On the Size of a Solution of Legendre's Equation

Kenneth S. Williams ${ }^{1}$
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada

Abstract. Using the ideas of Mordell [6], it is shown in a completely elementary way that if a, b, c are nonzero integers for which Legendre's equation $a x^{2}+b y^{2}+c z^{2}=0$ is solvable in integers x, y, z not all zero, then there is a solution satisfying

$$
0<|a| x^{2}+|b| y^{2}+|c| z^{2} \leq 2 \frac{|a b c|}{(a, b, c)^{2}} .
$$

The estimate is best possible.

Let a, b, c be nonzero integers. A number of authors have considered the problem of estimating the size of a solution of Legendre's equation

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}=0 \tag{1}
\end{equation*}
$$

when (1) is known to be solvable in integers x, y, z not all zero. Most of these authors restrict a, b, c to satisfy

$$
\left\{\begin{array}{l}
a, b, c \text { not all of the same sign, } \tag{2}\\
a, b, c \text { are all squarefrce } \\
(a, b)=(b, c)=(c, a)=1
\end{array}\right.
$$

in which case the equation (1) is said to be in normal form. When (1) is in normal form, the condition

$$
\begin{equation*}
-b c,-c a,-a b \text { are quadratic residues of } a, b, c \text { respectively } \tag{3}
\end{equation*}
$$

is both necessary and sufficient for (1) to be solvable in integers x, y, z not all zero. In 1950 Holzer [3] proved, under the assumption that both (2) and (3) hold, that there is a solution of (1) satisfying

$$
|x| \leq \sqrt{|b c|}, \quad|y| \leq \sqrt{|c a|}, \quad|z| \leq \sqrt{|a b|} .
$$

In the course of his proof Holzer appealed to a deep theorem of Hecke (the generalized prime number theorem). In 1951 Mordell [5] gave an elementary proof of an estimate weaker than that of Holzer also under the assumption of (2) and (3).

[^0]This estimate was also found by Skolem in 1952 [7]. In 1958 Birch and Davenport proved a theorem [1: eqn. (4)] which gives the estimate

$$
0<|a| x^{2}+|b| y^{2}+|c| z^{2} \leq 8|a b c|
$$

for the size of a solution of (1) under only the assumption that (1) is solvable. In 1959 Kneser [4], using deep methods, proved under the assumption of (2) and (3) that (1) has a non-trivial solution with

$$
|z| \leq k(n) \sqrt{|a b|}
$$

where n is a divisor of the least common multiple of 2 and $a b c$ and $k(n)<1$ in certain cases. In Cassels' book [2] on the geometry of numbers, first published in 1959, it is proved [2: p.102] that under the assumption of (2) and (3) the equation (1) has a solution satisfying

$$
0<|a| x^{2}+|b| y^{2}+|c| z^{2}<4|a b c| .
$$

It is noted that this estimate can be improved to

$$
0<|a| x^{2}+|b| y^{2}+|c| z^{2}<2^{5 / 3}|a b c| .
$$

In 1969 Mordell [6] gave an clementary proof of Holzer's estimate under the assumption of (2) and (3). Unfortunately Mordell's argument is not quite complete as he does not prove that the integer z which he constructs is nonzero. It therefore seems worthwhile to provide the necessary details to complete Mordell's proof while at the same time removing the unnecessary restrictions that a, b, c be squarefree and coprime in pairs, so as to obtain the most general result of this type which is best possible. We prove in a completely elementary way the following theorem.
Theorem. Let a, b, c be nonzero integers such that (1) is solvable in integers x, y, z not all zero. Then there is a solution of (1) in integers x, y, z not all zero satisfying

$$
|x| \leq \frac{\sqrt{|b c|}}{(a, b, c)}, \quad|y| \leq \frac{\sqrt{|c a|}}{(a, b, c)}, \quad|z| \leq \frac{\sqrt{|a b|}}{(a, b, c)}
$$

Using equation (1), it is easy to verify that the solution satisfies

$$
0<|a| x^{2}+|b| y^{2}+|c| z^{2} \leq \frac{2|a b c|}{(a, b, c)^{2}} .
$$

The equation $x^{2}+y^{2}-z^{2}=0$ with solution $(x, y, z)=(1,0,1)$ shows that both these estimates are best possible.

