On Legendre's Equation $a x^{2}+b y^{2}+c z^{2}=0$

Richard H. Hudson
Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina, 29208

AND
Kenneth S. Williams*
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

Communicated by Hans Zassenhaus
Received January 19, 1981; revised May 20, 1981

Let a, b, c be nonzero integers having no prime factors $\equiv 3(\bmod 4)$, not all of the same sign, abc squarefree, and for which Legendre's equation $a x^{2}+b y^{2}+c z^{2}=0$ is solvable in nonzero integers x, y, z. A property is proved yielding a congruence which must be satisfied by any solution x, y, z.

Let a, b, c be three nonzero integers, not all of the same sign, and such that $a b c$ is squarefree. The Diophantine equation

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}=0 \tag{1}
\end{equation*}
$$

is named after Legendre, who proved in 1785 that it is solvable in integers x, y, z, not all zero, if and only if $-b c,-c a,-a b$ are quadratic residues of a, b, c, respectively (see for example [3 , Theorem 3; 4, Theorem 113]). We shall consider solvable equations of form (1) in which a, b, c have no prime factors $\equiv 3(\bmod 4)$. Clearly, without loss of generality, we may suppose throughout that $a>0, b>0, c<0$.

Throughout this note, whenever n is a nonzero integer we use the notation n_{1} to mean the odd integer $n / 2^{k}$, where $2^{k} \| n$. Let p, q, r denote typical odd prime divisors of a, b, c respectively. As Eq. (1) is solvable, the Legendre

[^0]symbols $(-b c / p),(-c a / q),(-a b / r)$, are all +1 and thus, as $p \equiv 1(\bmod 4)$, the Dirichlet symbol
\[

$$
\begin{equation*}
\left(\frac{-b^{3} c}{a_{1}}\right)_{4}=\prod_{p \mid a}\left(\frac{-b^{3} c}{p}\right)_{4}, \tag{2}
\end{equation*}
$$

\]

and, similarly, the symbols $\left(-c^{3} a / b_{1}\right)_{4}$ and $\left(-a^{3} b /\left|c_{1}\right|\right)_{4}$ are well defined and take the values ± 1.

It is our purpose to evaluate the quantity

$$
\begin{equation*}
E(a, b, c)=\left(\frac{-b^{3} c}{a_{1}}\right)_{4}\left(\frac{-c^{3} a}{b_{1}}\right)_{4}\left(\frac{-a^{3} b}{\left|c_{1}\right|}\right)_{4} \tag{3}
\end{equation*}
$$

in terms of a nontrivial solution (x, y, z) of Legendre's equation (1). We note that

$$
E(a, b, c) E(b, a, c)=+1
$$

so that

$$
\begin{equation*}
E(a, b, c)=E(b, a, c) \tag{4}
\end{equation*}
$$

We prove
Theorem. Let a, b, c be three nonzero integers having no prime factors $\equiv 3(\bmod 4)$, not all the same sign, abc squarefree, and for which $a x^{2}+b y^{2}+c z^{2}=0$ is solvable in nonzero integers x, y, z. Without loss of generality we may take $x>0, y>0, z>0,(x, y, z)=1$, and suppose that $a>0, b>0, c<0$. Then

$$
\begin{align*}
E(a, b, c) & =(-1)^{x y / 2}(-1 / z), & & \text { if } 2 \nmid a b c, \\
& =(2 / y)(-2 / z), & & \text { if } 2 \mid a, 2 \nmid b c, \tag{5}\\
& =(2 / x)(2 / y)\left(-1 / z_{1}\right), & & \text { if } 2 \nmid a b, \quad 2 \mid c .
\end{align*}
$$

(The case $2 \mid b, 2 \nmid a c$, is obtained by interchanging a, b and x, y in the second line of (5).)

