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ANOTHER PROOF OF EISENSTEIN'S LAW 
OF CUBIC RECIPROCITY AND ITS SUPPLEMENT 

C. FRIESEN1, B.K. SPEARMAN AND K.S. WILLIAMS2 

ABSTRACT. A new proof is given of the law of cubic reciprocity 
and its supplement. 

1. Introduction. The domain of Eisenstein integers x 4- yco, where x9 y 
are rational integers and co = (— 1 4- v" —3)/2, is denoted by Z[co]. The 
domain Z[co] is a unique factorization domain and its primes consist of 
rational primes congruent to 2 (mod 3) and their associates, complex 
primes of the form a + beo with norms N(a + beo) = a2 — ab + b2 equal 
to rational primes congruent to 1 (mod 3), and 1 — co and its associates. 
Each prime, which is not an associate of 1 — co, has exactly one of its six 
associates which is primary, that is, congruent to 2 (mod 3). 

If A is a prime in 7\co\ which is not an associate of 1 — co, then the norm 
of X is congruent to I (mod 3) and the cubic residue character %x is defined 
for a e Z[co] by 

fO, if a = 0(mod A), 

W , if a & 0(mod X) and a
{Na)~1)/3 = cor(mod A), r = 0, 1, 2. 

In 1844 Eisenstein [3] proved the law of cubic reciprocity. 

[fix anelli are primary primes ofZ[co] with N(Xi) ^ N(X2) then 

(LO %h(h) = xh(hy 
In a later paper [4] he proved the supplement to the law of cubic reci

procity which treats the exceptional prime 1 — co. 

IfX is a primary prime ofZ[co] then 
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(1.2) ^ (1 - œ) = ù)~m, 

where 

( i 

\~ (q + 1), if X is a real prime q = 2 (mod 3), 

~~ J -y {a + 1), if A is a complex prime a + beo = 2 (mod 3), 

i with N(X) = p = 1 (mod 3). 

A number of proofs of (1. 1) and (1. 2) have been given (for (1. 1) see for 
example [2, p. 44], [5], [7], [8, p. 115], [10, p. 218], [11], [12], [13], [15] and 
for (1.2) see for example [14], [16], [19]). The laws (1.1) and (1.2) are also 
special cases of more general power reciprocity laws, see for example [1, 
p. 168] and [6, p. 96]. 

In this paper we give simple new proofs of both (1.1) and (1.2) based 
upon ideas used by Kaplan to prove the laws of quadratic and biquad
ratic reciprocity [9] (see also [17]) and by Williams to prove the supplement 
to the law of quadratic reciprocity [18]. Hayashi [7] has also used Kaplan's 
ideas to prove the law of cubic reciprocity. Indeed Hayashi gives a de
tailed proof of the congruence (2.3) below. However although his proof 
is the same as the one given here for case (a) of the law of cubic reciprocity 
(see §2), his proof of case (b) is much more complicated than the one given 
here, and in addition he does not prove the supplement to the law (see §3). 

2. Proof of law of cubic reciprocity. If Xi and X2 are distinct real primary 
primes of Z[co] then it is well-known that ^1(^2) = £*2(^i) = 1 ( see ^or 

example [8, pp. 113-114]). Thus we need only treat 2 cases, namely, 
(a) Xi a complex primary prime of Z[co] with N(X\) = p = 1 (mod 3) and 

X2 a real prime q = 2 (mod 3), 
(b) ^i, X2 distinct complex primary primes of Z[co] with N(Xi) = p = 1 

(mod 3), N(X2) = q = 1 (mod 3), p # q. 
For both cases (a) and (b) we consider the number Nq(p) of solutions 
(* ! , . . . , xq) of the congruence 

(2.1) x\ + *f + . . . + x* = q (mod p) 

in two different ways. First we note that as/? # q 

(2.2) Nq(p) = 3 (mod?) 

as each solution of (2.1) with not all the x{ equal (mod p) gives rise to q 
distinct solutions by a cyclic permutation. Secondly by means of standard 
arguments using Gauss and Jacobi sums (see for example [8, Chap. 8], 
[17]), we obtain 



(2.3) Nip) = 

EISENSTEIN'S LAW OF CUBIC RECIPROCITY 

i + p^'nï>+™ rxM) 
+ p<«-2>/3 (̂«+D/3 Xk(q) ( m o c l q^ i n c a s e (a) ; 

1 + pW-unxp-™ XxM) 
[ + ^(»-D/S ^(r-u/s Th (?) ( m o d g), in case(b). 

