THE INTEGERS OF A CYCLIC QUARTIC FIELD

R.H. $\operatorname{HUDSON}^{(1)}$ AND K.S. WILLIAMS ${ }^{(2)}$

ABSTRACT. A simple explicit integral basis is given for a cyclic quartic extension of the rationals.

In [3] the authors show that a cyclic quartic extension K of the rational number field Q can be expressed uniquely in the form

$$
\begin{equation*}
K=Q(\sqrt{A(D+B \sqrt{D})}) \tag{1}
\end{equation*}
$$

where A, B, C, D are integers such that

$$
\begin{equation*}
A \text { is squarefree and odd, } \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
D=B^{2}+C^{2} \text { is squarefree, } \quad B>0, C>0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
G C D(A, D)=1 \tag{4}
\end{equation*}
$$

This representation of K is simpler than those given in [2] and [4]. The field K is totally real if $A>0$ and totally imaginary if $A<0$. It is also shown in [3] that the discriminant $d(K)$ of K is given by

$$
d(K)=\left\{\begin{array}{cc}
2^{8} A^{2} D^{3}, & \text { if } D \equiv 0(\bmod 2), \tag{5}\\
2^{6} A^{2} D^{3}, & \text { if } D \equiv 1(\bmod 2), B \equiv 1(\bmod 2), \\
2^{4} A^{2} D^{3}, & \text { if } D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), \\
& A+B \equiv 3(\bmod 4), \\
A^{2} D^{3}, & \text { if } D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), \\
& A+B \equiv 1(\bmod 4) .
\end{array}\right.
$$

Key words and phrases: Cyclic quartic extension, integral 1 basis.
Subject Classification Numbers: 12A30, 12A50.
(1) Research supported in part by a research grant from the University of South Carolina.
(2) Research supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

Received by the editors on September 16, 1986 and in revised form on February 18, 1987.

These results enable us to give a simple explicit integral basis for K. We prove the following theorem.

Theorem. Let $K=Q(\sqrt{A(D+B \sqrt{D})})$ be a cyclic quartic extension of Q where A, B, C, D are integers satisfying (2), (3) and (4). Set

$$
\begin{equation*}
\alpha=\sqrt{A(D+B \sqrt{D})}, \quad \beta=\sqrt{A(D-B \sqrt{D})} . \tag{6}
\end{equation*}
$$

Then an integral basis for K is given as follous:
(i) $\{1, \sqrt{D}, \alpha, \beta\}$, if $D \equiv 0(\bmod 2)$;
(ii) $\left\{1, \frac{1}{2}(1+\sqrt{D}), \alpha, \beta\right\}$, if $D \equiv B \equiv 1(\bmod 2)$;
(iii) $\left\{1, \frac{1}{2}(1+\sqrt{D}), \frac{1}{2}(\alpha+\beta), \frac{1}{2}(\alpha-\beta)\right\}$, if $D \equiv 1(\bmod 2), B \equiv$ $0(\bmod 2), A+B \equiv 3(\bmod 4) ;$
(iv) $\left\{1, \frac{1}{2}(1+\sqrt{D}), \frac{1}{4}(1+\sqrt{D}+\alpha+\beta), \frac{1}{4}(1-\sqrt{D}+\alpha-\beta)\right\}$, if $D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), A+B \equiv 1(\bmod 4), A \equiv C(\bmod 4) ;$
(v) $\left\{1, \frac{1}{2}(1+\sqrt{D}), \frac{1}{4}(1+\sqrt{D}+\alpha-\beta), \frac{1}{4}(1-\sqrt{D}+\alpha+\beta)\right\}$, if $D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), A+B \equiv 1(\bmod 4), A \equiv-C(\bmod 4)$.

This theorem corrects and simplifies the integral basis for K given by Albert [1] in 1930. As observed by the authors and Xianke [4], independently, Albert's work contains a number of errors and so cannot be relied upon.

