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Abstract. Using the ideas of Mordell [6], it is shown in a completely elementary way
that if a, b, ¢ are nonzero integers for which Legendre’s equation az? + by? + c22 = 0
is solvable in integers z,y, z not all zero, then there is a solution satisfying

|abe|

0 < ‘G|I2 + lblyz + |C|22 < 2m)—2

The estimate is best possible.

Let a, b, ¢ be nonzero integers. A number of authors have considered the prob-
lem of estimating the size of a solution of Legendre’s equation

N ez’ + by* +¢cz* =0,

when (1) is known to be solvable in integers z, y, z not all zero. Most of these
authors restrict a, b, ¢ to satisfy

a, b, ¢ not all of the same sign,
) a, b, ¢ are all squarefree,
(a,b) = (b,¢) = (c,a) =1,

in which casc the equation (1) is said to be in normal form. When (1) is in normal
form, the condition

3) —bc, —ca, —ab are quadratic residues of a, b, ¢ respectively

is both necessary and sufficient for (1) to be solvable in integers z, y, z not all zero.
In 1950 Holzer [3] proved, under the assumption that both (2) and (3) hold, that
there is a solution of (1) satisfying

lz| < Vlbel, |yl < Veal, |zl < V/]abl.

In the course of his proof Holzer appealed to a deep thcorem of Hecke (the gener-
alized prime number theorem). In 1951 Mordell [5] gave an elementary proof of
an estimate weaker than that of Holzer also under the assumption of (2) and (3).
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This estimate was also found by Skolem in 1952 [7]. In 1958 Birch and Davenport
proved a theorem [1: egn. (4)] which gives the estimate

0 < |a|z? + [bly* + |c|z? < 8]abc]

for the size of a solution of (1) under only the assumption that (1) is solvable. In
1959 Kneser [4], using deep methods, proved under the assumption of (2) and (3)
that (1) has a non-trivial solution with

|z] < k(m)+/lab],

where n is a divisor of the least common multiple of 2 and abc and k(n) < 1 in
certain cases. In Cassels’ book [2] on the geometry of numbers, first published in
1959, it is proved [2: p.102] that under the assumption of (2) and (3) the equation
(1) has a solution satisfying

0 < |alz* + |bly® + |¢|2? < 4|abc].
It is noted that this estimate can be improved to
0 < |a|z? + |bly? + |c|2? < 2%/ |ab].

In 1969 Mordell [6] gave an clementary proof of Holzer’s estimate under the as-
sumption of (2) and (3). Unfortunately Mordell’s argument is not quite complete
as he does not prove that the integer 2z which he constructs is nonzero. It thercfore
secms worthwhile to provide the necessary details to complete Mordell’s proof
while at the same tim¢ removing the unnecessary restrictions that a, b, ¢ be square-
frec and coprime in pairs, so as to obtain the most general result of this type which
is best possible. We prove in a completely clementary way the following theorem.

Theorem. Lct a,b,c be nonzcro integers such that (1) is solvable in integers
z,y,z not all zero. Then there is a solution of (1) in integers T,y, z not all zero
satisfying

Vbel v/|cal |ab]
< Grg W<Gro H<Gro

Using equation (1), it is easy to verify that the solution satisfies

2 |abc|

0 < |0|I2 + |b|y2 + 'c[22 < m

The equation 2 + y* — 22 = 0 with solution (z,y,2) = (1,0,1) shows that
both these estimates are best possible.
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Proof of theorem: It suffices to prove the theorem when

{a>0,b>0,c<0,

@ (a,b,c) = 1.

Let 2, s2,t2 denote the largest squares dividing a, b, ¢ respectively, where r >
0,s5>0,t>0,andset

(5) a=Ar*, b= Bs*, ¢ = Ct?,

sothat A, B, C are squarefree integers such that

©) A>0,B>0,C<0, (Ar,Bs,Ct) = 1.

As ((A,B),(A,C)) = ((B,0),(B,A)) = ((C,A),(C,B)) = 1, we may
define integers a( > 0), B(> 0), v(< 0) by

A B C

O =@mao PTEoOGA T CACE

Clearly «, 8, v are squarefree and we have

® (., =B, =(0=1

and

© (8,A,B)=(8,B,C) =(B,C,A) =1,

]( (a,A,B) =(a,B,0) = (a,C, A) = 1,
(7,A,B)=(v,B,0)=(~,C,A) =1.

Next, we define integers k(> 0), I(> 0), m(< 0) by
(10) k=a(B,C), 1=pB(C,A), m=~(ADB).

It is easy to check that

(1) (k, [y =(l,m) =(m, k) =1
and
(12) k,1, m squarefree.

Now let zg, yo, 29 be a solution of (1) in integers not all zero, so that

(13) ard + byt +cz2 =0.
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In view of (4) and (13) we must have zg # 0. From (5), (7) and (13) we deduce
(14) a(A, B)(A,C)r*z5 + B(B,C) (B, A)s’y5 + 1(C, A)(C,B)t* 2§ = 0.
Thus we have

(15) (A, B)|n(C, A)(C,B)t*25.
As(A,B,C)=(A,B,t) = (A B,v) = 1and (A, B) is squarefree, we deduce
from (15) that (A, B)|zo. Similarly we can show that ( B, C)|zo, (C, 4)|yo-
Thus there are integers X, Y, Z(# 0) such that

(16) 0 = (B,C)X, yo=(CA)Y, 20=(AB)Z

Putting these expressions for o, yo, 20 into (14), and cancelling the factor ( A, B)
(B,C)(C, A), we obtain

amn kr* X% + 182Y? + mt* 22 = 0.
Now define integers Xo, Yo, Zo(# 0) by

rX sY tZ

18) Xo=——o—\ Vo= Zyp=
(18) 7 (rX,sv,t2)’ YT (X, sYtz) 70 (rX,sY,t2)

From (17) and (18) we see that

(19) kX2 +1IYE +mZ2 =0
and
(20) (Xo0,Y0,20) = 1.

