On Legendre’s Equation $ax^2 + by^2 + cz^2 = 0$

RICHARD H. HUDSON

Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina, 29208

AND

KENNETH S. WILLIAMS*

Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

Communicated by Hans Zassenhaus

Received January 19, 1981; revised May 20, 1981

Let a, b, c be nonzero integers having no prime factors $\equiv 3 \pmod{4}$, not all of the same sign, abc squarefree, and for which Legendre’s equation $ax^2 + by^2 + cz^2 = 0$ is solvable in nonzero integers x, y, z. A property is proved yielding a congruence which must be satisfied by any solution x, y, z.

Let a, b, c be three nonzero integers, not all of the same sign, and such that abc is squarefree. The Diophantine equation

$$ax^2 + by^2 + cz^2 = 0$$

(1)

is named after Legendre, who proved in 1785 that it is solvable in integers x, y, z, not all zero, if and only if $-bc, -ca, -ab$ are quadratic residues of a, b, c, respectively (see for example [3, Theorem 3; 4, Theorem 113]). We shall consider solvable equations of form (1) in which a, b, c have no prime factors $\equiv 3 \pmod{4}$. Clearly, without loss of generality, we may suppose throughout that $a > 0$, $b > 0$, $c < 0$.

Throughout this note, whenever n is a nonzero integer we use the notation n_1 to mean the odd integer $n/2^k$, where $2^k \| n$. Let p, q, r denote typical odd prime divisors of a, b, c respectively. As Eq. (1) is solvable, the Legendre
symbols \((-bc/p), (-ca/q), (-ab/r),\) are all +1 and thus, as \(p \equiv 1 \pmod{4},\) the Dirichlet symbol

\[
\left(\frac{-b^3c}{a_1}\right)_4 = \prod_{p \mid a} \left(\frac{-b^3c}{p}\right)_4,
\]

and, similarly, the symbols \((-c^3a/b_1)_4\) and \((-a^3b/c_1)_4\) are well defined and take the values \(\pm 1.\)

It is our purpose to evaluate the quantity

\[
E(a, b, c) = \left(\frac{-b^3c}{a_1}\right)_4 \left(\frac{-c^3a}{b_1}\right)_4 \left(\frac{-a^3b}{c_1}\right)_4
\]

in terms of a nontrivial solution \((x, y, z)\) of Legendre's equation (1). We note that

\[
E(a, b, c) E(b, a, c) = +1
\]

so that

\[
E(a, b, c) = E(b, a, c).
\]

We prove

Theorem. Let \(a, b, c\) be three nonzero integers having no prime factors \(\equiv 3 \pmod{4},\) not all the same sign, \(abc\) squarefree, and for which \(ax^2 + by^2 + cz^2 = 0\) is solvable in nonzero integers \(x, y, z.\) Without loss of generality we may take \(x > 0, y > 0, z > 0, (x, y, z) = 1,\) and suppose that \(a > 0, b > 0, c < 0.\) Then

\[
E(a, b, c) = (-1)^{\frac{xy}{2}}(-1/z), \quad \text{if} \quad 2 \nmid abc,
\]

\[
= (2/y)(2/z), \quad \text{if} \quad 2 \mid a, 2 \nmid bc,
\]

\[
= (2/x)(2/y)(-1/z_1), \quad \text{if} \quad 2 \nmid ab, 2 \mid c.
\]

(The case \(2 \mid b, 2 \nmid ac,\) is obtained by interchanging \(a, b\) and \(x, y\) in the second line of (5).)

