EXTENSIONS OF THEOREMS OF CUNNINGHAM-AIGNER AND HASSE-EVANS

Richard H. Hudson and Kenneth S. Williams

Abstract

If k is a positive integer and p is a prime with $p \equiv 1\left(\bmod 2^{k}\right)$, then $2^{(p-1) / 2^{k}}$ is a 2^{k} th root of unity modulo p. We consider the problem of determining $2^{(p-1) / 2^{k}}$ modulo p. This has been done for $k=1,2,3$ and the present paper treats $k=4$ and 5 , extending the work of Cunningham, Aigner, Hasse, and Evans.

1. Introduction. When $k=1$, we have the familiar result

$$
2^{(p-1) / 2} \equiv \begin{cases}+1(\bmod p), & \text { if } p \equiv 1,7(\bmod 8) \tag{1.1}\\ -1(\bmod p), & \text { if } p \equiv 3,5(\bmod 8)\end{cases}
$$

When $k=2$ and $p \equiv 1(\bmod 4)$, there are integers $a \equiv 1(\bmod 4)$ and $b \equiv 0(\bmod 2)$ such that $p=a^{2}+b^{2}$, with a and $|b|$ unique. If $b \equiv 0$ $(\bmod 4)($ so that $p \equiv 1(\bmod 8)$), Gauss $[8: \operatorname{p.~89]}($ see also [4], [16]) has shown that

$$
2^{(p-1) / 4} \equiv \begin{cases}+1(\bmod p), & \text { if } b \equiv 0(\bmod 8) \tag{1.2}\\ -1(\bmod p), & \text { if } b \equiv 4(\bmod 8)\end{cases}
$$

If $b \equiv 2(\bmod 4)($ so that $p \equiv 5(\bmod 8))$, we can choose $b \equiv-2(\bmod 8)$, by changing the sign of b, if necessary, and Gauss [8: p. 89] (see also [4], [11: p. 66], [16]) has shown that

$$
\begin{equation*}
2^{(p-1) / 4} \equiv-b / a(\bmod p) \tag{1.3}
\end{equation*}
$$

We note that $(-b / a)^{2} \equiv-1(\bmod \mathrm{p})$.
When $k=3$ and $p \equiv 1(\bmod 8)$, there are integers $a \equiv 1(\bmod 4)$ and $b \equiv 0(\bmod 4)$ such that $p=a^{2}+b^{2}$, with a and $|b|$ unique. Now $\left\{2^{(p-1) / 8}\right\}^{4}=2^{(p-1) / 2} \equiv 1(\bmod p)$, as $p \equiv 1(\bmod 8)$, so $2^{(\mathrm{p}-1) / 8}$ is a 4 th root of unity modulo p. If $b \equiv 0(\bmod 8)$, Reuschle [14] conjectured and Western [15] (see also [16]) proved that

$$
2^{(p-1) / 8} \equiv \begin{cases}(-1)^{(p-1) / 8}(\bmod p), & \text { if } b \equiv 0(\bmod 16) \tag{1.4}\\ (-1)^{(p+7) / 8}(\bmod p), & \text { if } b \equiv 8(\bmod 16)\end{cases}
$$

If $b \equiv 4(\bmod 8)$, we can choose $b \equiv 4(-1)^{(p+7) / 8}(\bmod 16)$, by changing the sign of b, if necessary, and Lehmer [11: p. 70] has shown that

$$
\begin{equation*}
2^{(p-1) / 8} \equiv-\frac{b}{a}(\bmod p) \tag{1.5}
\end{equation*}
$$

It is the purpose of this paper to treat the cases $k=4$ and 5 . For $k=4$ and $p \equiv 1(\bmod 16)$, there are integers $a \equiv 1(\bmod 4), b \equiv 0$ $(\bmod 4), c \equiv 1(\bmod 4), d \equiv 0(\bmod 2)$, such that $p=a^{2}+b^{2}=c^{2}$ $+2 d^{2}$, with $a,|b|, c,|d|$ unique. Now $\left\{2^{(p-1) / 16}\right\}^{8}=2^{(p-1) / 2} \equiv 1$ $(\bmod p)$, so $2^{(p-1) / 16}$ is an 8 th root of unity modulo p. Since

$$
\begin{equation*}
\left\{\frac{-(a+b) d}{a c}\right\}^{2} \equiv-b / a(\bmod p) \tag{1.6}
\end{equation*}
$$

the 8 th roots of unity $(\bmod p)$ are given by $\{-(a+b) d / a c\}^{n}, n=$ $0,1, \ldots, 7$. Making use of a congruence due to Hasse [9: p. 232] (see also [5: Theorem 3], [17: p. 411]), we prove in §2 the following extension of the criterion for 2 to be a 16 th power $(\bmod p)$, which was conjectured by Cunningham [3: p. 88] and first proved by Aigner [1] (see also [16: p. 373]).

Theorem 1. Let $p \equiv 1(\bmod 16)$ be a prime. Let $a \equiv 1(\bmod 4), b \equiv 0$ $(\bmod 4), c \equiv 1(\bmod 4), d \equiv 0(\bmod 2)$ be integers such that $p=a^{2}+b^{2}$ $=c^{2}+2 d^{2}$. It is well known that $b \equiv 0(\bmod 8) \Leftrightarrow d \equiv 0(\bmod 4)($ see for example [2: p. 68]). Then the values of $2^{(p-1) / 16}(\bmod p)$ are given in Table 1.

The case $b \equiv 0(\bmod 16)$ constitutes the criterion of CunninghamAigner.

