An application of dihedral fields to representations of primes by binary quadratic forms

by

Pierre Kaplan* (Nancy), Kenneth S. Williams* (Ottawa) and Yoshihiko Yamamoto (Osaka)

1. Introduction. Let $H(m)$ denote the strict ideal class group of the quadratic field $\mathbb{Q}(\sqrt{m})$ of discriminant m. We have

$$H(m) \cong Z_{2^{\alpha_1}} \times Z_{2^{\alpha_2}} \times \ldots \times Z_{2^{\alpha_k}} \times G,$$

where the order g of the group G is odd and Z_{2^n} denotes the cyclic group of order 2^n.

Let p be a prime number such that $\left(\frac{m}{p}\right) = 1$. Then p is represented by two inverse classes C_p, C_p^{-1} (or one ambiguous class) of binary quadratic forms of discriminant m. Gauss's theory of genera determines C_p modulo squares in the composition class group of discriminant m.

In this paper we determine the class C_p modulo fourth powers in the simplest case, namely when

$$H(m) \cong Z_{2^n} \times G, \quad n \geq 2,$$

and the class C_p is a square, that is p is a prime on which all the generic characters have the value $+1$. It is known (see for example [2]) that (1.2) occurs precisely for the following values of the discriminant m:

(I) $m = -4r$, r(prime) $\equiv 1$(mod 8);

(II) $m = -8r$, r(prime) $\equiv 1$(mod 8);

(III) $m = -8q$, q(prime) $\equiv 7$(mod 8);

(IV) $m = -qr$, q(prime) $\equiv 3$(mod 4), r(prime) $\equiv 1$(mod 4), $\left(\frac{q}{r}\right) = 1$;

(V) $m = 8r$, r(prime) $\equiv 1$(mod 8);

(VI) $m = qr$, q(prime) $\equiv r$(prime) $\equiv 1$(mod 4), $\left(\frac{q}{r}\right) = 1$.

* Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.
We define
$q = 1$ in case (I),
$q = 2$ in cases (II), (V),
$r = 2$ in case (III)
and
\[k_q = \begin{cases} Q(\sqrt{-q}) & \text{in cases (I), (II), (III), (IV);} \\ Q(\sqrt{q}) & \text{in cases (V), (VI);} \end{cases} \]

\[k_r = Q(\sqrt{r}); \quad k_m = Q(\sqrt{m}) \]

\[K = Q(\sqrt{r}, \sqrt{m}) = \begin{cases} Q(\sqrt{r}, \sqrt{-q}) & \text{in cases (I) to (IV),} \\ Q(\sqrt{r}, \sqrt{q}) & \text{in cases (V), (VI).} \end{cases} \]

The strict class number of the quadratic field $Q(\sqrt{d})$ will be denoted by $h(d)$.

Throughout this paper the symbol $\left(\frac{x + y \sqrt{n}}{p} \right)$, where n and $x^2 - ny^2$ are quadratic residues of the odd prime p, will be used both as a Legendre symbol, in which case \sqrt{n} is interpreted as a rational integer modulo p, as well as (equivalently) the quadratic residue symbol $\left[\frac{x + y \sqrt{n}}{p} \right]_2$ in the ring of integers of $Q(\sqrt{n})$, where P is either of the two prime ideals dividing p.

We prove:

Theorem 1. Let r be a prime $\equiv 1 (\text{mod } 8)$ and p a prime satisfying
\[\left(\frac{-1}{p} \right) = \left(\frac{p}{r} \right)^2 = 1, \]
so that p is represented by the classes C_p and C_p^{-1} of discriminant $-4r$, and there exist integers a, b, e and f such that
\[p = a^2 + b^2, \]
\[p^{br} = e^2 - rf^2, \quad e > 0, \quad (e, f) = 1. \]

Then the class C_p is a fourth power if, and only if, for any solutions of (1.3) and (1.4),
\[\left(\frac{a + b \sqrt{-1}}{r} \right) = 1 \]
or, equivalently, $e + f = 1 (\text{mod } 4)$.

