 1 - 4 2 )  + - , showing that a,  = a, 
Q, 20 I 2a2 

and @, = ( P 2  (mod 1 ) .  Hence we have a,  [ I ,  @ I  = a ? [ l ,  @,I.  
(ii) As Q,' is reduced we have Q,' > 1 and - 1 < i)' < 0. Hence there is a 

1 1 1 
unique integer q ( 3  1 )  such that - I - < q < . Set @ = q + > 1 .  It is 

Q, Q, 0 
b + l  D 1 

easy t o  check that Q, = - ,  where a, b E Z. Then @ = q + satisfies 
20 ( P  

1 < 6 < 0.  Thus @ is reduced and the ideal a [ l ,  @ I  is both primitive and 
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reduced. Clearly { a ,  b }  f, {a ' ,  6 ' )  and the uniqueness of the ideal u [ l ,  @ I  
follows from (i). 

Now that we have the notion of Lagrange neighbour and  its basic 

properties, we can define the Lagrange reduction process, which transforms 
a given primitive ideal into a reduced ideal. 

Definition 11. (Lagrange reduction process) We start a representation 

{ a O ,  bO} with a" > 0 of a primitive ideal I of 01,, and  define the sequence of 
representations {a, , ,  b,} of the primitive ideals I,, by 

(5.2) {a , , , b , , IL  { Q , , + I , ~ , , ,  1 1  (n=O, 1 , 2 ,  ... 1 .  

In the Lagrange reduction process the integers q ,  and  the quantities a,, are  
given by 

so that 

By Corollary 1, we have 

a,, " 
I,, = p,, I" , p,, = n 

We remark that q ,  2 1 for  n 3 1 .  
The  next lemma tells us that if $,, is negative for  some n 3 1 then I,, and  

its successive Lagrange neighbours are  all reduced. 

LEMMA 5. If n 2 1 and @, < 0 

then 

(i) a,,,>O, for m > n -  1 ,  

and 

(ii) I,,, = a,,, [ 1 ,  a,,,] is reduced Jbr m 3 n. 

- 1 
Prooj: (i) As q,, 3 1 and  @,, < 0 ,  we see that = 7 < 0, and  

@ I ,  - 4,, 
- b,,, + I D 

so  @,,, < 0 for rn 3 n. For  m >, n we have @,,, = -- > 1 and 
2a,,, 
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- on, - t D 
@,, = < 0 ,  so that a,, > 0 and 1 b,, 1 < 1 D. By ( 5 . 1 )  we have 

2am 
D - 0: = 4a,,a,, , > 0 ,  so that a,,, - , > 0. This completes the proof that 
a,, > 0 for m 3 n - 1 .  

(ii) We have I,, = a,, [ I ,  @,,I = a,, [ I ,  Wrn1, where w,, = a,, + 1.1&,,,11. For 
m >, n 2 1, as w,, >,a,, > 1 and - 1 < v,, = am + [ / $ n , J 1  < 0 ,  we see that w,, 
is a reduced number, and so the ideal I,,(m>,n) is reduced. 

Next we define two sequences of integers { A , }  and {B , }  for n >, - 2 by 

These sequences have the following basic properties: 

- ' b  ( if q,, 3 1 then A, 2 I ---- 

- 
1 

, n 3 0 ,  
( B Z , I @ ,  + Bn-1Bn-2) 

(5.13) 0 1 . . . 0 n = B ~ - , O , , + B n - 2 ,  n 3 1 .  

We now briefly mention how these properties can be proved. The equalities 
1 

(5.8) and (5.13) follow by induction using On = q, + - . The assertion 
0 n + 1  
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(5.7) is just a reformulation of (5.8). The assertions (5.9) and (5.10) follow 
by induction using (5.6); (5.1 I) follows from (5.8) and (5.9); and (5.12) follows 
from (5.1 1). 

The next result shows that 6, does eventually become negative. 

