ON THE DIVISIBILITY OF THE CLASS NUMBER OF $Q(\sqrt{-p q})$ BY 16

by PHILIP A. LEONARD and KENNETH S. WILLIAMS*

(Received 29th January 1982)

1. Introduction

Let $d(<0)$ denote a squarefree integer. The ideal class group of the imaginary quadratic field $Q(\sqrt{d})$ has a cyclic 2-Sylow subgroup of order $\geqq 8$ in precisely the following cases (see for example [5] and [6]):
(i) $d=-p, p=2 g^{2}-h^{2} \equiv 1(\bmod 8),(g / p)=+1$;
(ii) $d=-2 p, p=u^{2}-2 v^{2} \equiv 1(\bmod 8)$ with u chosen so that $u \equiv 1(\bmod 4),(u / p)=+1$;
(iii) $d=-2 p, p \equiv 15(\bmod 16)$;
(iv) $d=-p q, p \equiv 1(\bmod 4), q \equiv 3(\bmod 4),(q / p)=+1,(-q / p)_{4}=+1$,
where p and q denote primes and g, h, u and v are positive integers. The class number of $Q(\sqrt{d})$ is denoted by $h(d)$ and in the above cases $h(d) \equiv 0(\bmod 8)$. For cases (i), (ii) and (iii) the authors [6] have given necessary and sufficient conditions for $h(d)$ to be divisible by 16. In this paper we do the same for case (iv) extending the results of Brown [4].

As the ideal class group of $Q(\sqrt{-p q})$ is isomorphic to the group (under composition) of classes of integral positive-definite binary quadratic forms $(a, b, c)=a x^{2}+b x y+c y^{2}$ of discriminant $b^{2}-4 a c=-p q$, we can work with forms rather than ideals. In order to determine $h(-p q)$ modulo 16 we construct explicitly a form f of discriminant $-p q$ whose square is in the ambiguous class containing the form ($p, p, \frac{1}{4}(p+q)$) (see Theorem 1 in Section 2). The form f is given in terms of a solution in positive integers X, Y, Z of the Legendre equation

$$
\begin{equation*}
p X^{2}+q Y^{2}-Z^{2}=0 \tag{1.1}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
(X, Y)=(Y, Z)=(Z, X)=1, p \nmid Y Z, q \nmid X Z, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
X \text { odd, } Y \text { even, } Z \equiv 1(\bmod 4) . \tag{1.3}
\end{equation*}
$$

[^0]That there is a solution of (1.1) satisfying (1.2) follows immediately from Legendre's theorem in view of (iv). However we must justify that we can always find a solution with $Z \equiv 1(\bmod 4)$. In order to see this we let $R+S \sqrt{q}$ be the fundamental unit (>1) of the real quadratic field $Q(\sqrt{q})$. As $q \equiv 3(\bmod 4)$ we have

$$
R^{2}-q S^{2}=+1
$$

It is well known that

$$
\begin{array}{ll}
R \equiv 2(\bmod 8), S \equiv 1(\bmod 2), & \text { if } q \equiv 3(\bmod 8), \\
R \equiv 0(\bmod 8), S \equiv 1(\bmod 2), & \text { if } q \equiv 7(\bmod 8),
\end{array}
$$

and hence

$$
R_{1}=R^{2}+q S^{2} \equiv 7(\bmod 8), S_{1}=2 R S \equiv 0(\bmod 4), \quad R_{1}^{2}-q S_{1}^{2}=+1 .
$$

Hence if Z is even (so that X and Y are both odd) we can replace the solution (X, Y, Z) of (1.1) by the solution (X_{1}, Y_{1}, Z_{1}) given by

$$
X_{1}=X, Y_{1}=R Y+S Z, Z_{1}=q S Y+R Z,
$$

for which Z_{1} is odd. Further if $Z \equiv 3(\bmod 4)(i n$ which case X is odd and Y is even) we can replace the solution (X, Y, Z) by the solution $\left(X_{2}, Y_{2}, Z_{2}\right)$ given by

$$
X_{2}=X, Y_{2}=R_{1} Y+S_{1} Z, Z_{2}=q S_{1} Y+R_{1} Z,
$$

for which $Z_{2} \equiv 1(\bmod 4)$.
Our main result is the following theorem.