For $k=5$ and $p \equiv 1(\bmod 32)$, there are integers $a \equiv 1(\bmod 4)$, $b \equiv 0(\bmod 4), c \equiv 1(\bmod 4), d \equiv 0(\bmod 2), x \equiv-1(\bmod 8), u \equiv v \equiv$ $w \equiv 0(\bmod 2)$, such that $p=a^{2}+b^{2}=c^{2}+2 d^{2}$ and

$$
\left\{\begin{array}{l}
p=x^{2}+2 u^{2}+2 v^{2}+2 w^{2} \tag{1.7}\\
2 x v=u^{2}-2 u w-w^{2}
\end{array}\right.
$$

with $a,|b|, c,|d|, x$ unique. If (x, u, v, w) is a solution of (1.7), then all solutions are given by $\pm(x, u, v, w), \pm(x,-u, v,-w), \pm(x, w,-v,-u)$, $\pm(x,-w,-v, u)$ (see for example [12: p. 366]). Now $\left\{2^{(p-1) / 32}\right\}^{16}=$ $2^{(p-1) / 2} \equiv+1(\bmod p)$, so $2^{(p-1) / 32}$ is a 16 th root of unity modulo p. Since

$$
\begin{equation*}
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{2} \equiv \frac{-(a+b) d}{a c} \quad(\bmod p) \tag{1.8}
\end{equation*}
$$

the 16 th roots of unity $(\bmod p)$ are given by

$$
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{n}, \quad n=0,1, \ldots, 15
$$

Making use of another congruence due to Hasse [9: p. 233] (see also [7: eqn. (2)]), we prove in $\S 3$ the following extension of the criterion for 2 to be a 32 nd power $(\bmod p)$ due to Hasse [9: p. 232-238] and Evans [6: Theorem 7].

Theorem 2.Let $p \equiv 1(\bmod 32)$ be a prime. Let $a \equiv 1(\bmod 4), b \equiv 0$ $(\bmod 4), c \equiv 1(\bmod 4), d \equiv 0(\bmod 2), x \equiv-1(\bmod 8), u \equiv v \equiv w \equiv 0$ $(\bmod 2)$, be integers such that $p=a^{2}+b^{2}=c^{2}+2 d^{2}$ and $p=x^{2}+$ $2 u^{2}+2 v^{2}+2 w^{2}, \quad 2 x v=u^{2}-2 u w-w^{2}$. Then the values $2^{(p-1) / 32}$ $(\bmod p)$ are given in Table 2.

Justification of the choices in the left-hand column of Table 2 is made in the proof of Theorem 2, which appears in $\S 3$. The cases $2^{(p-1) / 32} \equiv \pm 1$ $(\bmod p)$ constitute the criterion of Hasse-Evans.
2. Evaluation of $2^{(p-1) / 16}(\bmod p)$. Let p be a prime satisfying

$$
\begin{equation*}
p \equiv 1(\bmod 16) \tag{2.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
p=8 f+1 \tag{2.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
f \equiv 0(\bmod 2) \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\omega=\exp (2 \pi i / 8)=(1+i) / \sqrt{2} \tag{2.4}
\end{equation*}
$$

We note that the ring of integers of $Q(\omega)=Q(i, \sqrt{2})$ is a unique factorization domain (see for example [13]). In this ring p factors as a product of four primes. Denoting one of these by π, these four primes are $\pi_{j}=\sigma_{j}(\pi)$, $j=1,3,5,7$, where σ_{j} denotes the automorphism which maps ω to ω^{j}.

Let g be a primitive root $(\bmod p)$. Then $g^{(p-1) / 2} \equiv-1(\bmod p)$, and so

$$
\left(g^{f}-\omega\right)\left(g^{f}-\omega^{3}\right)\left(g^{f}-\omega^{5}\right)\left(g^{f}-\omega^{7}\right) \equiv 0\left(\bmod \pi_{1} \pi_{3} \pi_{5} \pi_{7}\right)
$$

Hence

$$
g^{f}-\omega^{j} \equiv 0\left(\bmod \pi_{1}\right)
$$

for some $j, j=1,3,5,7$, and by relabelling the π 's we may assume without loss of generality that

$$
\begin{equation*}
g^{f} \equiv \omega(\bmod \pi) \tag{2.5}
\end{equation*}
$$

Given g, π (apart from units) is uniquely determined by (2.5). Next we define a character $\chi(\bmod p)$ (depending upon $g)$ of order 8 by setting

$$
\begin{equation*}
\chi(g)=\omega \tag{2.6}
\end{equation*}
$$

For $r, s=0,1,2, \ldots, 7$ the Jacobi $\operatorname{sum} J(r, s)$ is defined by

$$
\begin{equation*}
J(r, s)=\sum_{n(\bmod p)} \chi^{r}(n) \chi^{s}(1-n) \tag{2.7}
\end{equation*}
$$

It is known that (see for example [7: §1])

$$
\begin{equation*}
J(2,2)=-a+b i \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
p=a^{2}+b^{2}, \quad a \equiv 1(\bmod 4) \tag{2.9}
\end{equation*}
$$

and that

$$
\begin{equation*}
J(1,3)=-c+d i \sqrt{2} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
p=c^{2}+2 d^{2}, \quad c \equiv 1(\bmod 4) \tag{2.11}
\end{equation*}
$$

It is easy to check that replacing the primitive root g by the primitive root $g^{8 s+t}$, where $t=1,3,5,7$ and $(8 s+t, f)=1$, has the effect in (2.8) of replacing b by $(-1 / t) b$ and in (2.10) of replacing d by $(-2 / t) d$.

Our proof depends upon the following important congruence due to Hasse [9: p. 232]

$$
\begin{equation*}
b \equiv 4 d+2 m(\bmod 32) \tag{2.12}
\end{equation*}
$$

where m is the least positive integer such that

$$
\begin{equation*}
g^{m} \equiv 2(\bmod p) \tag{2.13}
\end{equation*}
$$

and b and d are given by (2.8) and (2.10) respectively. From (2.12) and (2.13) we obtain

$$
\begin{equation*}
2^{(p-1) / 16}=2^{f / 2} \equiv g^{m f / 2} \equiv g^{f(b / 4-d)}(\bmod p) \tag{2.14}
\end{equation*}
$$

It follows from (2.5) and (2.6) that

$$
\begin{equation*}
\chi(n) \equiv n^{f}(\bmod \pi) \tag{2.15}
\end{equation*}
$$

for any integer n not divisible by p. Hence, for non-negative integers r and s satisfying $0 \leq r+s<8$, we have

$$
\begin{aligned}
J(r, s) & \equiv \sum_{n=0}^{p-1} n^{r f}(1-n)^{s f}(\bmod \pi) \\
& \equiv \sum_{n=0}^{p-1} n^{r f} \sum_{j=0}^{s f}\binom{s f}{j}(-1)^{j} n^{j}(\bmod \pi) \\
& \equiv \sum_{j=0}^{s f}\binom{s f}{j}(-1)^{j} \sum_{n=0}^{p-1} n^{r f+j}(\bmod \pi)
\end{aligned}
$$

that is

$$
\begin{equation*}
J(r, s) \equiv 0(\bmod \pi) \tag{2.16}
\end{equation*}
$$

as

$$
\begin{equation*}
\sum_{n=0}^{p-1} n^{k} \equiv 0(\bmod p), \text { for } k=0,1, \ldots, p-2 \tag{2.17}
\end{equation*}
$$