LEMMA 6. (Compare [12]: Corollary 4.2.1) Let 

1 L O ~ ( ~ ~ / I , ' D )  5 
+ - , 2 )  

2 Log ((1 + ~ 5 ) / 2 )  2 

For n 3 MO we have 6, < 0. 

Proof. For n 3 Mo,  we have n 3 2, and, appealing to (5.10) and (5.14), 
we obtain 

If 6, > 0, then, by (5.12), we have 

I 1 
I - 6 0  I < max 

~ : - , 6 ,  + B ~ I B , , '  B Z , , ~ ,  + B n - , B n - z  

1 
< 

Bn-1Bn-2)  

which contradicts (5.15). Hence we must have 6,  < 0, for n 3 Mo 

The next proposition gives an upper bound for the number of steps needed 
in the Lagrange reduction process to obtain a reduced ideal I from a given 
primitive ideal In of 0, and at the same time gives upper and lower bounds 
for 6 in the relation I = 61,. 

PROPOSITION 7. (Compare [12] : Theorem 4.3) Let IO = an [ l ,  ao] be a 
primitive ideal of OD with an > 0. Then the Lagrange reduction process 
applied to In yields a reduced, primitive ideal I equivalent to In with 

in atmost Mo steps. All the subsequent Lagrange neighbours of I are also 
reduced. 
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Prooj: Let no be the least positive integer such that 6,,, < 0 By 
Proposition 7 we have no < M,,.  By Lemma 5 the ideal I,,,, is reduced, and  

0, I , ,  I > O , a  ,,,, >0. 
We set 

a,,,, - I 
$ 1  ... (P,,,- I, if In,, - is reduced , 

(5.17) *=( Qt! , ,  

- 0 . .  @ ,  if I ,,,, is not reduced , 
00 

1 
so  that by (5.3) 1 = 61,) is reduced, and it remains t o  show that - 

all 
< S < 2 .  

For i l l ,  3 2, by (5.13), we have 

so  that 

- - 7 - 1 
by the definition of no.  As a , ,@, ,=-  , for n > I, we have 

' 711  

which shows (as a. > 0, a ,,,, > 0 ,  a, > 1 (i > I), @, > O(1 < i < no - I)) that 
no is odd.  Hence no > 3 and  we have B,,,3 > 1 .  Then, from (5.19) a n d  
(5.20), we obtain 

If I , , , ,  I is reduced then, by (5.17) and  (5.21), we obtain 

I D  
If I ,  is not reduced then, as a ,,,, I > 0, by Lemma 4 we have a , , , ,  > - . 

2 

I D Further, as  a,,, > 0 and  D = bf,,, + 4a ,,,, , a  ,,,, , we see that 1 < 0 ,,,, < - 
a1111 
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2 ~ , , ( ,  - I <- . Then, appealing t o  (5.20), we obtain 
atlo 

so  that,  by (5.17), we have 

It remains t o  consider the case no = 1. If I. is reduced then 6 = 1 .  If I. is 

0 I 200 
not reduced then 6 = - and,  as above, we have 1 < @, < - , giving 

0 0  a 1 

I 
Hence in all cases we have - < 6 < 2. All subsequent Lagrange neigh- 

ao 
bours of I are reduced by Lemma 5. This completes the proof of Propo- 
sition 7 .  

6. PERIODS OF REDUCED CYCLES 

We show that any two equivalent reduced, primitive ideals of the same 
order O,, can be obtained from one another by using the Lagrange reduction 
process described in § 5. 

P R O P O S I T I ~ N  8. ( [5]  : § 3 1 ,  [12] : Theorem 4.5) Let I = a [1,  @ I  ( a  > 0 )  
and J = b [ I ,  y11 ( b  > 0 )  be two equivalerzl, reduced, priinitive ideals o f  
OD,  so lhul [ l ,  y ~ ]  = p [1,  @ I  for some p (>  0 )  E K * .  Interchanging I 

and J if necessar:v we nlay suppose thal p 2 1. Sel I(, = I. Then there 
exists a non negative integer n such that J = I,, and p = 4, . . . @,, , so 
that J = I, = p,, I. 