Theorem 2. If p and q are primes such that

$$
\begin{equation*}
p \equiv 1(\bmod 4), q \equiv 3(\bmod 4),\left(\frac{p}{q}\right)=+1,\left(\frac{-q}{p}\right)_{4}=+1 \tag{1.4}
\end{equation*}
$$

and (X, Y, Z) is any solution in positive integers of (1.1) which satisfies (1.2) and (1.3), then

$$
h(-p q) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{Z}{p}\right)_{4}=\left(\frac{2 X}{Z}\right) .
$$

We remark that $(Z / p)_{4}$ is well-defined as $(Z / p)=+1$ and $p \equiv 1(\bmod 4)$. To see that $(Z / p)=+1$ we perform the following calculation: letting $Y=2^{n} Y_{1}, Y_{1}$ odd, we have, using
(1.1) and (1.2),

$$
\begin{aligned}
\left(\frac{Z}{p}\right) & =\left(\frac{Z^{2}}{p}\right)_{4}=\left(\frac{q Y^{2}}{p}\right)_{4}=\left(\frac{q}{p}\right)_{4}\left(\frac{Y}{p}\right)=\left(\frac{q}{p}\right)_{4}\left(\frac{2}{p}\right)^{n}\left(\frac{Y_{1}}{p}\right) \\
& =\left(\frac{q}{p}\right)_{4}\left(\frac{2}{p}\right)\left(\frac{p}{Y_{1}}\right) \quad(\text { as } n=1 \text { when } p \equiv 5(\bmod 8)) \\
& =\left(\frac{q}{p}\right)_{4}\left(\frac{-1}{p}\right)_{4}\left(\frac{p X^{2}}{Y_{1}}\right) \quad(\text { as } p \equiv 1(\bmod 4)) \\
& =\left(\frac{-q}{p}\right)_{4}\left(\frac{Z^{2}}{Y_{1}}\right) \\
& =+1 . \quad(\text { by }(1.4)) .
\end{aligned}
$$

2. Square root of $(p, p,(p+q) / 4)$

In this section we construct a form f of discriminant $-p q$ such that $f^{2} \sim\left(p, p, \frac{1}{4}(p+q)\right)$.
As $(X, Y)=1$ there exists an integer u_{0} such that $u_{0} X \equiv 1(\bmod Y)$. If the integer $e=\left(u_{0} X-1\right) / Y$ is odd we set $u=u_{0}$. If the integer $\left(u_{0} X-1\right) / Y$ is even then the integer

$$
e=\frac{\left(u_{0}+Y\right) X-1}{Y}=\frac{u_{0} X-1}{Y}+X
$$

is odd and we set $u=u_{0}+Y$. Thus the integers u and e satisfy

$$
\begin{equation*}
u X \equiv 1(\bmod Y), u \text { odd, } e=(u X-1) / Y \text { odd. } \tag{2.1}
\end{equation*}
$$

Next, appealing to (1.1) and (2.1), we have

$$
X\left(p X-u Z^{2}\right) \equiv O(\bmod Y)
$$

so that, as $(X, Y)=1$, we have

$$
p X-u Z^{2} \equiv 0(\bmod Y)
$$

Hence we can define a positive integer a and an integer b by

$$
\begin{equation*}
a=Z, b=\left(p X-u a^{2}\right) / Y \tag{2.2}
\end{equation*}
$$

From (2.2) we obtain

$$
\begin{equation*}
p X-b Y=u a^{2} . \tag{2.3}
\end{equation*}
$$

Also using (1.1), (2.1) and (2.2) we get

$$
\begin{equation*}
b X+q Y=-e a^{2} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{2}+p q=\left(p e^{2}+q u^{2}\right) a^{2} \tag{2.5}
\end{equation*}
$$

From (1.4) and (2.1) we see that $p e^{2}+q u^{2} \equiv 0(\bmod 4)$ so we can define an integer c by

$$
\begin{equation*}
c=\left(p e^{2}+q u^{2}\right) / 4 . \tag{2.6}
\end{equation*}
$$

Thus, from (2.5) and (2.6), we have

$$
\begin{equation*}
b^{2}-4 a^{2} c=-p q, \tag{2.7}
\end{equation*}
$$

showing that the form $(a, b, a c)$ has discriminant $-p q$. We note that (2.7) shows that b is odd.

With a, b and c as defined in (2.2) and (2.6) we prove the following theorem.