Taking $(r, s)=(2,2)$ and $(1,3)$ in (2.16), we have, by (2.8) and (2.10),

$$
\begin{equation*}
i \equiv a / b(\bmod \pi), i \sqrt{2} \equiv c / d(\bmod \pi) \tag{2.18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sqrt{2} \equiv-a c / b d(\bmod \pi) \tag{2.19}
\end{equation*}
$$

Hence we have, appealing to (2.5), (2.18) and (2.19),

$$
g^{f} \equiv \omega=\frac{1+i}{\sqrt{2}} \equiv-\frac{(a+b) d}{a c}(\bmod \pi)
$$

and, since g^{f} and $-(a+b) d / a c$ are integers $(\bmod p)$, we have

$$
\begin{equation*}
g^{f} \equiv-\frac{(a+b) d}{a c}(\bmod p) \tag{2.20}
\end{equation*}
$$

Appealing to (2.14) we get

$$
\begin{equation*}
2^{(p-1) / 16} \equiv\left\{\frac{-(a+b) d}{a c}\right\}^{(b / 4)-d}(\bmod p) \tag{2.21}
\end{equation*}
$$

We consider three cases:
(i) $2^{(p-1) / 4} \equiv-1(\bmod p)$,
(ii) $2^{(p-1) / 4} \equiv+1,2^{(p-1) / 8} \equiv-1(\bmod p)$,
(iii) $2^{(p-1) / 8} \equiv+1(\bmod p)$.

Case (i). From (1.2) we have $b \equiv 4(\bmod 8)$. Then, from $p=a^{2}+b^{2}$, we obtain $a \equiv 1(\bmod 8)$ and $p \equiv 2 a+15(\bmod 32)$. The cyclotomic number $(0,7)_{8}$ is given by (see for example [10: p. 116])

$$
64(0,7)_{8}=p-7+2 a+4 c
$$

so $c \equiv 5(\bmod 8)$. Then, from $p=c^{2}+2 d^{2}$, we get $d \equiv 2(\bmod 4)$. Replacing g by an appropriate primitive root

$$
g^{8 s+t}(t=1,3,5,7 ;(8 s+t, f)=1)
$$

we may take $b \equiv-4 \equiv 12(\bmod 16)$ and $d \equiv 2(\bmod 8)$. Then, from (2.21), we obtain

$$
2^{(p-1) / 16} \equiv \begin{cases}-\frac{(a+b) d}{a c}(\bmod p), & \text { if } b \equiv 12(\bmod 32) \\ +\frac{(a+b) d}{a c}(\bmod p), & \text { if } b \equiv 28(\bmod 32)\end{cases}
$$

Case (ii). From (1.2) and (1.4) we have $b \equiv 8(\bmod 16)$. Then, from $p=a^{2}+b^{2}$, we obtain $a \equiv 1(\bmod 8)$ and $p \equiv 2 a-1(\bmod 32)$. The cyclotomic number (1, 2) ${ }_{8}$ is given by (see for example [10: p. 116])

$$
64(1,2)_{8}=p+1+2 a-4 c
$$

so $c \equiv 1(\bmod 8)$. Then, from $p=c^{2}+2 d^{2}$, we get $d \equiv 0(\bmod 4)$. Replacing g by an appropriate primitive root

$$
g^{8 s+t}(t=1,3 ;(8 s+t, f)=1)
$$

we may take $b \equiv 8(\bmod 32)$. Then as

$$
\left\{\frac{-(a+b) d}{a c}\right\}^{2} \equiv \frac{-b}{a}(\bmod p)
$$

we have from (2.21)

$$
2^{(p-1) / 16} \equiv \begin{cases}-b / a(\bmod p), & \text { if } d \equiv 0(\bmod 8) \\ +b / a(\bmod p), & \text { if } d \equiv 4(\bmod 8)\end{cases}
$$

Case (iii). From (1.4) we have $b \equiv 0(\bmod 16)$. Exactly as in Case (ii) we have $d \equiv 0(\bmod 4)$. Considering four cases according as $b \equiv$ $0,16(\bmod 32)$ and $d \equiv 0,4(\bmod 8)$ we obtain from (2.21)

$$
2^{(p-1) / 16} \equiv\left\{\begin{array}{rlrl}
+1(\bmod p), & \text { if } b & \equiv 0(\bmod 32), & \\
& d \equiv 0(\bmod 8) \\
& b & \equiv 16(\bmod 32), & \\
d \equiv 4(\bmod 8) \\
-1(\bmod p), & \text { if } b & \equiv 0(\bmod 32), & \\
& d \equiv 4(\bmod 8) \\
& b & \equiv 16(\bmod 32), & \\
\text { or } & d \equiv 0(\bmod 8)
\end{array}\right.
$$

This completes the proof of Theorem 1.
3. Evaluation of $2^{(p-1) / 32}(\bmod p)$. Let p be a prime satisfying

$$
\begin{equation*}
p \equiv 1(\bmod 32) \tag{3.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
p=16 f+1 \tag{3.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
f \equiv 0(\bmod 2) \tag{3.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\theta=\exp (2 \pi i / 16)=\frac{1}{2}\{\sqrt{2+\sqrt{2}}+i \sqrt{2-\sqrt{2}}\} \tag{3.4}
\end{equation*}
$$

Again, the ring of integers of $Q(\theta)$ is a unique factorization domain (see for example [13]). In this ring p factors as a product of eight primes. Denoting one of these by π, these eight primes are given by $\pi_{i}=\sigma_{i}(\pi)$, $i=1,3,5,7,9,11,13,15$, where σ_{i} denotes the automorphism which maps $\boldsymbol{\theta}$ to $\boldsymbol{\theta}^{\boldsymbol{i}}$.