Proof of theorem: It suffices to prove the theorem when

$$
\left\{\begin{array}{l}
a>0, b>0, c<0 \tag{4}\\
(a, b, c)=1
\end{array}\right.
$$

Let r^{2}, s^{2}, t^{2} denote the largest squares dividing a, b, c respectively, where $r>$ $0, s>0, t>0$, and set

$$
\begin{equation*}
a=A r^{2}, b=B s^{2}, c=C t^{2} \tag{5}
\end{equation*}
$$

so that A, B, C are squarefree integers such that

$$
\begin{equation*}
A>0, B>0, C<0,(A r, B s, C t)=1 \tag{6}
\end{equation*}
$$

As $((A, B),(A, C))=((B, C),(B, A))=((C, A),(C, B))=1$, we may define integers $\alpha(>0), \beta(>0), \gamma(<0)$ by

$$
\begin{equation*}
\alpha=\frac{A}{(A, B)(A, C)}, \quad \beta=\frac{B}{(B, C)(B, A)}, \quad \gamma=\frac{C}{(C, A)(C, B)} . \tag{7}
\end{equation*}
$$

Clearly α, β, γ are squarefree and we have

$$
\begin{equation*}
(\alpha, \beta)=(\beta, \gamma)=(\gamma, \alpha)=1 \tag{8}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
(\alpha, A, B)=(\alpha, B, C)=(\alpha, C, A)=1 \tag{9}\\
(\beta, A, B)=(\beta, B, C)=(\beta, C, A)=1 \\
(\gamma, A, B)=(\gamma, B, C)=(\gamma, C, A)=1
\end{array}\right.
$$

Next, we define integers $k(>0), l(>0), m(<0)$ by

$$
\begin{equation*}
k=\alpha(B, C), \quad l=\beta(C, A), \quad m=\gamma(A, B) \tag{10}
\end{equation*}
$$

It is easy to check that

$$
\begin{equation*}
(k, l)=(l, m)=(m, k)=1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
k, l, m \text { squarefree. } \tag{12}
\end{equation*}
$$

Now let x_{0}, y_{0}, z_{0} be a solution of (1) in integers not all zero, so that

$$
\begin{equation*}
a x_{0}^{2}+b y_{0}^{2}+c z_{0}^{2}=0 . \tag{13}
\end{equation*}
$$

In view of (4) and (13) we must have $z_{0} \neq 0$. From (5), (7) and (13) we deduce (14) $\alpha(A, B)(A, C) r^{2} x_{0}^{2}+\beta(B, C)(B, A) s^{2} y_{0}^{2}+\gamma(C, A)(C, B) t^{2} z_{0}^{2}=0$.

Thus we have

$$
\begin{equation*}
(A, B) \mid \gamma(C, A)(C, B) t^{2} z_{0}^{2} \tag{15}
\end{equation*}
$$

As $(A, B, C)=(A, B, t)=(A, B, \gamma)=1$ and (A, B) is squarefree, we deduce from (15) that $(A, B) \mid z_{0}$. Similarly we can show that $(B, C)\left|x_{0},(C, A)\right| y_{0}$. Thus there are integers $X, Y, Z(\neq 0)$ such that

$$
\begin{equation*}
x_{0}=(B, C) X, \quad y_{0}=(C, A) Y, \quad z_{0}=(A, B) Z . \tag{16}
\end{equation*}
$$

Putting these expressions for x_{0}, y_{0}, z_{0} into (14), and cancelling the factor (A, B) $(B, C)(C, A)$, we obtain

$$
\begin{equation*}
k r^{2} X^{2}+l s^{2} Y^{2}+m t^{2} Z^{2}=0 \tag{17}
\end{equation*}
$$