Moreover, appealing to (11), (12), (19) and (20), we deduce

@ { (Xo,Y0) =(Y0,2Z0) = (Zo,X0) =1,
(Xo,m) = (Yo,m) = (Xo,l) = (Zo,1) = (Yo,k) = (Zo,k) = 1.
Next we show that if*|Zy| > vkl then we can construct from the solution

(Xo,Yo, Zo) of (19) another solution (X ,Y1, Z;) of (19) with0 < |Z1] < | Zo].
Set

22) d={%' ifm=0(mod?2),
m, ifm=1(mod2),
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and let u, v be integers satisfying
(23) " You-—Xov=d.
This is possible in view of (21). From (21) and (22) we deduce that

(24) (Yo,d) = 1.

Next we choose an integer w such that

, |w + Bowlos | < 1 if m =0 (mod2),
(25) {

|w+ l‘—xﬂ'%’“% <1, w=ku+lv(mod2), ifm=1(mod2).

From (22), (23) and (25) we see that
(26) (kXou+ IYov + mZow)? + kl(You — Xov)? < 0dmZZ,
where

1, if m=0(mod2),
7 0={

2,ifm=1(mod?2).
Next we observe that by (19) and (23) we have
{ (kXou + [Yov)Yo = (kX2 + IYE)v = ~-mZiv=0(modd),
(ku? + WhH)YE = (kX2 + IY$)v?: = —mZZv? =0 (modd),
and so, by (24), we have
(28) kXou+ IYov = ku? + lv* =0 (modd).

From (27) and (28) we see that we can define integers X, Y7, Z; by

0dY; = Yo(ku? + [v? + mw?) — 2v(kXou + [Yov + mZow),
0dZ, = Zo(ku2 + v+ mwz) —2w(kXou+ IYou + mZow).

It is easily verified from (19) and (29) that

0dX, = Xo(ku? + lv? + mw?) = 2u(kXou + [You + mZow),
(29) {

(30) KX+ Y2 +mZ22 =0,
Moreover we have (using (19), (26) and (29))

8dm|Zo||Z1| = m|Zo|| — 0dZ,|
= m|Zy ||2w(kXou + [Yov + mZow) — Zo(ku® + lv? + mw2)|
= |(kXou+ IYgv+ mZow)? + kl(You — Xov)?|
< 0dm2Z2,
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so that
@31) 1Z1| < |Zo].

Next we show that Z; # 0. Suppose on the contrary that Z; = 0. Then, from
(B0)@sk>0,l>0,m<0),wehave X; =Y, = 0 and so (29) gives

(32) Xo(ku? + 1v? + mw?) = 2u(kXou + [Ypv + mZow),
(33) Yo(ku? + w2 + mw?) = 2v(kXou + (Yov + mZow),
(34) Zo(ku? + w? + mw?) = 2w(kXou+ [Yov + mZow),

Multiplying (32), (33), (34) by kXo, IYs, mZo respectively and adding the result-
ing equations, we obtain

(35) (kXZ +1YZ + mZ3) (ku? + lv? + mw?) = 2(kXou+ [You + mZow)?.
Hence, by (19), we deduce

(36) kXou+ IYov+ mZow=0.

Then, from (32) and (33), we have

37 (ku? + W? + mw?) Xo = (ku? + W2 + mw?) Yo =0.

As (Xo,Yo) = 1 we must have

(38) ku? + W+ mw?=0.

Then, we obtain by (19), (36) and (38)

kl(You — Xov)? = (kX& + 1Y) (ku? + 1v?) — (kXou+ [Yov)?
= (—mZ2)(—mw?) - (—=mZow)?
=0,

which contradicts You — Xov = d # 0.

We have shown that from the solution ( Xo,Yo, Zo) of kX2 + IYZ + mZ} =
0 with |Zo]| > Vkl we can construct another solution (X1,h,2Z,) with0 <
|Z1| < |Zo]. If|24] > vkl we can repeat the process on ( X1, Y;, Z;) to obtain
another solution (X, ,Y>,2;) with 0 < |Z2| < [Z;|. Continuing this process,
after a finite number of steps, we obtain a solution (X, ,Y,, Z,) (n > 0) of
kX2 +1Y2+mZ2 =0 with

(39) 0 < |Za| < VL.
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We define integers z, y, 2z, with z # 0, by
(40) z=3st(B,C)X,, y=1t(C,AY,, =z=71s(A B)Z,.
Then we have, appealing to (5), (7), (10), (39), (40),
az? + by* + c2? =Ar?s?t1(B,C)?* X2 + Brist 2 (C, A Y2
+ Cristt* (A, B) 72
=r?s’t*(A, B)(B,C)(C, A)(a(B,C) X} + B(C, A)Y;
+7(A,C)Z})

=r2s*t*(A, B)(B,C)(C, A) (kX2 + IY? + mZ?)
=0

and

0 < |z| =rs(A, B)|Z,|
< rs(A, ByVkl

rs(A, B)V/(B,C)(C, A)ap
= Vab.

This proves that (z, y, z) is a nontrivial solution of (1) satisfying the inequalitics
stated in the theorem. This completes the proof of the theorem.
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