Let g be a primitive root $(\bmod p)$. Then

$$
\left(g^{f}-\theta\right)\left(g^{f}-\theta^{3}\right) \cdots\left(g^{f}-\theta^{15}\right) \equiv 0\left(\bmod \pi_{1} \pi_{3} \cdots \pi_{15}\right)
$$

and, as before, we can choose $\pi_{1}=\pi$ (unique apart from units) so that

$$
\begin{equation*}
g^{f} \equiv \theta(\bmod \pi) \tag{3.5}
\end{equation*}
$$

We define a character $\Psi(\bmod p)$ of order 16 by setting

$$
\begin{equation*}
\Psi(g)=\theta \tag{3.6}
\end{equation*}
$$

and for $r, s=0,1,2, \ldots, 15$ we define the Jacobi $\operatorname{sum} J(r, s)$ by

$$
\begin{equation*}
J(r, s)=\sum_{n(\bmod p)} \psi^{r}(n) \psi^{s}(1-n) . \tag{3.7}
\end{equation*}
$$

It is known that (see for example [7: §1])

$$
\begin{array}{ll}
J(4,4)=-a+b i, & \text { where } p=a^{2}+b^{2}, \quad a \equiv 1(\bmod 4) \tag{3.8}\\
J(2,6)=-c+d i \sqrt{2}, & \text { where } p=c^{2}+2 d^{2}, \quad c \equiv 1(\bmod 4)
\end{array}
$$

and

$$
\begin{align*}
J(1,7) & =x+u i \sqrt{2-\sqrt{2}}+v \sqrt{2}+w i \sqrt{2+\sqrt{2}} \tag{3.10}\\
& =x+u\left(\theta+\theta^{7}\right)+v\left(\theta^{2}-\theta^{6}\right)+w\left(\theta^{3}+\theta^{5}\right)
\end{align*}
$$

where (see for example [5; eqn. (8)])

$$
\left\{\begin{array}{l}
p=x^{2}+2 u^{2}+2 v^{2}+2 w^{2}, \quad x \equiv-1(\bmod 8) \tag{3.11}\\
2 x v=u^{2}-2 u w-w^{2}
\end{array}\right.
$$

It is easy to check that u, v and w are all even. Applying the mapping $\theta \rightarrow \theta^{3}$ to (3.10), we obtain

$$
\begin{align*}
J(3,5) & =x-w i \sqrt{2-\sqrt{2}}-v \sqrt{2}+u i \sqrt{2+\sqrt{2}} \tag{3.12}\\
& =x-w\left(\theta+\theta^{7}\right)-v\left(\theta^{2}-\theta^{6}\right)+u\left(\theta^{3}+\theta^{5}\right)
\end{align*}
$$

Further, it is known (see [12: p. 366] and [6: eqn. (48)]) that a, b, c, d, x, u, v, w are related by

$$
\begin{equation*}
b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p) \tag{3.13}
\end{equation*}
$$

The effect on (3.8), (3.9), (3.10) of replacing the primitive root g by the primitive root $g^{16 s+t}$, where $t=1,3,5, \ldots, 15$ and $(16 s+t, f)=1$, is summarized below:

$$
\begin{array}{lllllllll}
g^{16 s+3} & a & b & c & d & x & u & v & w \tag{3.14}\\
g^{16 s+5} & a & -b & c & d & x & w & -v & -u \\
g^{16 s+7} & a & b & c & -d & x & w & -v & -u \\
g^{16 s+9} & a & -b & c & -d & x & u & v & w \\
g^{16 s+11} & a & b & c & d & x & -u & v & -w \\
g^{16 s+13} & a & -b & c & d & x & -w & -v & u \\
g^{16 s+15} & a & -b & c & -d & x & -w & -v & u \\
& -d & x & -u & v & -w
\end{array}
$$

The following important congruence relating b, d, u and w has been proved by Hasse [9: p. 233]

$$
\begin{equation*}
b+4 d-8(u+w) \equiv 2 m(\bmod 64) \tag{3.15}
\end{equation*}
$$

where m satisfies (2.13). From (2.13) and (3.15), we obtain

$$
\begin{equation*}
2^{(p-1) / 32}=2^{f / 2} \equiv g^{m f / 2} \equiv g^{f(b / 4)+d-2(u+w))}(\bmod p) \tag{3.16}
\end{equation*}
$$

As in $\S 2$, if r and s are non-negative integers satisfying $0 \leq r+s<16$, we have

$$
\begin{equation*}
J(r, s) \equiv 0(\bmod \pi) \tag{3.17}
\end{equation*}
$$

Thus, in particular, taking $(r, s)=(4,4),(2,6),(1,7)$, and $(3,5)$, in (3.17), we obtain

$$
\begin{align*}
& -a+b i \equiv 0(\bmod \pi) \tag{3.18}\\
& -c+d i \sqrt{2} \equiv 0(\bmod \pi) \tag{3.19}
\end{align*}
$$

$$
\begin{align*}
& x+u i \sqrt{2-\sqrt{2}}+v \sqrt{2}+w i \sqrt{2+\sqrt{2}} \equiv 0(\bmod \pi) \tag{3.20}\\
& x-w i \sqrt{2-\sqrt{2}}-v \sqrt{2}+u i \sqrt{2+\sqrt{2}} \equiv 0(\bmod \pi) \tag{3.21}
\end{align*}
$$

From (3.18) and (3.19) we get

$$
\begin{gather*}
i \equiv a / b \quad(\bmod \pi), \quad i \sqrt{2} \equiv c / d \quad(\bmod \pi) \tag{3.22}\\
\sqrt{2} \equiv-\frac{a c}{b d}(\bmod \pi)
\end{gather*}
$$

Solving (3.20) and (3.21) simultaneously for $\sqrt{2+\sqrt{2}}$ and $\sqrt{2-\sqrt{2}}$ $(\bmod \pi)$, and making use of (3.22), we obtain

$$
\begin{equation*}
\sqrt{2 \pm \sqrt{2}} \equiv \frac{x(u \pm w) a d \mp v(u \mp w) b c}{b d\left(u^{2}+w^{2}\right)}(\bmod \pi) \tag{3.23}
\end{equation*}
$$

