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A simple proof of Eisenstein's law of reciprocity is given 

Let I be an odd prime and set <I = exp ( 2  ill). The ring of integers of the 
cyclotomic field Q (I / )  is denoted by Z [<I]. An elem:nt x of Z [I!] is called primary 
if it is prime to I and congruent to a rational integer modulo (1 - < I ) ? .  For any 

8 E Z [&I prime to I there is a unique integer d modulo I such that cy 6 is primary. 

Let P be a prime ideal of Z [<I] not dividing I. The norm of P, written N (P), is 
of the form pf z 1 (mod I), where p is a rational prime. The Ith power residue 
symbol Y., is defined for p E GF (pf)* = GF (pf) - (0) by 

X ,  (p) = C: , where 3 (pi-')/' f <: (mod P). 

For any proper ideal A of Z [Q prime to I, the symbol X A  is defined in terms of the 
f 

symbols X P ,  (1 5 i 5 s), where A-PI P, ... P, (with N (Pj) = P,', 1 5 j 5 s) is the 

prime ideal decomposition of A in Z[<,] ,  as follows : for r E I? - GF ( i: )* @ ,.. @ 

GF (i )* , say -; -; y, + ... + ys with - f i  E G F  ($)*  ( I  5 j 5 s), weset 

S 

X A  (.i) = rl XY ( ~ j )  
I f 

-- 
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Finally if A is a principal ideal, say A = (A), we set X K  = X ( K )  

Eisenstein's reciprocity law asserts that if 1 is an odd prime, a is a rational 

integer (f & 1) coprime with I ,  and a is a primary non-unit element of Z [&I prime to 
a, then 

X o  ( a )  = Xz (a). ...( 1.1)  

This law was first proved by Eisenstein?. A number of proofs of it have been given, 
see for example [ref. ( I )  pp. 70-951. [ref. (3) p. 771, [ref. ( 4 )  Satz 1401, [ref. (5) Chap. 141 
and refs. (7 ,  9). The purpose of this short note is to give a simple proof which 
deduces the law from a well-known identity involving Gauss and Jacobi sums by means 
of Stickelberger's theorem. 

2. PROOF OF EISENSTEIN'S RECIPROCITY LAW 

It suffices to prove (1.1) with a prime, say a -- q (prime) # 1, and we define m to 
be the least positive integer such that gm 1 (mod I ) .  

For any proper ideal A of Z [ C I ]  prime to I, the Gauss sum G (%', ) (r  E Z )  is 

defined by 

S 

. ( x : ) =  z X; (.:) e r p  ( 2 n i  2 (Pj  Y ~ I I P ~ )  

where t r j  :., denotes the trace of y j  from GF ( :i ) to G P ( p j ) .  The Jacobi sum 

J ( X >  , X; ) ( r ,  s E Z )  is defined by 

These sums are related by the identity 

Taking r  = 1 and A - - ( a ) ,  where 1 is a primary non-unit element of Z [ T I ]  prime to 
q,  in (2. I )  and raising both sides to the q"lt11 power, we obtain working modulo q and 
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using q" = 1 (mod I), 

S 

(xQ)" " 2 X* (Y) exp ( 2 n i  2 ( t r f  (9"' Y]) ) /p i  ) (mod q) 

z 2~.  (q-"' y) exp ( 2 n i  1 ( j , I  ) (mod 4) 

r X i m  (q) G (X+) mod q) 

so that, as I G (XQ) I ' = A1(a) is prime to q 

G (Xl)qm-l = xirn (q) (mod q). . . (2.4) 

Next, by Stickelberger's theorema, we have for j = I ,  .. , s and k, = 1, . , 1 - 2 

where a, (I 5i d I- 1) is the autornorphism of Q ((1) which maps T I  to C: , for 1 5 i 

S I - 1 the integer i-' denotes the unique integer satisfying i . i-' 1 (mod I) and 
1 5 i-' 5 1 - I ,  and { x }  denotes the fractional part of the real number x.  From 
(2 .5)  we obtain 

and so 

(equation cont in~r rd  on p. 172) 
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- (1 - ( (a) ) )  
1-1 

giving 

and thus 

I-? 

lv (a) J ( L ,  x: ) = E ,,I-/ (a) 

k-1 1-1 
1 -' 

where t is a unit of Z [<I]. Since a is primary so are all its conjugates. In addition 

J ( ) ( -  I)'(mod ( I  - ~1)') so J ( L ,  X: ) is primary. Hence from (2.6) 

we see that E is a primary unit. Further taking the square of the modulus of (2.6), 
we obtain 

SO that 1 c 1 = I. Hence as r is of the form <; r, where r is a real number and 

0 2 ni I I - 1, (see for example, Pollard6, Lemma 10.11), we must have c = -I < l", 
0 I m 5 I - 1. Since t is primary we deduce that m = 0, that is, c = f I, and 
(2.6) becomes 



Appealing to (2.3) with A = ( a )  we have 

and so 

Let Q denote one of the prime ideal factors of (I in Z [<I]. Then, from (2.4) and (2.8) 
we obtain 

(q)  - XQ ( I (a) ) (mod Q) 

-- 1 i k l  (.,-I (a)) (mod Q) 
i-I 

n L1-,(~i ( ~ I - I  (a,) (mod Q) 
1-1 

XI-i 

= n or (Q) (GI (a)) (mod Q) 
1-1 - X , (01-1 (a ) )  (mod Q )  
( 0 )  

zz X (or-I (2.)) (mod Q) 
( 9 )  
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= 7.: (a,.-l (2)) (mod Q) 

that is 

r-;" (q) 1," (a) (mod Q). 

As both sides of (2.9) are powers of we must have 

Xirn (q)  = xirn (a). 

Finally, as (m, I) -- 1, we obtain 

r., ( q )  = X ,  ( 7 )  

as required. 
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