Theorem 2. Let r be a prime $\equiv 1 (\text{mod } 8)$ and p a prime satisfying
\[\left(\frac{-2}{p} \right) = \left(\frac{p}{r} \right) = 1, \]
so that p is represented by the classes C_p and C_p^{-1} of discriminant $-8r$, and there exist integers a, b, e and f such that
(1.5) \[p = a^2 + 2b^2, \]
(1.6) \[p^{h(q)} = e^2 - rf^2, \quad e > 0, \quad (e, f) = 1. \]

Then the class \(C_p \) is a fourth power if, and only if, for any solutions of (1.5) and (1.6), \[\left(\frac{a+b\sqrt{-2}}{r} \right) = 1 \] or, equivalently, \[\left(\frac{2}{p} \right)^{r-1/8} \left(\frac{-2}{e+f} \right) = 1. \]

Theorem 3. Let \(q \equiv 7 \pmod{8} \) be a prime. Let \(p \) be a prime satisfying \[\left(\frac{p}{q} \right) = \left(\frac{2}{p} \right) = 1, \] so that \(p \) is represented by the classes \(C_p \) and \(C_p^{-1} \) of discriminant \(-8q\), and there exist integers \(a, b, e \) and \(f \) such that

(1.7) \[p^{h(q)} = a^2 + qb^2, \quad (a, b) = 1, \quad a \text{ or } b \equiv 1 \pmod{4}, \]
(1.8) \[p = e^2 - 2f^2, \quad e > 0. \]

Then the class \(C_p \) is a fourth power if, and only if, for any solutions of (1.7) and (1.8),

\[\left(-1 \right)^{(q+1)/8} \left(\frac{2}{a+b} \right) = 1 \] or, equivalently, \[\left(\frac{e+f\sqrt{2}}{q} \right) = 1. \]

We note that Theorem 3 of [1] is part of the special case \(q = 7 \) of our Theorem 3.

Theorem 4. Let \(q \equiv 3 \pmod{4} \) and \(r \equiv 1 \pmod{4} \) be primes such that \(\left(\frac{q}{r} \right) = 1. \) Let \(p \) be a prime satisfying \(\left(\frac{p}{q} \right) = \left(\frac{p}{r} \right) = 1, \) so that \(p \) is represented by the classes \(C_p \) and \(C_p^{-1} \) of discriminant \(-qr\) and there exist integers \(a, b, e \) and \(f \) such that

(1.9) \[4p^{h(q)} = a^2 + qb^2, \quad (a, b) = 1 \text{ or } 2, \]
(1.10) \[4p^{h(r)} = e^2 - rf^2, \quad (e, f) = 1 \text{ or } 2, \quad e > 0. \]

Then the class \(C_p \) is a fourth power if, and only if, for any solutions of (1.9) and (1.10),

\[\left(\frac{a+b\sqrt{-q}}{r^2} \right) = 1 \] or, equivalently, \[\left(\frac{e+f\sqrt{r}}{q} \right) = 1. \]

We note that Theorems 6 and 7 of [1] can be deduced as special cases of our Theorem 4 with \(q = 3, \) \(r = 13 \) and \(q = 11, \) \(r = 5, \) respectively.

Theorem 5. Let \(r \) be a prime \(\equiv 1 \pmod{8} \) and \(p \) be a prime satisfying \(\left(\frac{2}{p} \right) \)
\[\left(\frac{p}{r} \right) = 1, \text{ so that } p \text{ is represented by the classes } C_p \text{ and } C_p^{-1} \text{ of discriminant } 8p, \text{ and that there exist integers } a, b, e \text{ and } f \text{ such that} \]
\begin{align*}
(1.11) \quad & p = a^2 - 2b^2, \quad (a, b) = 1, \quad a > 0; \\
(1.12) \quad & p^{(e) r} = e^2 - rf^2, \quad (e, f) = 1, \quad e+f \equiv 1 \pmod{4}.
\end{align*}

Then \(C_p \) is a fourth power if, and only if, for any solutions of (1.11) and (1.12),
\[\left(\frac{a+b\sqrt{q}}{r} \right) = 1 \text{ or, equivalently, } e+f \equiv 1 \pmod{8}. \]

Theorem 6. Let \(q \) and \(r \) be primes \(\equiv 1 \pmod{4} \) such that \(\left(\frac{q}{r} \right) = 1. \) Let \(p \) be a prime satisfying \(\left(\frac{p}{q} \right) = \left(\frac{p}{r} \right) = 1, \) so that \(p \) is represented by the classes \(C_p \) and \(C_p^{-1} \) of discriminant \(qr \) and that there exist integers \(a, b, e \) and \(f \) such that
\begin{align*}
(1.13) \quad & 4p^{(e) r} = a^2 - qb^2, \quad (a, b) = 1 \text{ or } 2; \\
(1.14) \quad & 4p^{(e) r} = e^2 - rf^2, \quad (e, f) = 1 \text{ or } 2.
\end{align*}

Then \(C_p \) is a fourth power if, and only if, for any solutions of (1.13) and (1.14),
\[\left(\frac{(a+b\sqrt{q})/2}{r} \right) = 1 \text{ or, equivalently, } \left(\frac{(e+f\sqrt{r})/2}{q} \right) = 1. \]

2. Proof of the theorems. The assumption (1.2) implies that the strict class group of \(k_m \) contains exactly one subgroup of index 4. Let \(L \) be the extension of \(k_m \) corresponding to this subgroup by class field theory. Then \(L \) is the cyclic extension of degree 4 of \(k_m \), unramified at any finite prime.