Then, from (3.4), (3.5), (3.22) and (3.23), we have

$$
\begin{equation*}
g^{f} \equiv \theta \equiv \frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}(\bmod \pi) \tag{3.24}
\end{equation*}
$$

Since both sides of (3.24) are integers $(\bmod p)$, we deduce that

$$
\begin{equation*}
g^{f} \equiv \frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}(\bmod p) \tag{3.25}
\end{equation*}
$$

Appealing to (3.16) we get

$$
\begin{equation*}
2^{(p-1) / 32} \equiv\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{(b / 4)+d-2(u+w)} \tag{3.26}
\end{equation*}
$$

We consider four cases:
(i) $2^{(p-1) / 4} \equiv-1(\bmod p)$,
(ii) $2^{(p-1) / 4} \equiv+1,2^{(p-1) / 8} \equiv-1(\bmod p)$,
(iii) $2^{(p-1) / 8} \equiv+1,2^{(p-1) / 16} \equiv-1(\bmod p)$,
(iv) $2^{(p-1) / 16} \equiv+1(\bmod p)$.

Case (i). From Case (i) of $\S 2$ we have $b \equiv 4(\bmod 8)$ and $d \equiv 2$ (mod 4). Next, from (2.12) and (3.15), we obtain

$$
u+w \equiv d \equiv 2(\bmod 4)
$$

so that

$$
(u, w) \equiv(0,2) \quad \text { or } \quad(2,0)(\bmod 4)
$$

Replacing g by an appropriate primitive root $g^{16 s+t}$ (where $t=1,3,5, \ldots$, 15 and $(16 s+t, f)=1)$, we can suppose that

$$
\begin{equation*}
b \equiv-4(\bmod 16), \quad u \equiv 0(\bmod 4), \quad w \equiv 2(\bmod 8) \tag{3.27}
\end{equation*}
$$

Exactly one 5-tuple (b, d, u, v, w) satisfies (3.13) and (3.27). Then, from $2 x v=u^{2}-2 u w-w^{2}$, we obtain (recalling $x \equiv-1(\bmod 8)$)

$$
\begin{equation*}
v \equiv 2 \quad(\bmod 8) \tag{3.28}
\end{equation*}
$$

From the work of Evans and Hill [7: Table 2a], we have

$$
\begin{equation*}
256\left\{(2,4)_{16}-(4,10)_{16}\right\}=32(v-d) \tag{3.29}
\end{equation*}
$$

so that, by (3.28),

$$
\begin{equation*}
d \equiv v \equiv 2 \quad(\bmod 8) \tag{3.30}
\end{equation*}
$$

The choice (3.27) makes the exponent $(b / 4)+d-2(u+w)$ in (3.26) congruent to $1(\bmod 4)$. We now consider cases according as $b \equiv 12,28$, $44,60(\bmod 64) ; d \equiv 2,10(\bmod 16) ; u \equiv 0,4(\bmod 8)$. For example, if $b \equiv 12(\bmod 64), d \equiv 2(\bmod 16), u \equiv 0(\bmod 8)$, then $(b / 4)+d-$ $2(u+w) \equiv 1(\bmod 16)$, so that (3.26) gives

$$
\begin{equation*}
2^{(p-1) / 32} \equiv \frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}(\bmod p) \tag{3.31}
\end{equation*}
$$

in this case. The other cases can be treated similarly, see Table 2 (VII).
Case (ii). From Case (ii) of $\S 2$, we have $b \equiv 8(\bmod 16)$ and $d \equiv 0$ (mod 4). Appealing to the work of Evans [5: Theorem 4 and its proof], we have

$$
\begin{equation*}
u \equiv 2(\bmod 4), \quad v \equiv 4(\bmod 8), \quad w \equiv 2(\bmod 4) \tag{3.32}
\end{equation*}
$$

$$
\text { if } d \equiv 0(\bmod 8)
$$

and

$$
\begin{align*}
& u \equiv 0(\bmod 4), \quad v \equiv 0(\bmod 8), \quad w \equiv 0(\bmod 4) \tag{3.33}\\
& \text { if } d \equiv 4(\bmod 8)
\end{align*}
$$

If $d \equiv 0(\bmod 8)$, replacing g by $g^{16 s+t}$ (where $t=1,7,9,15$ and $(16 s+t, f)=1)$, as necessary, we can suppose that

$$
\begin{equation*}
b \equiv 8(\bmod 32), \quad w \equiv 2(\bmod 8) \tag{3.34}
\end{equation*}
$$

There are exactly two 5-tuples (b, d, u, v, w), which satisfy (3.13) and (3.34). These are

$$
(b, d, u, v, w) \quad \text { and } \quad(b,-d,-w,-v, u), \quad \text { if } u \equiv 2(\bmod 8)
$$

and

$$
(b, d, u, v, w) \quad \text { and } \quad(b,-d, w,-v,-u), \quad \text { if } u \equiv 6(\bmod 8)
$$

We note that the 16 th root of unity modulo p,

$$
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{b / 4+d-2(u+w)}
$$

is independent of which 5-tuple is used, since

$$
\begin{gathered}
\left\{\frac{((-d) x+c(-v))(a(\mp w \pm u)-b(\mp w \mp u))}{2 b(-d)\left((\mp w)^{2}+(\pm u)^{2}\right)}\right\}^{(b / 4)-d-2(\mp w \pm u)} \\
=\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{A}
\end{gathered}
$$

where

$$
A= \begin{cases}13\left(\frac{b}{4}-d-2 u+2 w\right), & \text { if } u \equiv 2(\bmod 8) \\ 5\left(\frac{b}{4}-d+2 u-2 w\right), & \text { if } u \equiv 6(\bmod 8)\end{cases}
$$

moreover,

$$
\begin{aligned}
& 13\left(\frac{b}{4}-d-2 u+2 w\right)-\left(\frac{b}{4}+d-2 u-2 w\right) \\
& =3 b-14 d-24 u+28 w \equiv 0 \quad(\bmod 16) \\
& 5\left(\frac{b}{4}-d+2 u-2 w\right)-\left(\frac{b}{4}+d-2 u-2 w\right) \\
& =b-6 d+12 u-8 w \equiv 0 \quad(\bmod 16)
\end{aligned}
$$