Proof. We just treat the case $2 \nmid a b c$, as the proofs in the other two cases are similar. As $a b c$ is squarefree and $(x, y, z)=1$, we have

$$
\begin{aligned}
(x, y) & =(y, z)=(z, x)=1 \\
(a, b) & =(b, c)=(c, a)=1 \\
(a, y z) & =(b, z x)=(c, x y)=1
\end{aligned}
$$

Since $a \equiv b-c \equiv 1(\bmod 4)$, we deduce from (1) that z is odd and one of x and y is even and the other odd. We begin by supposing that x is even and y is odd. We have from (1)

$$
\left(-\frac{-b^{3} c}{p}\right)_{4}=\left(\frac{-b^{3} c z^{4}}{p}\right)_{4}=\left(\frac{b^{4} y^{2} z^{2}}{p}\right)_{4}=\left(\frac{y z}{p}\right)
$$

so that

$$
\begin{equation*}
\left(-b^{3} c / a\right)_{4}=(y z / a) \tag{6}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\left(\frac{-c^{3} a}{b}\right)_{4}=\left(\frac{z x}{b}\right), \quad\left(\frac{-a^{3} b}{|c|}\right)_{4}=\left(\frac{x y}{|c|}\right) \tag{7}
\end{equation*}
$$

Putting (6) and (7) together, we get

$$
\begin{equation*}
E(a, b, c)=\left(\frac{y z}{a}\right)\left(\frac{z x}{b}\right)\left(\frac{x y}{|c|}\right) \tag{8}
\end{equation*}
$$

As x is even, we have $x=2^{k} x_{1}$, where $k \geqslant 1$ and x_{1} is odd. By the law of quadratic reciprocity, we have

$$
\begin{align*}
& \left(\frac{y z}{a}\right)=\left(\frac{a}{y}\right)\left(\frac{a}{z}\right), \quad\left(\frac{z x}{b}\right)=\left(\frac{2}{b}\right)^{k}\left(\frac{b}{z}\right)\left(\frac{b}{x_{1}}\right), \tag{9}\\
& \left(\frac{x y}{|c|}\right)=\left(\frac{2}{|c|}\right)^{k}\left(\frac{|c|}{x_{1}}\right)\left(\frac{|c|}{y}\right)
\end{align*}
$$

From (1) we have

$$
a x^{2} \equiv-b y^{2}(\bmod z), \quad b y^{2} \equiv-c z^{2}\left(\bmod x_{1}\right), \quad c z^{2} \equiv-a x^{2}(\bmod y)
$$

so that

$$
\begin{equation*}
\left(\frac{a}{z}\right)=\left(\frac{-b}{z}\right), \quad\left(\frac{b}{x_{1}}\right)=\left(\frac{|c|}{x_{1}}\right), \quad\left(\frac{|c|}{y}\right)=\left(\frac{a}{y}\right) \tag{10}
\end{equation*}
$$

Putting (8)-(10) together, we obtain

$$
\begin{equation*}
E(a, b, c)=\left(\frac{2}{b|c|}\right)^{k}\left(\frac{-1}{z}\right) \tag{11}
\end{equation*}
$$

Finally, from (1), we have

$$
a 2^{2 k}+b+c \equiv 0 \quad(\bmod 8)
$$

so that

$$
\begin{aligned}
b|c|=-b c \equiv a c 2^{2 k}+1 & \equiv 1 \quad(\bmod 8), & & \text { if } k \geqslant 2, \\
& \equiv 5(\bmod 8), & & \text { if } k=1,
\end{aligned}
$$

giving

$$
\begin{aligned}
(2 / b|c|)^{k} & =1, & & \text { if } \quad k \geqslant 2, \\
& =-1, & & \text { if } \quad k=1,
\end{aligned}
$$

that is

$$
\begin{equation*}
(2 / b|c|)^{k}=(-1)^{x / 2}=(-1)^{x y / 2} \tag{12}
\end{equation*}
$$

Equations (11) and (12) yield (5) in this case.
If x is odd and y is even, by interchanging a and b the above derivation applies and we have

$$
E(b, a, c)=(-1)^{x y / 2}(-1 / z)
$$

The result now follows from (4).
If p and q are distinct primes congruent to $1(\bmod 4)$ satisfying $(p / q)=+1$, Scholz [5] (see also [2]) has shown that

$$
\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=\left(\frac{\varepsilon_{p}}{q}\right)
$$

where ε_{p} is the fundamental unit (>1) of the real quadratic field $Q(\sqrt{p})$ and, in the Legendre symbol $\left(\varepsilon_{p} / q\right), \sqrt{p}$ is interpreted as an integer $(\bmod q)$. Using this law in conjunction with our theorem, we obtain alternative expressions for $\left(\varepsilon_{p} / q\right)$. We prove