Prooj: Recalling that @,, > I ( n  >, I ) ,  we see from (5.10) and (5.13) that 
the sequence { @ ,  ... @,}:=,, is monotonically increasing and unbounded. 
Hence there exists a n  integer n 2 0 such that ... @, < p < ...@,, , I .  As 

a,, 1 P 1 
I,, = -al ...@,, I(, (by (5.5)), we have - J = - - I,,. If p = @, ... @,, then 

a(l b @, . . .@, ,an  
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1 1 
- J = - I, and so, by Proposition 2 (iii), we have b = a, and J = I,, as 
b all 
required. This we may suppose that p > a ,  ...a,, . Replacing lo by I,, , we obtain 

1 1 
- J =  p-I , ,  where 1 < p < a l .  
b a0 

a0 00 - 

From (6.1), we see that - J = bIo, and so, as JJ = (b) ,  we have - = loJ, 
P P 

1 1  
showing that - E - lo . Next we observe that 

P a0 

so there are integers x and y such that 

Thus, as 1 < p < @ ,  , we have 

Appealing to  (6.1), we obtain 

bp bp 
so that - E J, and 0 < - < b. As J is reduced, by Proposition 4, we have 

01 @ I  

1 
$ I = * ' > b ,  sothat  1 ;  < I 4 .  that is 

6 1  I 

From (6.2) we see that y # 0.  Then (6.3) shows that x # 0, and that, as 
5, < 0 ,  sy > 0.  This contradicts (6.2), and completes the proof of Propo- 
sition 8. 

Let I, be a reduced, primitive ideal of a class C of OD. By the Lagrange 
reduction process described in 5 5, we obtain (by Proposition 5) an infinite 
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sequence {I,,},"=, of reduced, primitive ideals with each ideal In equivalent to 
Io .  By Proposition 8, this sequence contains all the reduced, primitive ideals 
of the class C. As C contains only a finite number of reduced, primitive ideals 
(§4), there exist integers r and 1 with 0 < r < r + 1 such that I, = I ,+ / .  
Applying Proposition 6 (ii), we obtain successively I,- I = I,, ,. ,, I,- . 
- - ..., and, after r steps, we have I, = I / ,  which shows that the 
sequence {I,,} ,"=, is purely periodic. 

Definition 12. (Period) Let I. be a reduced, primitive ideal of a class C 
of OD. Let 1 be the least positive integer with I. = I,. The set { I o ,  . . ., I /  } is 
called the period of the class C. The length of the period is the integer I .  

The period of the class C of OD consists of all the reduced, primitive 
ideals in C. It is easy to  see that if I, = I, then 1 divides s - t. As I, = I,, , we 
see, from (5 .9 ,  that I, = q I o ,  where 

and so, by Proposition 2 (ii), q is a unit (> 1) of OD 

P ~ o ~ o S r ? - r o ~  9. (i) If I = I ,  and J are equivalent, reduced, 
primitive ideals of OD with J = a I,, , where a ( 2  1) E K* , then there 
exist unique integers q and s such that 

a = q 4 p5 (ps is defined in (5.5), q in (6.4)) 

where 

(11) If J =  I then we have s = 0 and a = q q .  

Proof. (i) By Proposition 8 there exists a nonnegative integer n such that 

J = I n = p , I o ,  a = p n .  

Let q ( 2  0) and s be the integers defined uniquely by 

Then, by periodicity, we have 
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where 

rl = PI = @ I . . . @ / .  

This shows the existence of the integers (I(> 0) and s(0 < s < I - 1 ) .  

We next show that q and s are i ln iq~~e.  Suppose we have a = q(/l p,, 

= q"p,, nit11 s ,  < s z .  If sz > s, then (1, > (1: and, appealing to  (5.5) and 
recalling that - I < 6, < O(i 3 I), we obtain 

which is a contradiction. Hence we must have sl = s2.  Then qvl = qY2 and, 
as q > 1, we must have q l  = q z .  This completes the proof of (i). 