so that

$$
A \equiv \frac{b}{4}+d-2(u+w)(\bmod 16)
$$

The choice (3.34) makes the exponent $(b / 4)+d-2(u+w)$ in (3.26) congruent to $2(\bmod 8)$. We now consider cases according as $b \equiv$ $8,40(\bmod 64) ; d \equiv 0,8(\bmod 16) ; u \equiv 2,6(\bmod 8)$. For example if $b \equiv$ $8(\bmod 64), d \equiv 0(\bmod 16), u \equiv 6(\bmod 8)$, then $(b / 4)+d-$ $2(u+w) \equiv 2(\bmod 16)$, so (3.26) gives

$$
\begin{align*}
2^{(p-1) / 32} & \equiv\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{2}(\bmod p) \tag{3.35}\\
& \equiv \frac{-(a+b) d}{a c}(\bmod p)
\end{align*}
$$

see Table 2(VI). We remark that in applying Theorem 2 in this case, d must be chosen to satisfy the congruence (3.13). We can do this as $x^{2}-2 v^{2} \neq 0(\bmod p)$, since

$$
-p=-x^{2}-2 u^{2}-2 v^{2}-2 w^{2}<x^{2}-2 v^{2} \leq x^{2}<p .
$$

If $d \equiv 4(\bmod 8)$, replacing g by $g^{16 s+t}$ (where $t=1,3,5$ or 7 and $(16 s+t, f)=1)$, as necessary, we can suppose that

$$
\begin{equation*}
b \equiv-8 \equiv 24(\bmod 32), \quad d \equiv 4(\bmod 16) \tag{3.36}
\end{equation*}
$$

There are precisely two 5 -tuples (b, d, u, v, w), which satisfy (3.13) and (3.36). These are

$$
(b, d, u, v, w) \quad \text { and } \quad(b, d,-u, v,-w)
$$

We note that the 16 th root of unity modulo p,

$$
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{(b / 4)+d-2(u+w)}
$$

is independent of which 5-tuple is chosen, since

$$
\begin{gathered}
\left\{\frac{(d x+c v)(a(-u-w)-b(-u+w))}{2 b d\left((-u)^{2}+(-w)^{2}\right)}\right\}^{(b / 4)+d-2(-u-w)} \\
=\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{B}
\end{gathered}
$$

where

$$
B=9\left(\frac{b}{4}+d+2 u+2 w\right) \equiv \frac{b}{4}+d-2(u+w)(\bmod 16)
$$

The choice (3.36) makes the component $(b / 4)+d-2(u+w)$ in (3.26) congruent to $2(\bmod 8)$. We now consider cases according as $b \equiv 24,56$ $(\bmod 64) ; u+w \equiv 0,4(\bmod 8)$. For example, if $b \equiv 56(\bmod 64)$, $u+w \equiv 4(\bmod 8)$, then $(b / 4)+d-2(u+w) \equiv 10(\bmod 16)$, so (3.26) gives

$$
\begin{align*}
2^{(p-1) / 32} & \equiv\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{10}(\bmod p) \tag{3.37}\\
& \equiv\left\{\frac{-(a+b) d}{a c}\right\}^{5}(\bmod p) \\
& \equiv \frac{+(a+b) d}{a c}(\bmod p)
\end{align*}
$$

see Table 2(V). However, when applying Theorem 2 in this case, it is not necessary to use the congruence $b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)$ $(\bmod p)$ to distinguish the solutions $(x, \pm u, v, \pm w)$ from the solutions $(x, \pm w,-v, \mp u)$. since $\pm w \mp u \equiv \pm(u+w)(\bmod 8)$, as $u \equiv w \equiv 0$ $(\bmod 4)$.

Case (iii) From Case (iii) of $\S 2$ we have

$$
\begin{equation*}
b \equiv 0(\bmod 32), \quad d \equiv 4(\bmod 8) \tag{3.38}
\end{equation*}
$$

or

$$
\begin{equation*}
b \equiv 16(\bmod 32), \quad d \equiv 0(\bmod 8) \tag{3.39}
\end{equation*}
$$

If $b \equiv 0(\bmod 32), d \equiv 4(\bmod 8)$, from the work of Evans [5: Theorem 4 and its proof], we have

$$
\begin{equation*}
u \equiv 2(\bmod 4), \quad v \equiv 4(\bmod 8), w \equiv 2(\bmod 4) \tag{3.40}
\end{equation*}
$$

Replacing g by $g^{16 s+t}$, where $t=1,7,9$ or 15 and $(16 s+t, f)=1$, as necessary, we can suppose that

$$
\begin{equation*}
d \equiv 4(\bmod 16), w \equiv 2(\bmod 8) \tag{3.41}
\end{equation*}
$$

There are exactly two 5-tuples (b, d, u, v, w) which satisfy (3.13) and (3.41). These are

$$
(b, d, u, v, w) \quad \text { and } \quad(-b, d,-w,-v, u), \quad \text { if } u \equiv 2(\bmod 8)
$$

and

$$
(b, d, u, v, w) \quad \text { and } \quad(-b, d, w,-v,-u), \quad \text { if } u \equiv 6(\bmod 8)
$$

We note that the 16 th root of unity modulo p,

$$
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{(b / 4)+d-2(u+w)}
$$

is independent of which 5-tuple is used, since

$$
\begin{gathered}
\left\{\frac{(d x+c(-v))(a(\mp w \pm u)+b(\mp w \mp u))}{\left.2(-b) d\left((\mp w)^{2}+(\mp u)^{2}\right)\right)}\right\}^{(-b / 4)+d-2(\mp w \pm u)} \\
=\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{c}
\end{gathered}
$$

where

$$
C= \begin{cases}11\left(-\frac{b}{4}+d-2 u+2 w\right), & \text { if } u \equiv 2(\bmod 8) \\ 3\left(-\frac{b}{4}+d+2 u-2 w\right), & \text { if } u \equiv 6(\bmod 8)\end{cases}
$$

and it is easily checked that

$$
C \equiv \frac{b}{4}+d-2(u+w) \quad(\bmod 16)
$$

Clearly, from (3.38) and (3.40), we have $(b / 4)+d-2(u+w) \equiv 4$ $(\bmod 8)$, and we determine $(b / 4)+d-2(u+w)(\bmod 16)$ by considering the cases $b \equiv 0,32(\bmod 64)$ and $u \equiv 2,6(\bmod 8)$. For example, if $b \equiv 0(\bmod 64)$ and $u \equiv 6(\bmod 8)$, we have $(b / 4)+d-2(u+w) \equiv 4$ $(\bmod 16)$, so by (3.26), (1.6) and (1.8),

$$
\begin{align*}
2^{(p-1) / 32} & \equiv\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{4} \tag{3.42}\\
& \equiv-\frac{b}{a}(\bmod p)
\end{align*}
$$

see Table 2 (III). In applying Theorem 2 in this case we must use the congruence $b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p)$ to distinguish the solutions $(x, \pm u, v, \pm w)$ from the solutions $(x, \mp w,-v, \pm u)$.