It is known ([3]) that \(L \) is a dihedral extension of \(Q \) whose quadratic subfields are \(k_m, k_q \) and \(k_r \) and whose quartic subfields are the field \(K \), two fields \(A \) and \(A' \) containing \(k_q \), but neither \(k_r \) nor \(k_m \), and two fields \(B \) and \(B' \) containing \(k_r \) but neither \(k_q \) nor \(k_m \).

\[\begin{array}{c}
A' \\
\downarrow \\
K \\
\downarrow \\
A \\
\downarrow \\
Q \\
\downarrow \\
K_m \\
\downarrow \\
K_q \\
\downarrow \\
k_r \\
\downarrow \\
k_q \\
\downarrow \\
k_m \\
\downarrow \\
K \\
\downarrow \\
B' \\
\downarrow \\
B \\
\downarrow \\
Q \\
\downarrow \\
K_m \\
\downarrow \\
k_r \\
\downarrow \\
k_q \\
\downarrow \\
k_m
\end{array} \]

Let \(p \) be a prime on which all the generic characters of \(k_m \) take the value +1. Then \(p \) is completely decomposed in \(K \), the genus field of \(k_m \), and the classes \(C_p, C_p^{-1} \) are squares. The classes \(C_p, C_p^{-1} \) are fourth powers if, and
only if \(p \) is completely decomposed in \(L \), that is if \(p \) is completely decomposed in any of the four fields \(A, A', B \) or \(B' \).

Consider for instance the extension \(B/k_r \), of conductor \(f_B \). There exists a character \(\chi_B \) of order 2 on the group of ideals of \(k_r \) prime to \(f_B \) such that a prime ideal \(q \) of \(k_r \) is decomposed in \(B \) if, and only if, \(\chi_B(q) = 1 \). The value \(\chi_B(q) \) is equal to \(\chi_B((q^{2r})) \), as \(h(r) \) is odd, and the value of \(\chi_B \) on principal ideals prime to \(f_B \) has been calculated in Propositions 2.6 to 2.11 of [4]. Applying this to either of the ideals \(\bar{p}_1, \bar{p}_2 \) such that \((p) = \bar{p}_1 \bar{p}_2 \) in \(k_r \) we shall obtain the results for those theorems involving the integers \(e \) and \(f \). The results involving the integers \(a \) and \(b \) will be obtained by considering the extension \(A/k_q \). We give the details of the proof of Theorem 3, the other proofs are similar. In this case the decompositions of \(p, q \) and \(r = 2 \) in the fields \(k_q \) and \(k_r \) are the following:

\[
(2.1) \quad (p) = p_1 p_2, \quad (q) = (\sqrt{-q})^2, \quad (2) = r_1 r_2 \quad \text{in} \quad k_q,
\]

\[
(2.2) \quad (p) = \bar{p}_1 \bar{p}_2, \quad (q) = \bar{q}_1 \bar{q}_2, \quad 2 = (\sqrt{2})^2 \quad \text{in} \quad k_r.
\]

We first consider the extension \(A/k_q \). By Section 2 of [4] one of \(r_1, r_2 \) is ramified in \(A/k_q \) and the other in \(A'/k_q \); we choose the notation so that \(r_1 \) ramifies in \(A/k_q \). By Proposition 2.9 of [4] the conductor of \(A/k_q \) is \(r_1^2 \) and the value of the character \(\chi_A \) on principal ideals is given by:

\[
(2.3) \quad \chi_A((\lambda)) = \begin{cases}
1, & \text{if } \lambda \equiv \pm 1 \pmod{r_1^2}, \\
-1, & \text{if } \lambda \equiv \pm 3 \pmod{r_1^2}.
\end{cases}
\]

Let \((a, b)\) be a solution of \(a^2 + b^2 q = p^{h(-q)} \). As the integers \(a + b \sqrt{-q} \) and \(a - b \sqrt{-q} \) are coprime we may set

\[
(2.4) \quad (a + b \sqrt{-q}) = p_1^{h(-q)}, \quad (a - b \sqrt{-q}) = p_2^{h(-q)}.
\]

Now from (2.3) we first see, as \(p \equiv \pm 1 \pmod{8} \), that:

\[
(2.5) \quad \chi_A(p_1) \chi_A(p_2) = \chi_A((p)) = 1,
\]

so that from (2.3) and the fact that \(h(-q) \) is odd:

\[
(2.6) \quad \chi_A(p_1) = \chi_A(p_2) = \begin{cases}
1, & \text{if } a + b \sqrt{-q} \equiv \pm 1 \pmod{r_1^2}, \\
-1, & \text{if } a + b \sqrt{-q} \equiv \pm 3 \pmod{r_1^2}.
\end{cases}
\]

