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Abstract. Using the ideas of Mordell [q, it is shown in a completely elementary way 
that if a, b, c are nonzero integers for which Legendre's equation azZ + by2 + czZ = 0 
is solvable in integers z,  y ,  t not all zero, then there is a solution satisfying 

The estimate is best possible. 

Let a ,  b, c be nonzero integers. A number of authors have considered the prob- 
lem of estimating the size of a solution of Legendre's equation 

when (1) is known to be solvable in integers x ,  y ,  z not all zero. Most of these 
authors restrict a ,  b, c to satisfy 

a ,  b ,  c not all of the same sign, 

a ,  b, c  are all squarefree, 

(a ,b )  = (b,c) = ( c , a )  = 1,  

in which case the equation (1) is said to be in normal form. When (1) is in normal 
form, the condition 

(3) - bc, -ca, -ab are quadratic residues of a ,  b,  c  respectively 

is both necessary and sufficient for (1) to be solvable in integers x ,  y ,  z not all zero. 
In 1950 Holzer [3] proved, under the assumption that both (2) and (3) hold, that 
there is a solution of (1) satisfying 

In the course of his proof Holzer appealed to a deep theorem of Hecke (the gencr- 
alized prime number theorem). In 1951 Mordell [5] gave an elementary proof or 
an estimate weaker than that of Holzer also under the assumption of (2) and (3). 
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This estimate was also found by Skolem in 1952 [7]. In 1958 Birch and Davenport 
proved a theorem [ I :  eqn. (4)] which gives the estimatc 

for the size of a solution of (1) under only the assumption that (1) is solvable. In 
1959 Kneser [4], using deep melhods, proved under the assumption of (2) and (3) 
that (I) has a non-trivial solution with 

where n is a divisor of the least common multiple of 2 and abc and k(n) < 1 i n  
certain cases. In Cassels' book [2] on Ihe geometry of numbers, first published in 
1959, it is proved [2: p.1021 that under the assumption of (2) and (3) Ihe equation 
(1) has a solution satisfying 

It is noted that this estimate can be improved to 

In 1969 Mordell [6] gavc an elementary proof of Holzer's estimate under Ihe as- 
sumption of (2) and (3). Unfortunately Mordell's argument is not quite complete 
as he does not prove that Ihc integer t which he constructs is nonzero. It therefore 
seems worthwhile to provide the necessary details to complete Mordell's proof 
while at the same time rcmoving Ihc unnecessary restrictions that a ,  b ,  c  be square- 
frec and coprime in pairs, so as to obtain the most general result of this type which 
is best possible. We prove in a completely elementary way the following Iheorem. 

Theorem. Let a ,  b ,  c  be nonzero integers such that ( I )  is solvable in integers 
x ,  y  , r not all zero. Then there is a solution o f  ( I )  in integers x ,  y  , t not all zero 
sa Lis fying 

Using equation (1),  i t  is easy to verify hat Ihe solution satisfies 

The equation x 2  + y2 - t 2  = 0 wilh solution ( I ,  y ,  t) = ( 1 , 0 , 1 )  shows Ihat 
boIh these estimates are best possible. 



Proof of theorem: It suffices to prove the theorem when 

a > O ,  b > O ,  c < O ,  

( a ,  b ,  C) = 1. 

Let r2 , s2 , t 2  denote the largest squares dividing a ,  b, c  respectively, where r > 
0 ,  s > 0 ,  t  > 0 , a n d  set 

so that A ,  B, C are squarefree integers such that 

As ( ( A , B ) , ( A , C ) )  = ( ( B , C ) , ( B , A ) )  = ( ( C , A ) , ( C , B ) )  = 1, we may 
define integers a (  > O), ,B(> 0) , r (  < 0) by 

Clearly a,  ,B, 7 are squarefree and we have 

and 

( a , A , B ) = ( a , B , C ) = ( a , C , A ) =  1, 

(9) ( P , A , B )  = ( ,B,B,C) = ( ,B,C,A) = 1, 

( r , A , B )  = ( r , B , C )  = ( r , C , A )  = 1. 