If $b \equiv 16(\bmod 32), d \equiv 0(\bmod 8)$, from the work of Evans [5: Theorem 4 and its proof], we have

$$
\begin{equation*}
u \equiv 0(\bmod 4), \quad v \equiv 0(\bmod 8), \quad w \equiv 0(\bmod 4) \tag{3.43}
\end{equation*}
$$

Replacing g by $g^{16 s+t}$, where $t=1$ or 7 and $(16 s+t, f)=1$, as necessary, we may suppose that

$$
\begin{equation*}
b \equiv 16(\bmod 64) \tag{3.44}
\end{equation*}
$$

There are exactly four 5 -tuples (b, d, u, v, w), which satisfy (3.13) and (3.44). These are

$$
(b, d, \pm u, v, \pm w), \quad(b,-d, \pm w,-v, \mp u)
$$

We note as before that the 16th root of unity modulo p,

$$
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{(b / 4)+d-2(u+w)}
$$

is independent of which 5-tuple is used.

Clearly, from (3.39) and (3.43), we have $(b / 4)+d-2(u+w) \equiv 4$ $(\bmod 8)$, and we determine $(b / 4)+d-2(u+w)(\bmod 16)$ by considering the cases $d \equiv 0,8(\bmod 16)$ and $u+w \equiv 0,4(\bmod 8)$. For example, if $d \equiv 0(\bmod 16)$ and $u+w \equiv 4(\bmod 8)$, then $(b / 4)+d-2(u+w) \equiv 12$ $(\bmod 16)$, so by (3.26), (1.6) and (1.8),

$$
\begin{align*}
2^{(p-1) / 32} & \equiv\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{12} \tag{3.45}\\
& \equiv+\frac{b}{a}(\bmod p)
\end{align*}
$$

see Table 2(IV). When applying Theorem 2 in this case, we can use any one of the four solutions $(x, \pm u, v, \pm w),(x, \pm w,-v, \mp u)$, as $\pm w \mp u \equiv \pm(u+w)(\bmod 8)$.

Case (iv). As $2^{(p-1) / 16} \equiv 1(\bmod p)$, from Table 1, we have

$$
\begin{equation*}
b \equiv 0(\bmod 32), \quad d \equiv 0(\bmod 8) \tag{3.46}
\end{equation*}
$$

or

$$
\begin{equation*}
b \equiv 16(\bmod 32), \quad d \equiv 4(\bmod 8) \tag{3.47}
\end{equation*}
$$

If $b \equiv 0(\bmod 32), d \equiv 0(\bmod 8)$, appealing to the work of Evans [5: Theorem 4 and its proof], we have

$$
\begin{equation*}
u \equiv 0(\bmod 4), \quad v \equiv 0(\bmod 8), \quad w \equiv 0(\bmod 4) \tag{3.48}
\end{equation*}
$$

There are exactly eight 5 -tuples which satisfy (3.13) and (3.48), namely,

$$
\begin{gathered}
(b, d, \pm u, v, \pm w), \quad(b,-d, \pm w,-v, \mp u) \\
(-b, d, \pm w,-v, \mp u), \\
(-b,-d, \pm u, v, \pm w)
\end{gathered}
$$

It is straightforward to check that

$$
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{(b / 4)+d-2(u+w)}
$$

is the same for all of these. The exponent $(b / 4)+d-2(u+w)$ is congruent to $0(\bmod 8)$. It is easily determined modulo 16 by considering the cases $b \equiv 0,32(\bmod 64), d \equiv 0,8(\bmod 16)$, and $u+w \equiv 0,4$ $(\bmod 8)$. For example, if $b \equiv 0(\bmod 64), d \equiv 0(\bmod 16), u+w \equiv 4$ $(\bmod 8)$, we have $b / 4+d-2(u+w) \equiv 8(\bmod 16)$ so that, by (1.6), (1.8) and (3.26),

$$
2^{(p-1) / 32} \equiv\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{8} \equiv-1(\bmod p)
$$

see Table 2 (I). As noted by Evans [6: Comments following Theorem 7], it is unnecessary to use the congruence $b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)$ $(\bmod p)$ when applying Theorem 2 in this case.

Finally if $b \equiv 16(\bmod 32), d \equiv 4(\bmod 8)$, appealing to the work of Evans [5: Theorem 4 and its proof], we have

$$
u \equiv 2(\bmod 4), \quad v \equiv 4(\bmod 8), \quad w \equiv 2(\bmod 4)
$$

Replacing g by $g^{16 s+t}$, where $t=1,3,5$ or 7 and $(16 s+t, f)=1$, as appropriate, we can choose

$$
\begin{equation*}
b \equiv 16(\bmod 64), \quad d \equiv 4(\bmod 16) \tag{3.49}
\end{equation*}
$$

There are two 5-tuples (b, d, u, v, w) satisfying (3.13) and (3.49), namely,

$$
(b, d, \pm u, v, \pm w)
$$

and again it is easy to check that

$$
\begin{gathered}
\left\{\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}\right\}^{(b / 4)+d-2(u+w)} \\
=\left\{\frac{(d x+c v)(a(-u-w)-b(-u+w))}{2 b d\left((-u)^{2}+(-w)^{2}\right)}\right\}^{(b / 4)+d-2(-u-w)}
\end{gathered}
$$