Theorem 1. $(a, b, a c)^{2} \sim(p, p,(p+q) / 4)$.
Proof. We define integers v, α and β by

$$
\begin{equation*}
v=2 Y, \quad \alpha=(u+e) / 2, \quad \beta=X+Y . \tag{2.8}
\end{equation*}
$$

Appealing to (1.1), (2.3) and (2.7) we obtain, on completing the square for u,

$$
\begin{equation*}
a^{2} u^{2}+b u v+c v^{2}=p \tag{2.9}
\end{equation*}
$$

and appealing to (2.3), (2.4), (2.7) and (2.8), we obtain

$$
\begin{aligned}
b u+2 c v & =\frac{1}{a^{2}}\left(b u a^{2}+4 a^{2} c Y\right) \\
& =\frac{1}{a^{2}}\left(b u a^{2}+\left(b^{2}+p q\right) Y\right) \\
& =\frac{1}{a^{2}}\left(b\left(b Y+u a^{2}\right)+p q Y\right) \\
& =\frac{1}{a^{2}}(b p X+p q Y),
\end{aligned}
$$

that is

$$
\begin{equation*}
b u+2 c v=-p e \tag{2.10}
\end{equation*}
$$

Hence from (2.3), (2.8) and (2.10) we have

$$
\begin{equation*}
\alpha=(p u-b u-2 c v) / 2 p, \quad \beta=\left(2 u a^{2}+b v+p v\right) / 2 p \tag{2.11}
\end{equation*}
$$

Thus from (2.9) and (2.11) we obtain

$$
\begin{equation*}
u \beta-v \alpha=1 \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a^{2} u \alpha+b u \beta+b v \alpha+2 c v \beta=p \tag{2.13}
\end{equation*}
$$

Hence from (2.7), (2.9) (2.12) and (2.13) and the identity

$$
\left(2 a^{2} u \alpha+b u \beta+b v \alpha+2 c v \beta\right)^{2}-4\left(a^{2} u^{2}+b u v+c v^{2}\right)\left(a^{2} \alpha^{2}+b \alpha \beta+c \beta^{2}\right)=(u \beta-v \alpha)^{2}\left(b^{2}-4 a^{2} c\right)
$$

we deduce

$$
\begin{equation*}
a^{2} \alpha^{2}+b \alpha \beta+c \beta^{2}=(p+q) / 4 . \tag{2.14}
\end{equation*}
$$

Hence the unimodular transformation with matrix $\left[\begin{array}{cc}u & \alpha \\ \beta\end{array}\right]$ changes the form $\left(a^{2}, b, c\right)$ into

$$
\left(a^{2} u^{2}+b u v+c v^{2}, 2 a^{2} u \alpha+b u \beta+b v \alpha+2 c v \beta, a^{2} \alpha^{2}+b \alpha \beta+c \beta^{2}\right)=(p, p,(p+q) / 4) .
$$

Thus we have (see for example [3, p. 185])

$$
(a, b, a c)^{2} \sim\left(a^{2}, b, c\right) \sim(p, p,(p+q) / 4)
$$

which completes the proof of Theorem 1.

3. Determination of $\boldsymbol{h}(-p q)$ modulo 16; Proof of Theorem 2

By Theorem 1 the class of the form ($a, b, a c$) is of order 4 and so as the 2-Sylow subgroup of the class group of forms of discriminant $-p q$ is cyclic, the form $(a, b, a c)$ is equivalent to the square of a form (r, s, t), where we may take $(r, 2 p q a c)=1$. Hence $(a, b, a c)$ represents r^{2} primitively so that there are integers x and y such that

$$
\begin{equation*}
r^{2}=a x^{2}+b x y+a c y^{2}, \quad x>0, \quad(x, y)=1 . \tag{3.1}
\end{equation*}
$$

We define non-negative integers S and T by

$$
\begin{equation*}
S=|2 X x-a e y|, \quad T=|2 Y x-a u y| . \tag{3.2}
\end{equation*}
$$