Proof. We just treat the case \(2 \nmid abc,\) as the proofs in the other two cases are similar. As \(abc\) is squarefree and \((x, y, z) = 1,\) we have

\[
(x, y) = (y, z) = (z, x) = 1,
\]

\[
(a, b) = (b, c) = (c, a) = 1,
\]

\[
(a, yz) = (b, zx) = (c, xy) = 1.
\]
Since \(a \equiv b - c \equiv 1 \pmod{4} \), we deduce from (1) that \(z \) is odd and one of \(x \) and \(y \) is even and the other odd. We begin by supposing that \(x \) is even and \(y \) is odd. We have from (1)

\[
\left(\frac{-b \cdot c}{p} \right)_4 = \left(\frac{-b^3 \cdot c^2}{p} \right)_4 = \left(\frac{b^4 \cdot y^2 \cdot z^2}{p} \right)_4 = \left(\frac{yz}{p} \right),
\]

so that

\[
\left(\frac{-b^3 \cdot c}{a} \right)_4 = \left(\frac{yz}{a} \right).
\] (6)

Similarly, we obtain

\[
\left(\frac{-c^3 \cdot a}{b} \right)_4 = \left(\frac{zx}{b} \right), \quad \left(\frac{-a^3 \cdot b}{|c|} \right)_4 = \left(\frac{xy}{|c|} \right).
\] (7)

Putting (6) and (7) together, we get

\[
E(a, b, c) = \left(\frac{yz}{a} \right) \left(\frac{zx}{b} \right) \left(\frac{xy}{|c|} \right).
\] (8)

As \(x \) is even, we have \(x = 2^k x_1 \), where \(k \geq 1 \) and \(x_1 \) is odd. By the law of quadratic reciprocity, we have

\[
\left(\frac{yz}{a} \right) = \left(\frac{a}{y} \right) \left(\frac{a}{z} \right), \quad \left(\frac{zx}{b} \right) = \left(\frac{2}{b} \right)^k \left(\frac{b}{z} \right) \left(\frac{b}{x_1} \right),
\]

\[
\left(\frac{xy}{|c|} \right) = \left(\frac{2}{|c|} \right)^k \left(\frac{|c|}{x_1} \right) \left(\frac{|c|}{y} \right).
\] (9)

From (1) we have

\[
ax^2 \equiv -by^2 \pmod{z}, \quad by^2 \equiv -cz^2 \pmod{x_1}, \quad cz^2 \equiv -ax^2 \pmod{y},
\]

so that

\[
\left(\frac{a}{z} \right) = \left(\frac{-b}{z} \right), \quad \left(\frac{b}{x_1} \right) = \left(\frac{|c|}{x_1} \right), \quad \left(\frac{|c|}{y} \right) = \left(\frac{a}{y} \right).
\] (10)

Putting (8)–(10) together, we obtain

\[
E(a, b, c) = \left(\frac{2}{b |c|} \right)^k \left(\frac{-1}{z} \right).
\] (11)

Finally, from (1), we have

\[
a2^{2k} + b + c \equiv 0 \pmod{8},
\]
so that

\[b \mid c \mid = -bc \equiv ac^{2k} + 1 \equiv 1 \quad (\text{mod } 8), \quad \text{if } k \geq 2, \]

\[\equiv 5 \quad (\text{mod } 8), \quad \text{if } k = 1, \]

giving

\[(2/b \mid c\mid)^k = 1, \quad \text{if } k \geq 2, \]

\[= -1, \quad \text{if } k = 1, \]

that is

\[(2/b \mid c\mid)^k = (-1)^{x/y} = (-1)^{y/z}. \quad (12) \]

Equations (11) and (12) yield (5) in this case.

If \(x \) is odd and \(y \) is even, by interchanging \(a \) and \(b \) the above derivation applies and we have

\[E(b, a, c) = (-1)^{x/y} (-1/z). \]

The result now follows from (4).

If \(p \) and \(q \) are distinct primes congruent to 1 \((\text{mod } 4)\) satisfying \((p/q) = +1\), Scholz [51] (see also [2]) has shown that

\[\left(\frac{p}{q} \right)_4 \left(\frac{q}{p} \right)_4 = \left(\frac{e_p}{q} \right), \]

where \(e_p \) is the fundamental unit \((>1)\) of the real quadratic field \(Q(\sqrt{p}) \) and, in the Legendre symbol \((e_p/q)\), \(\sqrt{p} \) is interpreted as an integer \((\text{mod } q)\). Using this law in conjunction with our theorem, we obtain alternative expressions for \((e_p/q)\). We prove

