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ON THE DIVISIBILITY OF THE CLASS 
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1. Introduction 

Let d(<O) denote a squarefree integer. The ideal class group of the imaginary 
quadratic field Q($) has a cyclic 2-Sylow subgroup of order 2 8  in precisely the 
following cases (see for example [S] and [6]): 

(i) d =  -p, p=2g2-h2-l(mod8), (g/p)= + I ;  
(ii) d = - 2p, p = u2 -2u2 = l(mod 8) with u chosen so that u z l(mod 4), (ulp) = + 1; 

(iii) d = - 2p, p = 15(mod 16); 
(iv) d = - pq, p - l(mod 4), q - 3(mod 4), (q/p) = + 1, ( - qlp), = + 1, 

where p and q denote primes and g, h, u and v are positive integers. The class number of 
Q ( A  is denoted by h(4 and in the above cases h(d) = O(mod 8). For cases (i), (ii) and 
(iii) the authors [6] have given necessary and sufficient conditions for h(d) to be divisible 
by 16. In this paper we do the same for case (iv) extending the results of Brown [4]. 

As the ideal class group of Q(JZ) is isomorphic to the group (under composition) 
of classes of integral positive-definite binary quadratic forms (a, b, c) = ax2 + bxy + cy2 of 
discriminant b2 -4uc= -pq, we can work with forms rather than ideals. In order to 
determine h(-pq) modulo 16 we construct explicitly a form f of discriminant -pq 
whose square is in the ambiguous class containing the form (p, p, &p + q)) (see Theorem 1 
in Section 2). The form f is given in terms of a solution in positive integers X, X Z  of 
the Legendre equation 

satisfying 

and 

X odd, Y even, Z  = l(mod 4). (1.3) 
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That there is a solution of (1.1) satisfying (1.2) follows immediately from Legendre's 
theorem in view of (iv). However we must justify that we can always find a solution with 
Z =  l(mod4). In order to see this we let R+s& be the fundamental unit (> 1) of the 
real quadratic field Q(&). As q = 3(mod 4) we have 

It is well known that 

R - O(mod 8), S = I (mod 2), if q = 7(mod 8), 

and hence 

Hence if Z is even (so that X and Y are both odd) we can replace .the solution (X, I:Z) 
of (1.1) by the solution (XI, Y,, 2,) given by 

for which Z ,  is odd. Further if Z =  3(mod 4) (in which case X is odd and Y is even) we 
can replace the solution (X, I: Z) by the solution (X,, Y,, 2,) given by 

for which Z, - l(mod 4). 
Our main result is the following theorem. 

Theorem 2. If p and q are primes such that 

and (X, I: Z) is any solution in positive integers of (1.1) which satisfies (1.2) and (1.3), then 

h( - pq) = O(mod 1 6)- - (3, = (:)- 
We remark that (Zlp), is well-defined as (ZIP)= + 1 and p- l(mod 4). To see that 

(Zlp) = + 1 we perform the following calculation: letting Y = 2" Y,, Yl odd, we have, using 
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(1.1) and (1.2), 

= ($)la)(:) (as = 1 when g = S(mod 8)) 

( )  (2) ( )  (as p ~ I ( m o d 4 ) )  
P 4  P 4 

= + 1. (by (1.4)). 

2. Square root of (p ,p ,  ( p  + q)/4) 

In this section we construct a form f of discriminant - pq such that f - (p, p, g p  + q)). 
As (X, Y) = 1 there exists an integer u, such that u,X - l(mod Y). If the integer 

e = (u,X - 1)/ Y is odd we set u = u,. If the integer (u,X - 1)/ Y is even then the integer 

is odd and we set u = u, + Y. Thus the integers u and e satisfy 

uX = l(mod Y ), u odd, e =(uX - 1)/Y odd. 

Next, appealing to (1.1) and (2. I), we have 

X(pX - uZ2) - qmod Y) 

so that, as (X, Y) = 1, we have 

pX - uZ2 = qmod Y). 

Hence we can define a positive integer a and an integer b by 

From (2.2) we obtain 
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Also using (1.1), (2.1) and (2.2) we get 

b X + q Y  = -ea2, 

and 

From (1.4) and (2.1) we see that pe2 + qu2 = O(mod 4 )  so we can define an integer c by 

Thus, from (2.5) and (2.6), we have 

b2 - 4a2c = - pq, (2.7) 

showing that the form (a,  b,ac) has discriminant -pq. We note that (2.7) shows that b is 
odd. 

With a, b and c as defined in (2.2) and (2.6) we prove the following theorem. 

Theorem 1. (a ,  b, ~ c ) ~  - (p,  p, (p  + q)/4). 

Proof. We define integers u, a and P by 

u=2X a=(u+e)/2,  P = X +  Y: 

Appealing to (1.1), (2.3) and (2.7) we obtain, on completing the square for u, 

a2u2 + buu + cu2 = p, 

and appealing to (2.3), (2.4), (2.7) and (2.8), we obtain 

1 
= - (bua2 + (b2 + pq) Y )  

a 
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that is 

bu + 2cv = - pe. 