Now define integers $X_{0}, Y_{0}, Z_{0}(\neq 0)$ by

$$
\begin{equation*}
X_{0}=\frac{r X}{(r X, s Y, t Z)}, \quad Y_{0}=\frac{s Y}{(r X, s Y, t Z)}, \quad Z_{0}=\frac{t Z}{(r X, s Y, t Z)} . \tag{18}
\end{equation*}
$$

From (17) and (18) we see that

$$
\begin{equation*}
k X_{0}^{2}+l Y_{0}^{2}+m Z_{0}^{2}=0 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(X_{0}, Y_{0}, Z_{0}\right)=1 \tag{20}
\end{equation*}
$$

Moreover, appealing to (11), (12), (19) and (20), we deduce

$$
\left\{\begin{array}{l}
\left(X_{0}, Y_{0}\right)=\left(Y_{0}, Z_{0}\right)=\left(Z_{0}, X_{0}\right)=1 \tag{21}\\
\left(X_{0}, m\right)=\left(Y_{0}, m\right)=\left(X_{0}, l\right)=\left(Z_{0}, l\right)=\left(Y_{0}, k\right)=\left(Z_{0}, k\right)=1
\end{array}\right.
$$

Next we show that if $\cdot\left|Z_{0}\right|>\sqrt{k l}$ then we can construct from the solution (X_{0}, Y_{0}, Z_{0}) of (19) another solution (X_{1}, Y_{1}, Z_{1}) of (19) with $0<\left|Z_{1}\right|<\left|Z_{0}\right|$. Set

$$
d= \begin{cases}\frac{m}{2}, & \text { if } m \equiv 0(\bmod 2) \tag{22}\\ m, & \text { if } m \equiv 1(\bmod 2)\end{cases}
$$

and let u, v be integers satisfying

$$
\begin{equation*}
Y_{0} u-X_{0} v=d . \tag{23}
\end{equation*}
$$

This is possible in view of (21). From (21) and (22) we deduce that

$$
\begin{equation*}
\left(Y_{0}, d\right)=1 \tag{24}
\end{equation*}
$$

Next we choose an integer w such that

$$
\begin{cases}\left|w+\frac{k X_{0} u+l Y_{0} v}{m Z_{0}}\right| \leq \frac{1}{2}, & \text { if } m \equiv 0(\bmod 2) \tag{25}\\ \left|w+\frac{k X_{0} u+l Y_{0} u}{m Z_{0}}\right| \leq 1, w \equiv k u+l v(\bmod 2), & \text { if } m \equiv 1(\bmod 2)\end{cases}
$$

From (22), (23) and (25) we see that

$$
\begin{equation*}
\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right)^{2}+k l\left(Y_{0} u-X_{0} v\right)^{2}<\theta d m Z_{0}^{2} \tag{26}
\end{equation*}
$$

where

$$
\theta=\left\{\begin{array}{l}
1, \text { if } m \equiv 0(\bmod 2) \tag{27}\\
2, \text { if } m \equiv 1(\bmod 2)
\end{array}\right.
$$

Next we observe that by (19) and (23) we have

$$
\left\{\begin{array}{l}
\left(k X_{0} u+l Y_{0} v\right) Y_{0} \equiv\left(k X_{0}^{2}+l Y_{0}^{2}\right) v \equiv-m Z_{0}^{2} v \equiv 0(\bmod d) \\
\left(k u^{2}+l v^{2}\right) Y_{0}^{2} \equiv\left(k X_{0}^{2}+l Y_{0}^{2}\right) v^{2} \equiv-m Z_{0}^{2} v^{2} \equiv 0(\bmod d)
\end{array}\right.
$$

and so, by (24), we have

$$
\begin{equation*}
k X_{0} u+l Y_{0} v \equiv k u^{2}+l v^{2} \equiv 0(\bmod d) \tag{28}
\end{equation*}
$$