Let \(\beta = 1 \) or \(3 \) be such that \(q \equiv -\beta^2 \pmod{16} \). As \((\beta - \sqrt{-q})(\beta + \sqrt{-q}) \equiv 0 \pmod{r_1^2 r_2^2} \) and \(\beta - \sqrt{-q}, \beta + \sqrt{-q} \equiv 2 \) there exists \(\varepsilon = \pm 1 \) such that \(a + \varepsilon b \sqrt{-q} \equiv a + \varepsilon b \beta \pmod{r_1^2} \) and so

\[
\chi_A(p_1) = \begin{cases}
1, & \text{if } a + \varepsilon b \beta \equiv \pm 1 \pmod{8}, \\
-1, & \text{if } a + \varepsilon b \beta \equiv \pm 3 \pmod{8},
\end{cases}
\]
that is

\[(2.7) \quad \chi_A(p_1) = \chi_A(p_2) = \left(\frac{2}{a+\sqrt{\beta h}}\right).\]

The integer \(a\) is odd or divisible by 4 according as \(p \equiv 1\) or \(-1\) (mod 8) so that when \(q \equiv -9\) (mod 16) we have

\[\left(\frac{2}{a+3\beta h}\right) = \left(\frac{-1}{p}\right)\left(\frac{2}{a+\beta h}\right)\]

which together with (2.7) proves

\[(2.8) \quad \chi_A(p_1) = \chi_A(p_2) = \left(\frac{-1}{p}\right)^{(q+1)/8}\left(\frac{2}{a+\beta h}\right).\]

We next consider the extension \(B/k_0\). By (2.1) of [4] we can suppose that \(q_1\) ramifies in \(B\) and \(q_2\) in \(B^\prime\). Then the character \(\chi_B\) is given by

\[(2.9) \quad \chi_B((\lambda)) = \left[\frac{\lambda}{q_1^{1/2}}\right]\times \text{sgn } \lambda.\]

Let \((e, f)\) be any solution of \(p = e^2 - 2f^2\) where \(e > 0\). Then we may set \(p_1 = (e+f\sqrt{2}), p_2 = (e-f\sqrt{2})\), and we deduce from (2.9) that

\[(2.10) \quad \chi_B(p_1) = \chi_B(p_2) = \left[\frac{e+f\sqrt{2}}{q_1}\right]_{q_1} = \left[\frac{e+f\sqrt{2}}{q}\right].\]

which together with (2.8) completes the proof of Theorem 3.

Remark. The class \(C_p\) of discriminant \(m\) is a fourth power or not according as \(p^{(m)/4}\) is represented by the principal class \(I\) or by the class \(J\) of order 2. Using the well-known representative of \(I\) and of \(J\), and also the forms of discriminant \(4m\) when \(m\) is odd, we obtain:

\[
\begin{align*}
\text{C}_p \text{ fourth power} & \quad \text{C}_p \text{ square, not fourth power} \\
\text{Theorem I} & \quad p^{n/4} = X^2 + rY^2 \quad 2p^{n/4} = X^2 + rY^2 \\
\text{Theorem II} & \quad p^{n/4} = X^2 + 2rY^2 \quad p^{n/4} = 2X^2 + rY^2 \\
\text{Theorem III} & \quad p^{n/4} = X^2 + 2qY^2 \quad p^{n/4} = 2X^2 + qY^2 \\
\text{Theorem IV} & \quad p^{n/4} = X^2 + XY + \frac{q+r+1}{4}Y^2 \quad p^{n/4} = qX^2 + qXY + \frac{q+r}{4}Y^2 \\
& \quad 4p^{n/4} = X^2 + qrY^2 \quad 4p^{n/4} = qX^2 + rY^2 \\
\text{Theorem V} & \quad p^{2n/4} = X^2 - 2rY^2 \quad g\beta^{2n/4} = X^2 - 2rY^2 \\
\text{Theorem VI} & \quad p^{n/4} = X^2 + X+ \frac{1-qr}{4}Y^2 \quad g\beta^{n/4} = X^2 + XY + \frac{1-qr}{4}Y^2 \\
& \quad 4p^{n/4} = X^2 - qrY^2 \quad 4g\beta^{n/4} = X^2 - qrY^2
\end{align*}
\]
In the cases (V), (VI) when \(m > 0 \) the integer \(g = -1 \), \(q \) or \(r \) is such that the solvable non pellian equation is \(X^2 - qrY^2 = g \).

Acknowledgement. We acknowledge the help of Mr. C. Frieser in calculating many numerical examples for us.

References