Corollary. Let \(p \) and \(q \) be distinct primes such that one of the following holds:

\[p \equiv q \equiv 1 \quad (\text{mod } 4), \quad (p/q) = +1, \quad (a) \]

\[p \equiv 1 \quad (\text{mod } 8), \quad q \equiv 1 \quad (\text{mod } 4), \quad (p/q) = +1, \quad (b) \]

\[p \equiv q \equiv 1 \quad (\text{mod } 8), \quad (p/q) = +1; \quad (c) \]

so that, by Legendre's theorem, there are positive integers \(x, y, z \) such that

\[px^2 + qy^2 - z^2 = 0, \quad \text{in case (a)} \]

\[px^2 + 2qy^2 - r^2 = 0, \quad \text{in case (b)} \]

\[px^2 + qy^2 - 2z^2 = 0, \quad \text{in case (c)}. \]
Then

\[
\left(\frac{\varepsilon_p}{q} \right) = (-1)^{x/z} \left(\frac{-1}{z} \right), \quad \text{in case (a)},
\]

\[
= \left(\frac{2}{p} \right) \left(\frac{2}{x} \right) \left(\frac{-2}{z} \right), \quad \text{in case (b)},
\]

\[
= \left(\frac{2}{p} \right) \left(\frac{2}{q} \right) \left(\frac{2}{x} \right) \left(\frac{2}{y} \right) \left(\frac{-1}{z_1} \right), \quad \text{in case (c)}.
\]

Proof. We have (using (3))

\[
E(p, q, -1) = \left(\frac{p}{q} \right) \left(\frac{q}{p} \right), \quad \text{in case (a)},
\]

\[
E(p, 2q, -1) = \left(\frac{2}{p} \right) \left(\frac{p}{q} \right) \left(\frac{q}{p} \right), \quad \text{in case (b)},
\]

\[
E(p, q, 2) = \left(\frac{2}{p} \right) \left(\frac{2}{q} \right) \left(\frac{p}{q} \right) \left(\frac{q}{p} \right), \quad \text{in case (c)}.
\]

The corollary now follows by appealing to Scholz's law and the theorem.

We remark that this note was suggested by certain results in the literature (for example [1, 2]). These results may be deduced from the above theorem or its corollary. We give just one example, namely [2, Theorem 4]. The assumption in [2] that \(p^v = e^2 - 4zf^2\) means that \(px^2 + qy^2 - z^2 = 0\) is solvable with \(x = p^{(v-1)/2}, y = 2f, z = e\). (In [2] it is assumed that \(p \equiv 1 \pmod{4}\) and \(q \equiv 1 \pmod{4}\) are primes such that \((p/q) = +1, v\) is odd, and \(e, f\) are positive coprime integers.) By the corollary (case (a)) we have

\[
(e_p/q) = (-1)^v(-1/e),
\]

which becomes Lehmer's result

\[
(e_p/q) = (-1/e)
\]

under the further assumption \(p \equiv 1 \pmod{8}\).

We close with a simple numerical example.

Example. By Legendre's criterion the equation

\[
5x^2 + 29y^2 - 109z^2 = 0
\]

(13)
is solvable in integers x, y, z not all zero. Let (x, y, z) be a primitive solution of (13) with $x > 0$, $y > 0$, $z > 0$. Clearly x, y, z satisfy

$$x \equiv 0 \pmod{4}, \quad y \equiv z \equiv 1 \pmod{2},$$

or

$$x \equiv z \equiv 1 \pmod{2}, \quad y \equiv 0 \pmod{4},$$

so that, in both cases, we have $xy \equiv 0 \pmod{4}$. Since $E(5, 29, -109) = +1$, by the Theorem each primitive solution (x, y, z) of (13) with $x > 0$, $y > 0$, $z > 0$ must have $z \equiv 1 \pmod{4}$. The solution $x = 28$, $y = 66$, $z = 34$ shows that z may have prime factors $\equiv 3 \pmod{4}$.

REFERENCES