(ii) From the proof of (i) we see that I,, = J = I,,, so that I I n, and thus 
q = n / l  and s = 0. 

I 

COROI.I.ARY 5. q  = n 0, is a unil (>  I) of On such that evely unit E 
, = I  

of On is given by E = k q  ' . where r is an integer. q is called the 
firndumental unit of OL).  

Proof. Let E be a  nit of OD and let 

so that 6 is a unit of On satisfying 6 3 1. Applying Proposition 9 (ii) to I. 
and J = &I, , ,  we see that 6 = qY, and so E = * q ' .  

Corollary 5 was first proved by Lagrange in the case of the principal class 
[3: p. 4521 (see also [8]). We see that the theory of periods of reduced, primitive 
ideals in OD not only gives the structure of the group of units of On but also 
provides the structure of each period (the "infrastructure" of Shanks [7]). 

COROLLARY 6. M'ith I( ,  u reduced, primitive ideal of O,,, we h a ~ e  

(i) 71 = B, I@,,+ El-: ,  

fii) q = A, I - BI - I 60, 
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Proof. Taking n = N I ( N =  I ,  2, ...) in (5.13) we obtain, as @,vl = Qo, 

The assertion (i) is the case N = 1 .  
From (5.7),  (5.9) and  (5.13), we obtain for n 2 1 

Taking i7 = NI(N = 1,2, ...) and  recalling that q i  = ( I ) ' ,  we obtain 

q \ =  - -  (rlrl)  \ , so that taking conjugates we deduce 
B\I ~ @ c ~ - A z i  I 

(6.6) q b = A \ i - I B \ /  I @ O .  

The assertion (ii) is the case N = 1 

From (6.5) and  (5.10) we have 

so  that 

Letting N + co, we obtain 

proving the first equality in (iii). 
Finally, as @, < 1 D ( i  2 O), we have 

proving the second assertion in (iii) 

Exarnple 3. ( D =  1892) The  period of the class containing the ideal 

[1,21 + 1 4731 is 

{ [ l ,  21 + 1 4731, [32,21 + 1 4731, 111, 1 1 + [ 4731, [32, 1 1  + 1 4731 ) . 

Thus, by Corollary 5, the fundamental unit of O I x Y 2  is 
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The period of the class containing the ideal [7,16 + 4731 is 

{[7, 1 6 +  t 4731, [16, 1 9 + t  4731, [19, 13 + [ 4731, [ 2 3 , 6 + ]  4731, 

[8,17 + ] 4731, [31,15 + 1 4731) 

so, by Corollary 5, the fundamental unit of is also given by 

We are now in a position to define the distance between two reduced, primitive 
ideals in the same period. 

Definition 13. (Distance between ideals) If I and J are equivalent, 
reduced, primitive ideals of 0, then we define the (mutiplicative) distance 
d(I, 4 from I to  J by 

where p, is given as in Proposition 9 (i). 

It is clear that d(I, I )  = 1. 

Esalnple 4. (D = 1892) The two reduced, primitive ideals 

I =  [19,6+1,473] and J =  [31,16+1 4731 
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of Olssz are equivalent. Applying the Lagrange reduction process to 
[19,6 + 1 4731, we obtain 

so that 

On the other hand, applying the Lagrange reduction process to 
[3 1, 16 + 1 4731, we obtain 

so that 

We note that 

= 1 (mod q) . 
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PROPOSITION 10. If I and J are equivalent, reduced, primitive idea1.r 

of OLl then 

d (J, I )  = d ( I ,  J )  - ' (mod ' q) 

Proof. As I and J are in the same period we have J = pI(p E K * )  and  
I = o J ( o  E K*) .  As I = p - I  J we have o = p -I (mod ' q),  which proves 

Proposition 10. 