Proof of the Theorem. We begin by showing that all the elements of K listed in (i)-(v) are integers of K. This is clear except in the case of the following:
(a) $\frac{1}{2}(\alpha+\epsilon \beta)$, if $D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), A+B \equiv 3(\bmod 4)$;
(b) $\frac{1}{4}(1+\epsilon \sqrt{D}+\alpha+\epsilon \beta)$, if $D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), A+B \equiv$ $1(\bmod 4), A \equiv C(\bmod 4)$;
(c) $\frac{1}{4}(1+\epsilon \sqrt{D}+\alpha-\epsilon \beta)$, if $D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), A+B \equiv$ $1(\bmod 4), A \equiv-C(\bmod 4) ;$
where $\epsilon= \pm 1$. Let tr (resp. N) denote the trace (resp. norm) from K to $Q(\sqrt{D})$. We shall show that $\operatorname{tr}(\gamma)$ and $N(\gamma)$ are integral in $Q(\sqrt{D})$ for each element $\gamma \in K$ listed in (a),(b) and (c), proving that each γ is
an integer of K. Let $\tau \in \operatorname{Gal}(K / Q(\sqrt{D}))$ so that

$$
\begin{equation*}
\operatorname{tr}(\gamma)=\gamma+\tau(\gamma), \quad N(\gamma)=\gamma \tau(\gamma) \tag{7}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\tau(\sqrt{D})=\sqrt{D}, \quad \tau(\alpha)=-\alpha, \quad \tau(\beta)=-\beta \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=2 A D, \quad \alpha \beta=A C \sqrt{D} . \tag{9}
\end{equation*}
$$

Case (a). In this case we have

$$
\operatorname{tr}\left(\frac{1}{2}(\alpha+\varepsilon \beta)\right)=0
$$

and

$$
N\left(\frac{1}{2}(\alpha+\epsilon \beta)\right)=-\frac{1}{4}(\alpha+\dot{\epsilon} \beta)^{2}=-\frac{A D}{2}-\frac{\epsilon}{2} A C \sqrt{D}
$$

The latter is clearly an integer of $Q(\sqrt{D})$ as A, C, D are all odd. Case (b). In this case we have

$$
\operatorname{tr}\left(\frac{1}{4}(1+\epsilon \sqrt{D}+\alpha+\epsilon \beta)=\frac{1}{2}+\frac{\epsilon}{2} \sqrt{D}\right.
$$

which is clearly an integer of $Q(\sqrt{D})$, and

$$
\begin{aligned}
N\left(\frac{1}{4}(1+\epsilon \sqrt{D}+\alpha+\epsilon \beta)\right)= & \frac{1}{16}\left((1+\epsilon \sqrt{D})^{2}-(\alpha+\epsilon \beta)^{2}\right) \\
= & \frac{1}{16}((1+D+2 \epsilon \sqrt{D}) \\
& -(2 A D+2 \epsilon A C \sqrt{D})) \\
= & \frac{1}{2}(X+Y \sqrt{D}),
\end{aligned}
$$

where

$$
X=(1+D-2 A D) / 8, \quad Y=\epsilon(1-A C) / 4
$$

As

$$
A \equiv B+1(\bmod 4), \quad D \equiv 2 B+1(\bmod 8)
$$

we have

$$
1+D-2 A D \equiv 1+2 B+1-2(B+1) \equiv 0(\bmod 8)
$$

so that X is a rational integer. Further, as $A C \equiv 1(\bmod 4), Y$ is a rational integer. Lastly X and Y are of the same parity as

$$
\begin{aligned}
8(X+\epsilon Y) & =3+D-2 A C-2 A D \\
& =3+B^{2}+C^{2}-2 A C-2 A\left(B^{2}+C^{2}\right) \\
& =3+B^{2}+(C-A)^{2}-A^{2}-2 A B^{2}-2 A C^{2} \\
& \equiv 3+B^{2}-A^{2}-2 B^{2}-2 A(\bmod 16) \\
& \equiv 4-B^{2}-(A+1)^{2}(\bmod 16) \\
& \equiv 4-B^{2}-(B+2)^{2}(\bmod 16) \\
& \equiv-4 B-2 B^{2}(\bmod 16) \\
& \equiv 0(\bmod 16) .
\end{aligned}
$$