From (27) and (28) we see that we can define integers X_{1}, Y_{1}, Z_{1} by

$$
\left\{\begin{array}{l}
\theta d X_{1}=X_{0}\left(k u^{2}+l v^{2}+m w^{2}\right)-2 u\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right) \tag{29}\\
\theta d Y_{1}=Y_{0}\left(k u^{2}+l v^{2}+m w^{2}\right)-2 v\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right) \\
\theta d Z_{1}=Z_{0}\left(k u^{2}+l v^{2}+m w^{2}\right)-2 w\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right)
\end{array}\right.
$$

It is easily verified from (19) and (29) that

$$
\begin{equation*}
k X_{1}^{2}+l Y_{1}^{2}+m Z_{1}^{2}=0 \tag{30}
\end{equation*}
$$

Moreover we have (using (19), (26) and (29))

$$
\begin{aligned}
\theta d m\left|Z_{0} \| Z_{1}\right| & =m\left|Z_{0} \|-\theta d Z_{1}\right| \\
& =m\left|Z_{0} \| 2 w\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right)-Z_{0}\left(k u^{2}+l v^{2}+m w^{2}\right)\right| \\
& =\left|\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right)^{2}+k l\left(Y_{0} u-X_{0} v\right)^{2}\right| \\
& <\theta d m Z_{0}^{2}
\end{aligned}
$$

so that

$$
\begin{equation*}
\left|Z_{1}\right|<\left|Z_{0}\right| . \tag{31}
\end{equation*}
$$

Next we show that $Z_{1} \neq 0$. Suppose on the contrary that $Z_{1}=0$. Then, from (30) (as $k>0, l>0, m<0$), we have $X_{1}=Y_{1}=0$ and so (29) gives

$$
\begin{align*}
X_{0}\left(k u^{2}+l v^{2}+m w^{2}\right) & =2 u\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right), \tag{32}\\
Y_{0}\left(k u^{2}+l v^{2}+m w^{2}\right) & =2 v\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right), \tag{33}\\
Z_{0}\left(k u^{2}+l v^{2}+m w^{2}\right) & =2 w\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right), \tag{34}
\end{align*}
$$

Multiplying (32), (33), (34) by $k X_{0}, l Y_{0}, m Z_{0}$ respectively and adding the resulting equations, we obtain

$$
\begin{equation*}
\left(k X_{0}^{2}+l Y_{0}^{2}+m Z_{0}^{2}\right)\left(k u^{2}+l v^{2}+m w^{2}\right)=2\left(k X_{0} u+l Y_{0} v+m Z_{0} w\right)^{2} . \tag{35}
\end{equation*}
$$

Hence, by (19), we deduce

$$
\begin{equation*}
k X_{0} u+l Y_{0} v+m Z_{0} w=0 \tag{36}
\end{equation*}
$$

Then, from (32) and (33), we have

$$
\begin{equation*}
\left(k u^{2}+l v^{2}+m w^{2}\right) X_{0}=\left(k u^{2}+l v^{2}+m w^{2}\right) Y_{0}=0 . \tag{37}
\end{equation*}
$$

As $\left(X_{0}, Y_{0}\right)=1$ we must have

$$
\begin{equation*}
k u^{2}+l v^{2}+m w^{2}=0 . \tag{38}
\end{equation*}
$$

Then, we obtain by (19), (36) and (38)

$$
\begin{aligned}
k l\left(Y_{0} u-X_{0} v\right)^{2} & =\left(k X_{0}^{2}+l Y_{0}^{2}\right)\left(k u^{2}+l v^{2}\right)-\left(k X_{0} u+l Y_{0} v\right)^{2} \\
& =\left(-m Z_{0}^{2}\right)\left(-m w^{2}\right)-\left(-m Z_{0} w\right)^{2} \\
& =0,
\end{aligned}
$$