7 .  COMPARISON O F  DISTANCES BETWEEN CORRESPONDING [DEALS 

IN DIFFERENT ORDERS 

Let C be a primitive class of the order 0 g 1 2  and let 0(C)  be the image of 
C by the mapping 0 defined in $ 3 .  As a n  application of the concept of distance 
described in $6 ,  me explain how t o  define a mapping of the period of C into 
the period of 0(C), which approximately preserves distance. 

THEOREM 2. For D' = D f 2  let C E C,,. and 0 (C)  its image by the 
surjecrive homomorphisrn 0 : COT + C" . 

( I )  There exists a mapping s from the period of C into the period of  
0 ( Q  such thar for I and I' in fhe period of  C we have, for a choice 
of d nzodulo units, 

(ii) When f = p (prime) there exists a mapping o from the period o f  
C into the period of  0 ( Q  such that for I and I' in the period of  C 
we have, for a choice d modulo units, 

Proof. Let I = a [ I ,  @ ]  ( a  > 0 )  and  I' = a l [ l ,  a'] (a' > 0 )  be two equivalent, 
b + l  D' 

reduced, primitive ideals of a class C of O,,,(D' = D f ') with cp = -- 
2a 

b' + [ D' 
and  a' = - reduced. Let 6 E K* be such that I' = 61, 6 > 0. 

20' 

(i) If GCD(a, f )  = 1 we set I ,  = I. If GCD(a, f )  > 1 ,  f rom the proof of 
Lemma 2, we see that there exists an ideal I ,  = a,  [ I , @ , ]  = pI in C with 
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p = 1 x + $y 1, where x and y are integers such that a ,  = 1 a x2  + bxy 

- -  Y ' ( ,  G C D ( a l ,  f )  = I ,  GCD(x , y )  = l , O < x <  f ,  O < y <  f .  

b + LZD' , 
A s @ = -  1s reduced, we have 

2a 

so  that  @ < I  ~ ' , J p / = x + @ ~ <  < ( I + +  ~ ) < 2 f i ~ ' ,  
and  

(7.3) 1 < a 1 < 2 1 D  f 2 .  

Also @ >  1 ,  - 1 < $ < o ,  so, as  p / p l =  a l / a ,  we have 

1 
(7.4)  

[ b' 
, we have By the way in which we have defined I ,  = a , ,  - 

G C D ( a , ,  f )  = 1 .  Appealing t o  the proof of Theorem 1 (i), we see that there 

exists a n  integer 6: such that I ,  = 

[ (b"':l'q]such that  I,' = pl I t  Similarly there exists a n  ideal I,' = a,', f - 

[ " ::' " 1  and  with p' satisfying (7.4). Now, by Theorem 1 ,  J1  = a,,- 

J,' = a , ,  ----- [ I "':I "I are  ideals of 0(C) such that J,' = p'Sp I J , .  Applying 

the Lagrange reduction process to J1 and J,', we obtain reduced ideals J and  
J ' ,  and,  by Proposition 7 ,  we have J = a J 1 ,  and  J' = aJJ,', with (by (7.3)) 

1 1 1 1 
- < - < a < 2 , -  < , < a f < 2  

2 f 21 D' a ,  2 f ?\;D' a, 

Thus we have J' = S'J, where 6' = a ' p ' S p ' a l  satisfies 

Setting J = t(l) gives the required mapping and proves (7.1). 
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(ii) When f = p (prime) and p does not divide a, we set I ,  = I. If p 
divides a, we take for I the ideal a, [ I ,  @ , I  following I in its period. In this 
case, as p 1 a, from p2D = b:  + 4aal ,  we see that p 1 b ,  and so, as 
GCD(a l ,  b l ,  a)  = 1 we see that p does not divide a l .  Then, by (2.12), we have 

01 
I ,  = pI with p = - a I .  Now, by Proposition 5, a ,  = 

a 
+ I is reduced, 
20 I 

so that 1 < b l  < I D', and 

(7.5) l < a l < I  D ' ,  

giving 

(7.6) 

The rest of the proof follows exactly as in the proof of (i) using (7.5) 
(resp. (7.6)) in place of (7.3) (resp. (7.4)). 