This proves that $\frac{1}{2}(X+Y \sqrt{D})$ is an integer of $Q(\sqrt{D})$.
Case (c). This case can be treated similarly to case (b).
Finally we show that the discriminant of each of the sets (i)-(v) is equal to the field discriminant $d(K)$ given in (5). We just give the proof in case (v), as the details are similar in the other cases. The Galois group of the extension K / Q is a cyclic group of order 4 generated by the automorphism θ defined by

$$
\theta(\alpha)=\beta
$$

We have

$$
\theta(\sqrt{D})=-\sqrt{D}, \quad \theta(\beta)=-\alpha .
$$

The conjugates of $\gamma=\frac{1}{4}(1+\sqrt{D}+\alpha-\beta)$ over Q are

$$
\begin{gathered}
\gamma, \quad \theta(\gamma)=\frac{1}{4}(1-\sqrt{D}+\alpha+\beta) \\
\theta^{2}(\gamma)=\frac{1}{4}(1+\sqrt{D}-\alpha+\beta), \quad \theta^{3}(\gamma)=\frac{1}{4}(1-\sqrt{D}-\alpha-\beta)
\end{gathered}
$$

and

$$
\begin{aligned}
&\left|\begin{array}{cccc}
1 & \frac{1}{2}(1+\sqrt{D}) & \gamma & \theta(\gamma) \\
1 & \frac{1}{2}(1-\sqrt{D}) & \theta(\gamma) & \theta^{2}(\gamma) \\
1 & \frac{1}{2}(1+\sqrt{D}) & \theta^{2}(\gamma) & \theta^{3}(\gamma) \\
1 & \frac{1}{2}(1-\sqrt{D}) & \theta^{3}(\gamma) & \gamma
\end{array}\right| \\
&=\frac{1}{2} \sqrt{D}\left|\begin{array}{cccc}
1 & 1 & \gamma & \theta(\gamma) \\
1 & -1 & \theta(\gamma) & \theta^{2}(\gamma) \\
1 & 1 & \theta^{2}(\gamma) & \theta^{3}(\gamma) \\
1 & -1 & \theta^{3}(\gamma) & \gamma
\end{array}\right| \\
&=\frac{1}{2} \sqrt{D}\left|\begin{array}{cccc}
1 & 1 & \gamma & \theta(\gamma) \\
0 & -2 & \theta(\gamma)-\gamma & \theta^{2}(\gamma)-\theta(\gamma) \\
0 & 0 & \theta^{2}(\gamma)-\gamma & \theta^{3}(\gamma)-\theta(\gamma) \\
0 & 0 & \theta^{3}(\gamma)-\theta \gamma & \gamma-\theta^{2}(\gamma)
\end{array}\right| \\
&=-\sqrt{D}\left|\begin{array}{cc}
\theta^{2}(\gamma)-\gamma & \theta^{3}(\gamma)-\theta(\gamma) \\
\theta^{3}(\gamma)-\theta(\gamma) & \gamma-\theta^{2}(\gamma)
\end{array}\right| \\
&=\sqrt{D}\left(\left(\theta^{2}(\gamma)-\gamma\right)^{2}+\left(\theta^{3}(\gamma)-\theta(\gamma)\right)^{2}\right) \\
&=\sqrt{D}\left(\left(\frac{\alpha-\beta}{2}\right)^{2}+\left(\frac{\alpha+\beta}{2}\right)^{2}\right) \\
&=\frac{\sqrt{D}}{2}\left(\alpha^{2}+\beta^{2}\right) \\
&=A D^{\frac{3}{2}}
\end{aligned}
$$

so that, by (5),

$$
\operatorname{discrim}\left\{1, \frac{1}{2}(1+\sqrt{D}), \gamma, \theta(\gamma)\right\}=\left(A D^{3 / 2}\right)^{2}=A^{2} D^{3}=d(K)
$$

Hence $\left\{1, \frac{1}{2}(1+\sqrt{D}), \gamma, \theta(\gamma)\right\}$ is an integral basis for K as asserted.
This completes the proof of the theorem.

REFERENCES

1. A.A. Albert, The Integers of Normal Quartic Fields, Annals Math. 31 (1930), 381-418.
2. H. Edgar and B. Peterson, Some Contributions to the Theory of Cyclic Quartic Extensions of the Rationals, J. Number Theory 12 (1980), 77-83.
3. K. Hardy, R.H. Hudson, D. Richman, K.S. Williams and N.M. Holtz, Calculation of Class Numbers of Imaginary Cyclic Quartic Fields, Carleton-Ottawa Mathematical Lecture Note Series Number 7, July 1986, 201 pp.
4. Z. Xianke, Cyclic Quartic Fields and Genus Theory of their Subfields, J. Number Theory 18 (1984), 350-355

Department of Mathematics, University of South Carolina, Columbia, South Carolina, U.S.A. 29208
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6