which contradicts $Y_{0} u-X_{0} v=d \neq 0$.
We have shown that from the solution $\left(X_{0}, Y_{0}, Z_{0}\right)$ of $k X_{0}^{2}+l Y_{0}^{2}+m Z_{0}^{2}=$ 0 with $\left|Z_{0}\right|>\sqrt{k l}$ we can construct another solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ with $0<$ $\left|Z_{1}\right|<\left|Z_{0}\right|$. If $\left|Z_{1}\right|>\sqrt{k l}$ we can repeat the process on $\left(X_{1}, Y_{1}, Z_{1}\right)$ to obtain another solution $\left(X_{2}, Y_{2}, Z_{2}\right)$ with $0<\left|Z_{2}\right|<\left|Z_{1}\right|$. Continuing this process, after a finite number of steps, we obtain a solution $\left(X_{n}, Y_{n}, Z_{n}\right)(n \geq 0)$ of $k X_{n}^{2}+l Y_{n}^{2}+m Z_{n}^{2}=0$ with

$$
\begin{equation*}
0<\left|Z_{n}\right| \leq \sqrt{k l} \tag{39}
\end{equation*}
$$

We define integers x, y, z, with $z \neq 0$, by

$$
\begin{equation*}
x=s t(B, C) X_{n}, \quad y=r t(C, A) Y_{n}, \quad z=r s(A, B) Z_{n} \tag{40}
\end{equation*}
$$

Then we have, appealing to (5), (7), (10), (39), (40),

$$
\begin{aligned}
a x^{2}+b y^{2}+c z^{2}= & A r^{2} s^{2} t^{2}(B, C)^{2} X_{n}^{2}+B r^{2} s^{2} t^{2}(C, A)^{2} Y_{n}^{2} \\
& +C r^{2} s^{2} t^{2}(A, B)^{2} Z_{n}^{2} \\
= & r^{2} s^{2} t^{2}(A, B)(B, C)(C, A)\left(\alpha(B, C) X_{n}^{2}+\beta(C, A) Y_{n}^{2}\right. \\
& \left.+\gamma(A, C) Z_{n}^{2}\right) \\
= & r^{2} s^{2} t^{2}(A, B)(B, C)(C, A)\left(k X_{n}^{2}+l Y_{n}^{2}+m Z_{n}^{2}\right) \\
= & 0
\end{aligned}
$$

and

$$
\begin{aligned}
0<|z| & =r s(A, B)\left|Z_{n}\right| \\
& \leq r s(A, B) \sqrt{k l} \\
& =r s(A, B) \sqrt{(B, C)(C, A) \alpha \beta} \\
& =\sqrt{a b} .
\end{aligned}
$$

This proves that (x, y, z) is a nontrivial solution of (1) satisfying the inequalities stated in the theorem. This completes the proof of the theorem.

References

1. B.J. Birch and H. Davenport, Quadratic equations in several variables, Proc. Cambridge Philos. Soc. 54 (1958), 135-138.
2. J.W. Cassels, "An Introduction to the Geometry of Numbers," Springer-Verlag, New York, 1971. (Second Printing).
3. L. Holzer, Minimal solutions of diophantine equations, Canad. J. Math. 2 (1950), 238-244.
4. M. Kneser, Kleine Lösungen der diophantischen Gleichung $a x^{2}+b y^{2}=c z^{2}$, Math. Sem. Univ. Hamburg 23 (1959), 163-173.
5. L.J. Mordell, On the equation $a x^{2}+b y^{2}-c z^{2}=0$, Montash. Math. 55 (1951), 323-327.
6. L.J. Mordell, On the magnitude of the integer solutions of the equation $a x^{2}$ $+b y^{2}+c z^{2}=0$, J. Number Theory 1 (1969), 1-3.
7. T. Skolem, On the diophantine equation $a x^{2}+b y^{2}+c z^{2}=0$, Univ. Roma. 1st. Naz. Alta Mat. Rend. Mat. e Appl. (5) 11 (1952), 88-100.

[^0]: ${ }^{1}$ Research supported by Natural Sciences and Engineering Research Council of Canada grant No. A7233.