Next, we define integers k( > O), 1( > O), m( < 0) by 

It is easy to check that 

(11) ( k ,  1) = (1 ,m)  = ( m ,  k) = 1 

and 

Now let x o ,  yo,  zo be a solution of (1) in integers not all zero, so that 



In view of (4) and (13) we must have zo # 0 .  From (9, (7) and (13) we deduce 

Thus we have 

A s ( A , B , C )  = ( A , B , t )  = ( A , B , q )  = 1 and(A,B)  issquarefree,wededuce 
from (15) that (A ,  B)Izo. Similarly we can show that (B,C)lxo,  (C,A)  lyo. 
Thus there are integers X ,  Y, Z(  # 0) such that 

Putting these expressions for s o ,  yo, zo into (14), and cancelling the factor (A,  B)  
(B,C)(C,A),weobtain 

Now define integers XO , YO, ZO ( # 0) by 

From (17) and (1 8) we see that 

and 

hloreover, appealing to (1 I), (12), (19) and (20), we deduce 

Next we show that if'lZo I > then we can construct from the solution 
( X o  ,Yo, Zo) of (19)anothersolution ( X I  , K  ,Z1) of (19) wilhO < 121 1 < IZo I .  
Set 



and let u, v be integers satisfying 

This is possible in view of (21). From (21) and (22) we deduce that 

Next we choose an integer w such that 

kX u+lY v I w +  O,zoO Is;, ifm o (rnod2), 

(25) { I w + k x ~ ~ ~ v I < ~ ,  w = k u + ~ v ( m o d 2 ) ,  i f m = l ( m d ~ ) .  

From (22), (23) and (25) we see  that 

where 

1 ,  i f m E 0  (mod2), o =  { 
2 ,  i fm  = 1 (mod2). 

Next we observe that by (19) and (23) wc have 

(kXou + lYov)Yo E ( k ~ i  + 1 ~ 2 ) ~  -m2;v 0 ( m ~ d d ) ,  

(ku2 + l v 2 ) ~ 0 2  ( k ~ i  + 1 ~ 2 ) ~ ~  f - m ~ ~ ~ v ~  E 0 (modd), 

and so, by (24), we have 

(28) k ~ o u +  l ~ o v  E ku2 + lv2 0 (modd). 

From (27) and (28) we see that we can define integers X I ,  Yl ,Z1 by 

OdXl = x o ( k u 2  + lv2 + mw2) - 2u(kXgu + lY0v + mZgw), 

9 { OdYl = yo(ku2 + lv2 + mw2) - 2v(kXgu + 1Ygv + mZow), 
OdZl = z o ( k u 2  + lv2 + mw2) - 2 w ( k X o u +  LYov+ mZgw). 

It is easily verified from (19) and (29) that 

Moreover we have (using (19), (26) and (29)) 



Next we show that Z1 $ 0 .  Suppose on the contrary that Z1 = 0 .  Then, from 
( 3 0 ) ( a s k > 0 , 1 > 0 , m < O ) , w e h a v e X 1  =Yl  = O  andso(29)gives 

Multiplying (32), (33), (34) by kXo, lYo, mZo respectively and adding the result- 
ing equations, we obmin 

Hence, by (19), we deduce 

Then, from (32) and (33), we have 

As (Xo , Yo) = 1 we must have 

Then, we obtain by (19), (36) and (38) 

whichcontradictsYou - Xov = d $ 0 .  
We have shown that from the solution (XO ,Yo, Zo) of k ~ i  + 1 ~ ;  + r n ~ ;  = 

0 with (20 1 > we can construct another solution ( X I ,  Yl , Z l )  wilh 0 < 
IZ1 ( < (Zo 1. If IZ1 1 > we can repeat the process on ( X I ,  Yl , Z1) to obtain 
another solution ( X 2 ,  Yz , Z2) with 0 < ( 2 2  ( < ( 2 1  1. Continuing this process, 
after a finite number of steps, we obtain a solution (X,, Y,, 2,) ( n  2 0) of 
k ~ :  + 1 ~ 2  + mz: = 0 with 



We define integers x,  y ,  z ,  with z $ 0 ,  by 

Then we have, appealing to (9, (7), (lo), (39), (40), 

and 

This proves that ( x ,  y ,  z )  is a nontrivial solution of (1) satisfying thc inequalities 
stated in thc thcorcm. This complclcs thc proof of the theorcm. 
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