In case (a), from (2.2) and (2.3), we have 

(2.4) pW* Xp™ xxM) + Pi9~2)/3 ~Mq+1)/3 Tüte) = 2 ( m o d 9). 

Trivially we have 

(2.5) pW* A,«+»'3 th (?) • Pk~2)n Kq+W3 Xite) = 1 (mod q). 

From (2.4) and (2.5) we deduce 

/ ,( ,-2)/3^+l)/3B i(?) _ J (modtf), 

that is 

(2.6) pW* W+»'3 = xxS.1) (mod q). 

Raising (2.6) to the (q — l)st power, we obtain 

giving 

X9(h) = &,(») 

as required. 

In case (b), from (2.2) and (2.3), we have as before 

p«-™ Xir-»* x*Sa) = l(modA2), 

giving 

(2-7) xdPh) Jfcfo) = I-

Replacing Xi by X\ we obtain 

(2.8) XHWI) XXM) = 1, 

and interchanging the roles of X\ and X2 we have 

(2.9) XxMh)XxlP)= 1. 

From (2.8) and (2.9) we deduce 
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Xx^h) XxoiPh) = Xh&z) XhtiY1 

= Xh(h) Xxx(q) 

= Xhivh) 

= Xxoip)2 

= Xx2ih) Xx2{P~h\ 

and dividing by XxXph) w e obtain the required result 

Xxith) = &i2Wi). 

This completes the proof of the law of cubic reciprocity. 

3. Proof of supplement to law of cabic reciprocity. If A is a real prime 
q = 2 (mod 3), we have 

X,0 - Û>) = & 2 0 - Û>) = Zi"1«! - o))2) 

= XqK-la) = X^fa) 
_ ^-(^-D/3 = û)-(q+l)/39 

as required. Hence we need only consider the case when X is a complex 
primary prime n = a + bcoin Z[w\ We have 

(3.1) a = 3m — 1, b — 3«, 

for integers m and «, and 

(3.2) a2 — ab + b2 = TL x = p, 

where /? is a rational prime = 1 (mod 3). 
We prove (1.2) in this case by proving the following equivalent result 

(3.3) z,(3) = a ) - . 

This is accomplished by counting the number N3(p) of solutions (x, y, z) 
of the congruence 

(3.4) x3 + >'3 + z3 = 3 (mod/?) 

in two different ways. 
Using Gauss and Jacobi sums we can prove 

(3.5) N3(p) =p2 + 3/7(^(3) + Xli})) - (2a - b). 

On the other hand the solutions of (3.4) can be grouped as shown in the 
left-hand column of Table 1 with the number in each group indicated in 
the right-hand column. 
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Table 1 

2 of x3, y3, z3 = 0 (mod p) 

exactly 1 of x3, y3, z3 = 0 (mod/?) 
and other 2 cubes are congruent 
(mod p) 

exactly 1 of x3, y3, z3 = 0 (mod/?) 
and other 2 cubes are distinct (mod p) 

x3 = / = z3 ^ 0 (mod /?) 

x3, j 3 , z3 nonzero (mod /?) and 

exactly 2 cubes congruent (mod p) 

x3, j ^ 3 , z3 nonzero and distinct (mod p) 

3d + X*(3) + Z|(3)) 

«MIMI» 
3(p-2) + 3(;#3)tf + Z,(3)j?) 
- 6 ( l + ^ ( 3 ) + %2(3)) 

- < « + * ( T M T ) ) 
27 

9/» - 9(^(2) + j#2)) 
+ 9(^(6)^ + ^(6)*) 

-9(l+Z«(3) + x&3)) 

-<l+X<l) + <-f))-81 
multiple of 162 

The numbers of solutions in the groups are easily obtained using the fol
lowing three results. 