Appealing to (1.1), (2.1), (2.2), (2.6) and (3.1) we obtain

$$
\begin{equation*}
4 a r^{2}=p S^{2}+q T^{2} \tag{3.3}
\end{equation*}
$$

From (3.3) we easily deduce that S and T are positive.
We now show that S and T have no odd common divisors greater than 1 . Suppose k is an odd prime divisor of both S and T. Then k divides

$$
\begin{aligned}
& u(2 X x-a e y)-e(2 Y x-a u y) \\
&=2 x(u X-e Y) \\
&=2 x \quad(b y(2.1)),
\end{aligned}
$$

that is $k \mid x$. Further from (3.3) we have $k \mid a r^{2}$ so that $k \mid a$ or $k \mid r$. If $k \mid a$ from (3.1) we have $k \mid r$ contradicting $(r, a)=1$. If $k \mid r$ by (3.1) we have $k \mid a c y^{2}$ contradicting $(r, a c)=(x, y)=1$.

Similarly we can show that T and apr have no odd common divisors greater than 1.
We note that as a is represented by $(a, b, a c)$ and the class of the form $(a, b, a c)$ is in the principal genus we have

$$
\begin{equation*}
\left(\frac{a}{p}\right)=+1 \tag{3.4}
\end{equation*}
$$

Further by (1.3) and (2.2) we have

$$
\begin{equation*}
a \equiv 1(\bmod 4) \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{align*}
\left(\frac{r}{p}\right)\left(\frac{a}{p}\right)_{4} & =\left(\frac{a r^{2}}{p}\right)_{4}=\left(\frac{2}{p}\right)\left(\frac{4 a r^{2}}{p}\right)_{4} \\
& =\left(\frac{-1}{p}\right)_{4}\left(\frac{q T^{2}}{p}\right)_{4} \tag{3.3}\\
& =\left(\frac{-q}{p}\right)_{4}\left(\frac{T}{p}\right)
\end{align*}
$$

that is (by (1.4))

$$
\begin{equation*}
\left(\frac{r}{p}\right)\left(\frac{a}{p}\right)_{4}=\left(\frac{T}{p}\right)=\left(\frac{2}{p}\right)^{n}\left(\frac{t}{p}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
T=2^{n} t, \quad t \text { odd } \tag{3.7}
\end{equation*}
$$ Then

$$
\begin{aligned}
\left(\frac{t}{p}\right) & =\left(\frac{p}{t}\right) \\
& =\left(\frac{p S^{2}}{t}\right) \\
& =\left(\frac{4 a r^{2}}{t}\right) \\
& =\left(\frac{a}{t}\right)^{\prime} \\
& =\left(\frac{t}{a}\right)^{\prime} \\
& =\left(\frac{2}{a}\right)^{n}\left(\frac{T}{a}\right) \\
& =\left(\frac{2}{a}\right)^{n}\left(\frac{|2 Y x-a u y|}{a}\right) \quad \text { (by (3.3)) } \\
& =\left(\frac{2 Y x-a u y}{a}\right)^{n+1}\left(\frac{Y}{a}\right)\left(\frac{x}{a}\right) \\
& =\left(\frac{2}{a}\right)^{n+1}\left(\frac{Y}{a}\right)\left(\frac{b}{a}\right)\left(\frac{y}{a}\right)
\end{aligned}
$$

Now set

$$
|y|=2^{m} y_{1}, \quad y_{1} \text { odd, } \quad y_{1}>0,
$$

so appealing to (3.1) and (3.5) we have

$$
\left(\frac{y}{a}\right)=\left(\frac{|y|}{a}\right)=\left(\frac{2}{a}\right)^{m}\left(\frac{y_{1}}{a}\right)=\left(\frac{2}{a}\right)^{m}\left(\frac{a}{y_{1}}\right)=\left(\frac{2}{a}\right)^{m},
$$

giving

$$
\left(\frac{t}{p}\right)=\left(\frac{2}{a}\right)^{m+n+1}\left(\frac{b Y}{a}\right)
$$

Next as $b Y=p X-u a^{2}$ and using (3.4) we have

$$
\left(\frac{b Y}{a}\right)=\left(\frac{p X}{a}\right)=\left(\frac{a}{p}\right)\left(\frac{X}{Z}\right)=\left(\frac{X}{Z}\right)
$$

so

$$
\left(\frac{t}{p}\right)=\left(\frac{2}{Z}\right)^{m+n+1}\left(\frac{X}{Z}\right)
$$

giving

$$
\begin{equation*}
\left(\frac{r}{p}\right)=\left(\frac{2}{p}\right)^{n}\left(\frac{2}{Z}\right)^{m+n+1}\left(\frac{X}{Z}\right)\left(\frac{a}{p}\right)_{4} \tag{3.8}
\end{equation*}
$$