8. GAUSS'S REDUCTION PROCESS 

Definition 14. (Half-reduced) A representation {a ,  b }  of an ideal I is said 
to be half-reduced if 

where c = ( D  - b 2 )  40. 
An ideal I i s  called half-reduced if there exists a half-reduced representation 

of I. 

Clearly, if {a ,  b }  is half-reduced, then b < I D and { - a, b }  is half-reduced. 

LEMMA 7. Let I be a prilnitive ideal of 0". To each representation 
{ a ,  b }  of I corre.spond.s a unique integer q such that the q-neighbour 
representation {a ' ,  b ' }  is half-reduced. The integer b' and the ideal 

b '+  1 D 
I' = [a' ,  .] are deter~nined by I. The value of q is 
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The representation {a ' ,  b ' }  and /he ideal I' are the Guzrss neighbolrr 
of  /he representarion { a ,  b }  and o f  /he ideal I respectively, so that 

{ a ,  b }  { a ' ,  b ' }  . 

( D  - bI2)  
Proof. As c' = = a (by (2. l o ) ) ,  the q-neighbour representation 

40' 
{a ' ,  b ' }  of { a ,  b }  is half-reduced i f  

b + 1  D a 
that is, by (2.10), if 0 < - - - q < 1, giving q = 

2101 la1 
which shows that q and { a l , b ' }  are determined by { a , b } .  Let 
{ k a, b + 2K a }  = { a 1 ,  b1  } be another representation of I giving rise to a 
half-reduced representation, say {a,', b,'}. As b,'= - b ,  = - b - b'(mod2 l a )  
and a, 1 = a 1 ,  we see from the inequalities 

that 6,' = h'. Hence, as a = a l  and b' = b,', from D = b r 2  + 3aa' 
= b ;' + 4ala,', we see that 1 u'l = 1 a , ' .  This shows that I,' = I, which 
completes the proof of Lemma 7. 

P R o P o s l T I o N  11 .  Let {a ,  b }  be u hulf-reduced representation of  a half- 

reduced ideal I. Let { a ,  b }  : {a ' ,  b ' }  and set I' = [ar,?] . We 

have 

(i) i f  b <  - 1  D then b 1 > b + 2 1  D ,  

(ii) ij b > - I D then I' is reduced. 

(iii) iJ' I is reduced, then I' is reduced, and moreover if {a ,  b } is the 
b + 1  D 

representation of I such that a > 0 and 4, = - is reduced, then 
2u 

the Lagrunge neighbour and the Gauss neighbour are the same. 

Proof. For any representation {a ,  b }  of any primitive ideal, we have 
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Now take {a, b )  to be a half-reduced representation of the half-reduced 
- b + ~ ' b  

ideal I so that 0 < < 1, where c = (D  - b2) /4a .  
2 c I  

(i) Suppose that b  < - \ID. Then we have b2 - D  = 4 1 a I I c / so that (8.3) 
I / D - b  - b - C D  - b + L D  

becomes (m) ( I - )  = 1. AS 0  < < 1, we see that 
21cl 

- b - 1  D  - b' + L'D 
> 1. But, as {a', b ' )  is also half-reduced, we have < 1, 

2101 2101 
so that - b' + 1 D  < 2 1 a I < - b  - I'D, proving that b' > b  + 21/ D. 

(ii) Suppose that b  > - I D. Then, we have 1 b  I < 1 D,  and (8.3) can be 
written 

l . ~ + b  
showing that - > 1. Or the other hand, as {a', b')  is half-reduced, 

2 / 0 1  
1 D -  b' I/'D+ b  a 

we have 0  < --- < 1, that is O < -  - - q <  1 ,  so that 
2 l a l  2 l a l  l a l  

Hence we obtain 

1) D  - b' 
which, together with the inequalities 0 < - < 1, shows that 4,' is 

2 I u l  

reduced if a > 0  and - 4,' is reduced if a < 0 ,  proving that I' is reduced. 

