ON THE QUADRATIC RESIDUES (MOD p) IN THE INTERVAL $(0, p / 4)$

BY
KENNETH S. WILLIAMS*

Abstract

A short proof is given of a result of Burde giving the parity of the number of quadratic residues $(\bmod p)$ in the interval $(0, p / 4)$, where $p \equiv 1(\bmod 4)$ is prime.

Let $p \equiv 1(\bmod 4)$ be a prime. We define (unique) integers a and b by

$$
\begin{equation*}
p=a^{2}+b^{2}, \quad a \equiv 1(\bmod 4), \quad \mathbf{b} \equiv\left(\frac{p-1}{2}\right)!a(\bmod p) . \tag{1}
\end{equation*}
$$

Clearly we have
(2)(i) $\quad p \equiv 2 a-1(\bmod 16), \quad b \equiv 0(\bmod 4), \quad$ if $\quad p \equiv 1(\bmod 8)$,
and
(2)(ii) $\quad p \equiv 2 a+3(\bmod 16), \quad b \equiv(\bmod 4), \quad$ if $\quad p \equiv 5(\bmod 8)$.

Let $N(p)$ denote the number of quadratic residues $(\bmod p)$ in the interval ($0, p / 4$). Burde [2: Theorems 1 and 2] has shown (with slightly different notation) that

$$
\begin{equation*}
N(p) \equiv 0(\bmod 2) \Leftrightarrow b \equiv 0(\bmod 8), \quad \text { if } \quad p \equiv 1(\bmod 8), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
N(p) \equiv 0(\bmod 2) \Leftrightarrow b \equiv 6(\bmod 8), \quad \text { if } \quad p \equiv 5(\bmod 8) . \tag{3}
\end{equation*}
$$

We give a very short proof of this result. We have

$$
\begin{equation*}
N(p)=\frac{1}{2} \sum_{0<k<p / 4}\left(1+\left(\frac{k}{p}\right)\right) . \tag{4}
\end{equation*}
$$

Now, by a result of Dirichlet [4: p. 152] (or see [3: p. 101]), we have

$$
\begin{equation*}
\sum_{0<k<p / 4}\left(\frac{k}{p}\right)=\frac{1}{2} h(-4 p), \tag{5}
\end{equation*}
$$

Received by the editors October 13, 1981 and in revised form January 8, 1982.
AMS Subject Classification (1980): Primary 10A15; Secondary 10E15. 12H50, 12 H 25.
Research supported by Natural Sciences and Engineering Research Council Canada Grant A07233.
(C) Canadian Mathematical Society, 1983.
where $h(-4 p)$ denotes the class number of the imaginary quadratic field $Q(\sqrt{ }-p)$ (of discriminant $-4 p$). Hence, by (4) and (5), we have

$$
\begin{equation*}
8 N(p)=p-1+2 h(-4 p) \tag{6}
\end{equation*}
$$

Now Gauss [5: p. 380] (see also Yamamoto [6: Lemma 3], Barkan [1: p. 828]) (Note: Gauss's k is related to $h(-4 p)$ by $2 k=h(-4 p)$.) has shown that

$$
\begin{equation*}
h(-4 p) \equiv-a+b+1(\bmod 8) \tag{7}
\end{equation*}
$$

so by (6) and (7) we have

$$
\begin{equation*}
8 N(p) \equiv p-2 a+2 b+1(\bmod 16) \tag{8}
\end{equation*}
$$

Hence, from (2) and (8), we obtain

$$
4 N(p) \equiv \begin{cases}b(\bmod 8), & \text { if } \\ b \equiv 1(\bmod 8) \\ b+2(\bmod 8), & \text { if } \quad p \equiv 5(\bmod 8)\end{cases}
$$

which completes the proof of Burde's result.

References

[^0]Department of Mathematics and Statistics
Carleton University
Otrawa, Ontarlo, Canada, K1S 5B6

[^0]: 1. Philippe Barkan, Une propriété de congruence de la longueur de la periode d'un developpement en fraction continue, C.R. Acad. Sc. Paris 281 (1975), 825-828.
 2. Klaus Burde, Eine Verteilungseigenschaft der Legendresymbole, J. Number Theory 12 (1980), 273-277.
 3. L. E. Dickson, History of the Theory of Numbers, Volume 3, reprinted Chelsea Publishing Company, Bronx, N.Y. (1966).
 4. P. G. L. Dirichlet, Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres, J. Reine Angew. Math. 21 (1840), 134-155.
 5. Carl Friedrich Gauss, Letter to P. G. L. Dirichlet dated 30) May 1828. (Reproduced in G. Lejeune Dirichlet's Werke, Chelsea Publishing Company, Bronx, N.Y. (1969) Volume 2, pp. 378-380.)
 6. Koichi Yamamoto, On Gaussian sums with biquadratic residue characters, J. Reine Angew. Math. 219 (1965), 200-213.