Taking (1.1) modulo 8 we obtain $p+q Y^{2} \equiv 1(\bmod 8)$, so that

$$
\begin{aligned}
& p \equiv 1(\bmod 8) \Rightarrow Y \equiv 0(\bmod 4) \\
& p \equiv 5(\bmod 8) \Rightarrow Y \equiv 2(\bmod 4)
\end{aligned}
$$

We now treat the case $p \equiv 1(\bmod 8)$: we have

$$
\begin{aligned}
& m=0 \Rightarrow y \text { odd } \Rightarrow T \text { odd } \Rightarrow n=0 \\
& m=1 \Rightarrow 2\|y \Rightarrow 2\| T \Rightarrow n=1 \\
& m=2 \Rightarrow 4\|y \Rightarrow 4\| T \Rightarrow n=2 \\
& m \geqq 3 \Rightarrow 8 \mid y \Rightarrow x \text { odd } \Rightarrow a \equiv 1(\bmod 8) \Rightarrow\left(\frac{2}{Z}\right)=+1
\end{aligned}
$$

so that in each case

$$
\left(\frac{2}{p}\right)^{n}\left(\frac{2}{Z}\right)^{m+n}=1
$$

For the case $p \equiv 5(\bmod 8)$ we have

$$
\begin{aligned}
& m=0 \Rightarrow y \text { odd } \Rightarrow T \text { odd } \Rightarrow n=0 \\
& m=1 \Rightarrow 2\|y \Rightarrow 4 \mid S, 2\| T \Rightarrow p S^{2}+q T^{2} \equiv 12(\bmod 16) \\
& \Rightarrow a r^{2} \equiv 3(\bmod 4), \text { which is impossible; } \\
& m=2 \Rightarrow x \text { odd, } 4 \| y \Rightarrow a \equiv 5(\bmod 8) \Rightarrow\left(\frac{2}{Z}\right)=-1
\end{aligned}
$$

$$
m \geqq 3 \Rightarrow x \text { odd, } 8 \left\lvert\, y \Rightarrow \begin{cases}a \equiv 1(\bmod 8) & \Rightarrow\left(\frac{2}{Z}\right)=+1 \\ 4| | T & \Rightarrow n=2\end{cases}\right.
$$

so that again in each case we have

$$
\left(\frac{2}{p}\right)^{n}\left(\frac{2}{Z}\right)^{m+n}=1
$$

Hence by (3.8) we have

$$
\left(\frac{r}{p}\right)=\left(\frac{2}{Z}\right)\left(\frac{X}{Z}\right)\left(\frac{Z}{p}\right)_{4}
$$

Now by a theorem of Bauer [1] (see also [2, Theorem 6])

$$
h(-p q) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{r}{p}\right)=+1
$$

so we have

$$
h(-p q) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{Z}{p}\right)_{4}=\left(\frac{2 X}{Z}\right)
$$

This completes the proof of Theorem 2.
We remark that Theorem 2 of Brown [4] is the special case of our Theorem 2 which arises when (1.1) has a solution with $X=1$.

4. Examples

Example 1. $p=5, q=19$.
Here

$$
\left(\frac{q}{p}\right)=\left(\frac{19}{5}\right)=1, \quad\left(\frac{-q}{p}\right)_{4}=\left(\frac{-19}{5}\right)_{4}=+1 .
$$

A solution of $(1.1)-(1.3)$ is given by

$$
X=1, \quad Y=2, \quad Z=9
$$

so

$$
\left(\frac{Z}{p}\right)_{4}=\left(\frac{9}{5}\right)_{4}=\left(\frac{3}{5}\right)=-1, \quad\left(\frac{2 X}{Z}\right)=\left(\frac{2}{9}\right)=+1
$$

and Theorem 2 implies $h(-p q)=h(-95) \equiv 8(\bmod 16)$. Indeed $h(-95)=8$.
Example 2. $p=37, q=11$.
Here

$$
\left(\frac{q}{p}\right)=\left(\frac{11}{37}\right)=\left(\frac{37}{11}\right)=\left(\frac{4}{11}\right)=+1, \quad\left(\frac{-q}{p}\right)_{4}=\left(\frac{-11}{37}\right)_{4}=\left(\frac{100}{37}\right)_{4}=\left(\frac{10}{37}\right)=+1 .
$$

