Au Observation on Binary Quadratic Forms of Discriminant - 32q

By Philup A. Leonard and Kenneth S. Williams*)

Abstract

It is shown that a result of the authors yields an improvement on a theorem of Pterre Barrucand and Harvey Cohn.

Throughout, we let $q \equiv 1(\bmod 8)$ be a fixed prime for which the class number of h of $Q(\sqrt{-2 q})$ satisfies $h \equiv 4(\bmod 8)$; thus, the 2 -Sylow subgroup of the ideal class group of this field is cyclic of order 4 . If $p=1(\bmod 8)$ is a prime such that the Legendre symbol (p / q) has the value +1 , then for an odd

 positive integer z dividing h we have either$$
\begin{equation*}
p^{z}=u_{0}^{2}+8 q v_{0}^{2}, \quad\left(u_{0}, v_{0}\right)=1 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
p^{z}=8 u_{1}^{2}+q v_{1}^{2}, \quad\left(u_{1}, v_{1}\right)=1 \tag{2}
\end{equation*}
$$

Using results of P. Kaplan [4], the authors have shown [5] how the parities of v_{0} and u_{1} in (1) and (2) are determined. We shall restate our result and show how it strengthens a theorem ([2], Theorem 5.1) of P. Barrucand and H. Come.

Suppose $2 q=A^{2}+B^{2}$, and consider the Legendre symbol $((A+\dot{B i}) / p)$, where i is interpreted rationally as a solution of the congruence $x^{2} \equiv-1(\bmod p)$. Let $\lambda(p)$ be 0 or 1 according as the value of this symbol is +1 or $\mathbf{- 1}$.

Theorem 1 (see [5]). If (1) holds, then $v_{0} \equiv \lambda(p)(\bmod 2)$; if (2) holds, then $u_{1} \equiv \lambda(p)+(q-1) / 8+1(\bmod 2)$.

Let ε_{q} denote the fundamental unit of $Q(\sqrt{q})$. The 4-class field of $Q(\sqrt{-q})$ is $Q\left(\sqrt{-q}, \sqrt{q}, \sqrt{\varepsilon_{q}}\right)$ (see for example [2]). Thus, for a prime $p=r^{2}+8 s^{2}$ such that $(p / q)=+1$, we have $\left(\varepsilon_{q} / p\right)=+1$ if, and only if, the ideal class P of a prime ideal divisor of (p) in $Q(\sqrt{-q})$ is a fourth power in the ideal class group of this imaginary quadratic field. (We write $P \in H^{4}$ for this last condition.) On the other hand, a residuacity result for ε_{q} due to Scholz [6] (see also [8]) and the rational biquadratic law of Burde [3] (see also [7]) give

$$
\begin{equation*}
\left(\varepsilon_{q} / p\right)=(p / q)_{4}(q / p)_{4}=((a+2 b i) / p) \tag{3}
\end{equation*}
$$

where $q=a^{2}+4 b^{2}$. Now

$$
((A+B i) / p)=((1+i) / p)((a+2 b i) / p)
$$

and

$$
((1+i) / p)=(-1)^{s} \quad(\text { see }[1])
$$

[^0]so we have
\[

$$
\begin{equation*}
\lambda(p) \equiv s(\bmod 2) \Leftrightarrow P \in H^{4} \tag{4}
\end{equation*}
$$

\]

Combining (4) with Theorem 1, we obtain the following result (using the notation introduced above).

Theorem 2. If (1) holds, then $s \equiv v_{0}(\bmod 2)$ if, and only if, $P \in H^{4}$. If (2) holds, then $s \equiv u_{1}+(q-1) / 8+1(\bmod 2)$ if, and only if, $P \in H^{4}$.

Theorem 2 is to be compared to ([2], Theorem 5.1), a result identical except in (2), where Barrucand and Cohn have the congruence $s \equiv u_{1}+(q-1) / 8+L^{\prime \prime}$ $(\bmod 2)$, with $L^{\prime \prime}$ a constant, for a given q, equal to 0 or 1 . Thus our assertion is that $L^{\prime \prime}=1$ for all primes q under consideration. (We note that example (5.19 c) of [2] indicating that $L^{\prime \prime}=0$ for $q=97$ is in error as $881=28^{2}$ $+97.1^{2}$.)

The constant $L^{\prime \prime}$ of [2] comes into the diophantine problem we have considered by way of certain ideal congruences ([2], Theorem 4.7) describing the primes of $Q(\sqrt{-2 q})$ which split in $Q(\sqrt{-2 q}, \sqrt{q}, \sqrt{\pi})$, where $q=r_{0}^{2}+8 s_{0}^{2}$ gives rise to $\pi=r_{0}+2 s_{0} \sqrt{-2}$, normalized by requiring $r_{0}+2 s_{0} \cong 1(\bmod 4)$. The derivation of these ideal congruences is not carried out explicitly in [2]. Our approach has been to treat the diophantine problem directly and thereby avoid the slight imprecision in the earlier calculation of $L^{\prime \prime}$.

References

[1] P. Barrucand and H. Cohn, Note on primes of type $x^{2}+32 y^{2}$, class number, and residuacity, J. Reine Angew. Math. 238, 67 -- 70 (1969).
[2] P. Barrucand and H. Cohn, On some class-fields related to primes of type $x^{2}+32 y^{2}$, J. Reine Angew. Math. 262/263, 400-414 (1973).
[3] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235, 175-184 (1969).
[4] P. Kaplan, Sur le 2-groupe des classes d’idéaux des corps quadratiques, J. Reine Angew. Math. 283/284, 313-363 (1976).
[5] P. A. Leonard and K. S. Williams, A representation problem involving binary quadratic forms, Archiv der Math. 36, 53-56 (1981).
[6] A. Scholz, Uber die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39, 95-111 (1934).
[7] K. S. Wiflrams, Note on Burde's rational biquadratic reciprocity law, Canad. Math. Bull. 20, 145-146 (1977).
[8] K. S. Williams, On Scholz's reciprocity law, Proc. Amer. Math. Soc. 64, 45-46 (1977).

Eingegangen am 10.8.1981 - in veränderter Fassung am 3. 3. 1982

Anschriften der Autoren: Philip A. Leonard, Arizona State University, Tempe, Arizona 85287, U.S.A.; Kenneth S. Williams, Carleton University, Ottawa, Ontario, K 1 S 5 B6 Canada.

[^0]: *) Research partially supported by the Natural Sciences and Engineering Research Council Canada under Grant A-7233.