Corollary. Let p and q be distinct primes such that one of the following holds:

$$
\begin{array}{lll}
p \equiv q \equiv 1 & (\bmod 4), & (p / q)=+1 \\
p \equiv 1 & (\bmod 8), & q \equiv 1 \quad(\bmod 4), \quad(p / q)=+1 \\
p \equiv q \equiv 1 & (\bmod 8), & (p / q)=+1 \tag{c}
\end{array}
$$

so that, by Legendre's theorem, there are positive integers x, y, z such that

$$
\begin{aligned}
p x^{2}+q y^{2}-z^{2} & =0, & & \text { in case }(\mathrm{a}) \\
p x^{2}+2 q y^{2}-z^{2} & =0, & & \text { in case }(\mathrm{b}), \\
p x^{2}+q y^{2}-2 z^{2} & =0, & & \text { in case }(\mathrm{c}) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(\frac{\varepsilon_{p}}{q}\right) & =(-1)^{x y / 2}\left(\frac{-1}{z}\right), & & \text { in case }(\mathrm{a}) \\
& =\left(\frac{2}{p}\right)_{4}\left(\frac{2}{x}\right)\left(\frac{-2}{z}\right), & & \text { in case }(\mathrm{b}) \\
& =\left(\frac{2}{p}\right)_{4}\left(\frac{2}{q}\right)_{4}\left(\frac{2}{x}\right)\left(\frac{2}{y}\right)\left(\frac{-1}{z_{1}}\right), & & \text { in case }(\mathrm{c}) .
\end{aligned}
$$

Proof. We have (using (3))

$$
\begin{array}{rlr}
E(p, q,-1)=\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}, & \text { in case (a) } \\
E(p, 2 q,-1)=\left(\frac{2}{p}\right)_{4}\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}, & \text { in case (b) } \\
E(p, q,-2)=\left(\frac{2}{p}\right)_{4}\left(\frac{2}{q}\right)_{4}\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}, & \text { in case (c). }
\end{array}
$$

The corollary now follows by appealing to Scholz's law and the theorem.
We remark that this note was suggested by certain results in the literature (for example [1,2]). These results may be deduced from the above theorem or its corollary. We give just one example, namely [2, Theorem 4]. The assumption in [2] that $p^{v}=e^{2}-4 q f^{2}$ means that $p x^{2}+q y^{2}-z^{2}=0$ is solvable with $x=p^{(v-1) / 2}, y=2 f, z=e$. (In [2] it is assumed that $p \equiv 1$ $(\bmod 4)$ and $q \equiv 1(\bmod 4)$ are primes such that $(p / q)=+1, v$ is odd, and e, f are positive coprime integers.) By the corollary (case (a)) we have

$$
\left(\varepsilon_{p} / q\right)=(-1)^{f}(-1 / e)
$$

which becomes Lehmer's result

$$
\left(\varepsilon_{n} / q\right)=(-1 / e)
$$

under the further assumption $p \equiv 1(\bmod 8)$.
We close with a simple numerical example.
Example. By Legendre's criterion the equation

$$
\begin{equation*}
5 x^{2}+29 y^{2}-109 z^{2}=0 \tag{13}
\end{equation*}
$$

is solvable in integers x, y, z not all zero. Let (x, y, z) be a primitive solution of (13) with $x>0, y>0, z>0$. Clearly x, y, z satisfy

$$
x \equiv 0 \quad(\bmod 4), \quad y \equiv z \equiv 1 \quad(\bmod 2),
$$

or

$$
x \equiv z \equiv 1 \quad(\bmod 2), \quad y \equiv 0 \quad(\bmod 4),
$$

so that, in both cases, we have $x y \equiv 0(\bmod 4)$. Since $E(5,29,-109)=+1$, by the Theorem each primitive solution (x, y, z) of (13) with $x>0, y>0$, $z>0$ must have $z \equiv 1(\bmod 4)$. The solution $x=28, y=661, z=341$ shows that z may have prime factors $\equiv 3(\bmod 4)$.

References

1. P. Kaplan, Sur le 2 -groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1976), 313-363.
2. E. Lehmer, On some special quartic reciprocity laws, Acta Arith. 21 (1972), 367-377.
3. L. J. Mordell, "Diophantine Equations," Academic Press, New York, 1969.
4. T. Nagell, "Introduction to Number Theory," Almqvist \& Wiksells, Stockholm, 1951.
5. A. Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39 (1934), 95-111.

[^0]: * Research supported by Natural Sciences and Engineering Research Council Canada Grant A-7233.