We start with a solution of (1.1) and (1.2) for which Z is even, say,

$$
X=1, \quad Y=7, \quad Z=24
$$

in order to illustrate how to obtain a solution which satisfies (1.3) as well. Since the fundamental unit of $Q(\sqrt{11})$ is $10+3 \sqrt{11}$ we have

$$
R=10, \quad S=3, \quad R_{1}=199, \quad S_{1}=60 .
$$

First we transform the solution (X, Y, Z) into a solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ with Z_{1} odd:

$$
X_{1}=X=1, \quad Y_{1}=R Y+S Z=142, \quad Z_{1}=q S Y+R Z=471 .
$$

As $Z_{1} \equiv 3(\bmod 4)$ we transform the solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ into a solution $\left(X_{2}, Y_{2}, Z_{2}\right)$ with $Z_{2} \equiv 1(\bmod 4):$

$$
\begin{gathered}
X_{2}=X_{1}=1, \quad Y_{2}=R_{1} Y_{1}+S_{1} Z_{1}=56518 \\
Z_{2}=q S_{1} Y_{1}+R_{1} Z_{1}=187449
\end{gathered}
$$

so that

$$
\left(\frac{Z_{2}}{p}\right)_{4}=\left(\frac{187449}{37}\right)_{4}=\left(\frac{7}{37}\right)_{4}=\left(\frac{81}{37}\right)_{4}=+1, \quad\left(\frac{2 X_{2}}{Z_{2}}\right)=\left(\frac{2}{187449}\right)=+1
$$

and Theorem 2 implies $h(-p q)=h(-407) \equiv 0(\bmod 16)$. Indeed $h(-407)=16$.
Example 3. $p=5, \quad q=79$.
Here

$$
\left(\frac{q}{p}\right)=\left(\frac{79}{5}\right)=+1, \quad\left(\frac{-q}{p}\right)_{4}=\left(\frac{-79}{5}\right)_{4}=+1 .
$$

A solution of (1.1) and (1.2) is given by

$$
X=3, \quad Y=2, \quad Z=19 .
$$

As $Z \equiv 3(\bmod 4)$ we transform this solution into one for which $Z \equiv 1(\bmod 4)$ obtaining

$$
X=3, \quad Y=52958, \quad Z=470701
$$

so that

$$
\left(\frac{Z}{p}\right)_{4}=+1, \quad\left(\frac{2 X}{Z}\right)=\left(\frac{2}{Z}\right)\left(\frac{3}{Z}\right)=(-1)(+1)=-1
$$

and Theorem 2 implies $h(-p q)=h(-395) \equiv 8(\bmod 16)$. Indeed $h(-395)=8$.
This example illustrates Theorem 2 in a situation where (1.1) has no solution with $X=1$ as

$$
u^{2}-79 v^{2}=5
$$

is insolvable in integers u and v (see for example [7, Theorem 109]).

REFERENCES

1. H. Bauer, Zur Berechnung der 2-Klassenzahl der quadratische Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 248 (1971), 42-46.
2. Ezra Brown, The power of 2 dividing the class-number of a binary quadratic discriminant, J. Number Theory 5 (1973), 413-419.
3. Ezra Brown, Class numbers of complex quadratic fields, J. Number Theory 6 (1974), 185191.
4. Ezra Brown, The class-number of $Q(\sqrt{-p q})$, for $p \equiv-q \equiv 1(\bmod 4)$ primes, Houston J. Math. 7 (1981), 497-505.
5. Pierre Kaplan, Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2 groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan 25 (1973), $596-$ 608.
6. Philip A. Leonard and Kenneth S. Williams, On the divisibility of the class numbers of $Q(\sqrt{-p})$ and $Q(\sqrt{-2 p})$ by 16, Canad. Math. Bull. 25 (1982), 200-206.
7. Trygeve Nagell, Introduction to Number Theory, (reprinted, Chelsea Publishing Company, New York, 1964).

Department of Mathematics

Arizona State University
Tempe, Arizona 85287, U.S.A.
Carleton University

[^0]: *Research supported by Natural Sciences and Engineering Research Council Canada Grant No. A-7233 and also by a travel grant from Carleton University.