(i) the number of solutions x of 

x3 = C (mod p) (p X C) 

is 

1 + x*(Q + x2AQ; 
(ii) the number of solutions x, y of 

Ax3 + By3 = C (mod p) (p X ABC) 

is 

p - (xMB2) + %l(AB*)) + (^(/lÄOsr + z ^ Ä C ) ^ ; 

(iii) each solution (x, y, z) in the last group gives rise to 33 x 3! dis
tinct solutions by replacting x, y, z by krx, ksy, k!z, where r, s, t = 0, 1,2 
and &3 = 1 (mod p), k & I (mod /?), and then permuting them. 

From (3.5) and Table 1 we obtain 

p2 _ 12/7 + 81 - (2a - b) + (3/> + 12)(%7r(3) + Z*(3)) 

(3.6) - 3 ( ^ 3 ) * + X*(3)*) + 9 ^ < 2 ) + tiW 

- 9(Z2(6)TT + %7r(6);r) + V(X«(Y) + % ' ( T ) ) = ° ( m o d 162)-

From the trivial congruences 
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(1 + X«<2) + Z&2)) (1 + z ,(3) + ^1(3)) - 0 (mod 9) 
and 

*0 + Û)^(6) + <w*Zx(6)) = 0 (mod 9), 

we obtain, as — a = 1 (mod 3), 

- «(1 + z,(6) + x2M) + (Z«(2) + ZÄ2)) 

+ (Z5(2)Z»(3) + Z«(2) ZK3)) + (Z,(3) + Z*(3)) 
- b(\ + a>x%6) + ^ , ( 6 ) ) = 0(mod9), 

which gives 

( 1 7 ) (*,(2) + J#2» - (ZA*)* + Z,(6)^r) + (%*(!) + z î ( y ) ) 

= (* + * ) - (z«(3) + Z5(3)) (mod 9). 

Using (3.7) in (3.6) we obtain 

(3 8) p2 " Up + 7a+ m + 3(P + 1)(XÂ3) + X l m 

-3(%2(3)^ + %7r(3)7r)^0(mod81). 

From (3.1) and (3.2) we have 

(3.9) p = 9m2 - 9mn + 9n2 - 6m + 3n + 1, 

so that 

(3.10) p2 - lip = 21m2 - llmn + 33m + 24 /1-11 (mod 81). 
Making use of (3.1), (3.9) and (3.10) in (3.8) we obtain, after dividing 
by 9, 

(3m2 - 3mn + 3«2 - 3m + n + 1 - nco) x2(3) 

(3.11) + (3^2 _ 3mn + 3n2 _ 2>m + n + 1 - «co2)%?r(3) 

+ (3m2 - 3m/z + 6m + 6« - 2) = 0 (mod 9). 

Now subtracting 

(3m2 - 3m/2 + 3n2 - 3m) (1 + ^(3) + %2(3)) = 0 (mod 9), 

from (3.11), we obtain 

( - 3n2 - 3/1 - 2) + Zjt(3)(/i + 1 - no?) + Z
2(3)(/z + 1 - nco) = 0 (mod 9). 

Now Z?r(3) = 1 yields 

- 3/22 = 0 (mod 9), i.e., n = 0 (mod 3); 

Z*(3) = Û) yields 

-3/z2 + 3/7 - 3 = 0 (mod 9), i.e., n = 2 (mod 3); 
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and XitO) - <*>2 yields 

— 3n2 — 3n — 3 = 0 (mod 9), i.e., n = 1 (mod 3). 

This shows that XnO) — orn, completing the proof of the supplement to 
the law of cubic reciprocity. 

The authors would like to thank the referee whose suggestions enabled 
then to simplify some of the arguments. 
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