(iii) We suppose that I is reduced and choose the representation {a, b }  of I with 
b + l b  

a > O a n d $ = -  reduced. As 4, is half-reduced and b  > - 1 D from (ii) 
2a 

we see that I' is reduced. Moreover, the integer q  used to obtain both the 
Lagrange neighbour and the Gauss neighbour of {a, b }  is [a]. This shows that 
the two neighbours of {a, b }  are the same and concludes the proof of 
Proposition 1 1 .  

Definition 15. (Gauss's reduction process ([1]: 5 5  183-185)) We start with 
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a primitive ideal I, of OD and a representation { a ,  b }  of I,, and define the 
sequence of representations {a,,  b,} of the primitive ideals I, by 

{arr~brr}'{an+l,bn+l} ( i7=0 ,192 , . . . ) .  

We now show that Gauss's reduction process leads to a reduced ideal 
equivalent to I,. In addition we give an upper bound for the number of steps 
required to obtain a reduced ideal I,, as well as bounds for a quantity p in the 
relation I,, = pI,, . 

PROPOSITION 12. ( i )  The ideal I,, is reduced for 

n > max ($ + I , , )  . 

(ii) Let I' be the first reduced ideal obtained by applying Gauss's 
1 

reduction to I,. Then I = pIo with -- < p < l. D .  
l a0 I 

Proof. We suppose that n > max 

If b ,  > - 1. D, by Proposition 1 1  (ii), I2 is reduced and so, by Pro- 
position 1 1  (iii), I, is reduced. 

Suppose on the other hand that b ,  < - [ D and that I,, is not 
reduced. Then, by Proposition 1 1  (ii), we see that b, < - I'D for 
i = I ,  2 , .  n - 1 .  Then, by Proposition 1 1  (i), we have 

Hence we obtain 

b,, - , > - b, + 2a, 0 0  + ]  + 2  (la01 I D  
I [G 200 10 

which is a contradiction. This completes the proof that I, is reduced for 

n >  max (F + 1 , 2 )  . 

(ii) Let I, be the first reduced ideal obtained from I. by Gauss's reduction 
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1 
process. If n = 0 then p = 1, so that -- 6 p < 1 D. If n 1 we have 

I Qo I 
I,, = pI, with (by (2.12)) 

Qtl 
p = -a1  ...- on 11: a,, - 1 

As the representations { a k ,  b k }  are half-reduced for k >  1, we see, by (8.3),  

> 1 ( k >  1 )  so that p > . On the other hand 

we have 

As { a h ,  b h }  is a half-reduced representation for k = 1,2,  ..., n, we have 
0 < ] D - bh < 2 ah . Furthermore, for k = 1,2,  ..., n - 1, we have 
1 D + b h < 2 a h , l ,  as otherwise 0 < 1 D - b k < 2 a h  , 1 < 1  D + b h ,  
which is equivalent to 0 < 1 D - bk < 2 1 ak I < I D + bh so that by (4.2) 
the primitive ideal Ih would be reduced. Therefore, for k = 1,2,  ..., n - 1, we 
have 

SO that, as {a , ,  b,,} is reduced, 

which completes the proof of Proposition 12. 

We remark that Proposition 7 and 12 suggest that Lagrange's 
reduction process may lead to a reduced ideal much faster than Gauss's 
reduction process, as the number M,, of Lemma 6 is much smaller than 

Example 5. We apply both Lagrange reduction and Gauss reduction to 
the representation {3655,7068} of the primitive ideal [3655,3534 + 1 211 of 
Ox4. We obtain 
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13655,70681 A { - 3417, - 7068)  f. 14 ,2341  { 3 , 6 )  (3 steps) 

a n d  
G 

13655 ,7068)  5 { - 3417, - 70681 2 13187, - 6600)  { - 2965, - 6148)  + ... 

{ - I - { 5 , 8 )  (30 s t e p s ) .  

I a0 I 
W e  remark  that  M,, is approximately  8 .72 a n d  -- + 1 is appros i -  

l D 
mately 399.8.  
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