Hence from (2.3), (2.8) and (2.10) we have 

a = (pu - bu - 2cv)/2p, p= (2ua2 + bv + pv)/2p. (2.1 1) 

Thus from (2.9) and (2.11) we obtain 

and 

up-va= 1 

2a2ua + bup + bva + 2cvp = p. 

Hence from (2.7), (2.9) (2.12) and (2.13) and the identity 

(2a2ua + bup + bva + 2cvp)' - 4(a2u2 + buv + cv2)(a2a2 + hap+ cp2)  =(up - ~ a ) ~ ( b ~  - 4a2c), 

we deduce 

Hence the unimodular transformation with matrix[: i] changes the form (a2 ,  b, c )  into 

(a2u2 + buv + cv2, 2a2ua + bup+ bva + 2cvp, a2a2 + hap+ cp2)  = (P ,  p, (p  + q)/4). 

Thus we have (see for example [3, p. 1851) 

which completes the proof of Theorem 1. 

3. Determination of h(-pq)modulo 16; Proof of Theorem 2 

By Theorem 1 the class of the form (a, b,ac) is of order 4 and so as the 2-Sylow 
subgroup of the class group of forms of discriminant -pq is cyclic, the form (a, b, ac) is 
equivalent to the square of a form (r, s, t), where we may take (r, 2pqac) = 1. Hence 
(a,  b, ac) represents r2 primitively so that there are integers x and y such that 

We define non-negative integers S and T by 
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Appealing to (1.1), (2.1), (2.2), (2.6) and (3.1) we obtain 

From (3.3) we easily deduce that S and T are positive. 
We now show that S and T have no odd common divisors greater than 1. Suppose k 

is an odd prime divisor of both S and T Then k divides 

u(2Xx - aey) - e(2 Yx - auy) 

= 2x (by (2. I)), 

that is klx. Further from (3.3) we have klar2 so that kla or klr. If kla from (3.1) we have 
klr contradicting (r, a) = 1. If klr by (3.1) we have k)acy2 contradicting (r, ac) =(x, y) = 1. 

Similarly we can show that T and apr have no odd common divisors greater than 1. 
We note that as a is represented by (a, b, ac) and the class of the form (a, b, ac) is in the 

principal genus we have 

Further by (1.3) and (2.2) we have 

a - l(mod 4). 

Then 

= (2) (c) (by (3.3)) 
P 4 P 4  

that is (by (1.4)) 

where 

T=2"t, todd. 
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Then 

= (t) 

Now set 

so appealing to (3.1) and (3.5) we have 

giving 
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Next as bY=pX - ua2 and using (3.4) we have 

giving 

Taking (1.1) modulo 8 we obtain p + q y 2  = l(mod 8), so that 

We now treat the case p r l(mod 8): we have 

m=O=y odd-T odd-n=0; 

so that in each case 

For the case p - S(mod 8) we have 

m =0-y odd=T odd-n =O; 

m =  1-21(y-41S7 ~ I ( T = ~ s ~  + q ~ 2  G 12(mod 16) 

=ar2 = 3(mod 4), which is impossible; 

m=2=x odd, 411y-aE 5(mod 8)- - = - 1; (3 
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rnz 3 3 x  odd, Sly* 

so that again in each case we have 

Hence by (3.8) we have 

Now by a theorem of Bauer [I] (see also [2, Theorem 61) 

h( - pq) = O(mod 16)- - = + 1 (3 
so we have 

This completes the proof of Theorem 2. 

We remark that Theorem 2 of Brown [4] is the special case of our Theorem 2 which 
arises when (1.1) has a solution with X = 1. 

4. Examples 

Example 1. p = 5, q = 19. 
Here 

A solution of (l.lH1.3) is given by 
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and Theorem 2 implies h( - pq) = h( - 95) = 8(mod 16). Indeed h( - 95) = 8. 

Example 2. p=37, q = l l .  
Here 

We start with a solution of (1.1) and (1.2) for which Z is even, say, 

in order to illustrate how to obtain a solution which satisfies (1.3) as well. Since the 
fundamental unit of ~ ( f i l )  is 10+ 3 T l  we have 

First we transform the solution (X, XZ) into a solution (XI,  Yl,Zl) with Z1 odd: 

As Z1 = 3(mod4) we transform the solution (XI,  Y,,Zl) into a solution (X,, Y2,Z2) with 
Z, = l(mod 4): 

so that 

and Theorem 2 implies h( - pq) = h( - 407) - O(mod 16). Indeed h( - 407) = 16. 

Example 3. p = 5, q = 79. 
Here 

A solution of (1.1) and (1.2) is given by 
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As Z = 3(mod 4) we transform this solution into one for which Z - l(mod 4) obtaining 

so that 

and Theorem 2 implies h(-pq) = h(-  395) = 8(mod 16). Indeed h(- 395) = 8. 
This example illustrates Theorem 2 in a situation where (1.1) has no solution with 

X = l  as 
u2 - 79v2 = 5 

is insolvable in integers u and u (see for example [7, Theorem 1091). 
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