Now

$$
\frac{b}{4}+d-2(u+w) \equiv 8-2(u+w)(\bmod 16)
$$

so, by (3.26), we have

$$
2^{(p-1) / 32} \equiv \begin{cases}+1, & \text { if } u+w \equiv 4(\bmod 8) \\ -1, & \text { if } u+w \equiv 0(\bmod 8)\end{cases}
$$

see Table 2 (II). In applying Theorem 2 in this case, as noted by Evans [6: Comments following Theorem 7], it is necessary to use the congruence $b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p)$. This completes the proof of Theorem 2 .
4. Numerical examples. (a) $p=2113$ (see Table $2(\mathrm{I})$). We have

$$
\begin{gathered}
(a, b)=(33, \pm 32) ; \quad a \equiv 1(\bmod 4) \\
(c, d)=(-31, \pm 24) ; \quad c \equiv 1(\bmod 4) \\
(x, u, v, w)=(-17, \pm 28,-8, \pm 8) \quad \text { or }(-17, \pm 8,+8, \mp 28) \\
x \equiv-1 \quad(\bmod 8)
\end{gathered}
$$

For each choice we have

$$
b \equiv 32(\bmod 64), \quad d \equiv 8(\bmod 16), \quad u+w \equiv 4(\bmod 8)
$$

so by Theorem 2(I), we have

$$
2^{(p-1) / 32}=2^{66} \equiv-1 \quad(\bmod 2113)
$$

(b) $p=257$ (see Table 2 (II)). We have

$$
\begin{gathered}
(a, b)=(1,16) ; \quad a \equiv 1(\bmod 4), \quad b \equiv 16(\bmod 64) \\
(c, d)=(-15,4) ; \quad c \equiv 1(\bmod 4), \quad d \equiv 4(\bmod 16) \\
(x, u, v, w)=(-9, \pm 6,-4, \mp 6) \text { or } \quad(-9, \pm 6,+4, \pm 6) \\
x \equiv-1(\bmod 8)
\end{gathered}
$$

The congruence $b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p)$ is satisfied by $(x, u, v, w)=(-9, \pm 6,-4, \mp 6)$. As $u+w \equiv 0(\bmod 8)$, by Theorem 2(II), we have

$$
2^{(p-1) / 32}=2^{8} \equiv-1(\bmod 257)
$$

(c) $p=1249$ (see Table 2(III)). We have

$$
\begin{gathered}
(a, b)=(-15,32) \quad \text { or }(-15,-32) \\
a \equiv 1(\bmod 4), \quad b \equiv 0(\bmod 32) \\
(c, d)=(-31,-12) ; \quad c \equiv 1(\bmod 4), \quad d \equiv 4(\bmod 16) \\
(x, u, v, w)=(7,10,4,-22) \quad \text { or }(7,22,-4,10) \\
x \equiv-1(\bmod 8), \quad w \equiv 2(\bmod 8)
\end{gathered}
$$

The congruence $b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p)$ is satisfied by $(a, b)=(-15,32)$ and $(x, u, v, w)=(7,22,-4,10)$ or by $(a, b)=(-15,-32)$ and $(x, u, v, w)=(7,10,4,-22)$. Hence, by Theorem 2, taking $b=32, u=22 \equiv 6(\bmod 8)$, we have

$$
2^{(p-1) / 32}=2^{39} \equiv+b / a \equiv 32 /-15 \equiv 664(\bmod 1249)
$$

taking $b=-32, u=10 \equiv 2(\bmod 8)$, we have

$$
2^{(p-1) / 32}=2^{39} \equiv-b / a \equiv 32 /-15 \equiv 664(\bmod 1249)
$$

(d) $p=1217$ (see Table 2 (IV)). We have

$$
\begin{gathered}
(a, b)=(-31,16) ; \quad a \equiv 1(\bmod 4), \quad b \equiv 16(\bmod 64) \\
(c, d)=(33,+8) \quad \text { or }(33,-8) ; \quad c \equiv 1(\bmod 4) \\
(x, u, v, w)=(-17, \pm 12,-8, \mp 16), \quad(-17, \pm 16,+8, \pm 12) \\
x \equiv-1(\bmod 8)
\end{gathered}
$$

As $d \equiv 8(\bmod 16)$ and $u+w \equiv 4(\bmod 8)($ for each possibility $)$, we have, by Theorem 2,

$$
2^{(p-1) / 32}=2^{38} \equiv-b / a \equiv 16 / 31 \equiv 1139(\bmod 1217)
$$

(e) $p=577$ (see Table $2(\mathrm{~V})$). We have

$$
\begin{gathered}
(a, b)=(1,24) ; \quad a \equiv 1(\bmod 4), \quad b \equiv 24(\bmod 32) \\
(c, d)=(17,-12) ; \quad c \equiv 1(\bmod 4), \quad d \equiv 4(\bmod 16) \\
(x, u, v, w)=(-1, \pm 4,-16, \mp 4) \quad \text { or } \quad(-1, \pm 4,+16, \pm 4)
\end{gathered}
$$

As $b \equiv 24(\bmod 64), u+w \equiv 0(\bmod 8)$, by Theorem 2(V), we have

$$
2^{(p-1) / 32}=2^{18} \equiv+\frac{(a+b) d}{a c} \equiv \frac{-300}{17} \equiv 186(\bmod 577)
$$

(f) $p=353$ (see Table 2 (VI)). We have

$$
\begin{gathered}
(a, b)=(17,8) ; \quad a \equiv 1(\bmod 4), \quad b \equiv 8(\bmod 32) \\
(c, d)=(-15,8) \quad \text { or } \quad(-15,-8) ; \quad c \equiv 1(\bmod 4) \\
(x, u, v, w)=(7,-10,-4,-6) \quad \text { or }(7,-6,4,10) \\
x \equiv-1(\bmod 8), \quad w \equiv 2(\bmod 8)
\end{gathered}
$$

The congruence $b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p)$ is satisfied by $(c, d)=(-15,8)$ and $(x, u, v, w)=(7,-10,-4,-6)$, or by $(c, d)=$ $(-15,-8)$ and $(x, u, v, w)=(7,-6,4,10)$. Hence, by Theorem 2, taking the first possibility, we have $b \equiv 8(\bmod 64), d \equiv 8(\bmod 16), u=-10 \equiv 6$ $(\bmod 8)$, so

$$
2^{(p-1) / 32}=2^{11} \equiv \frac{(a+b) d}{a c} \equiv \frac{40}{-51} \equiv 283(\bmod 353)
$$

(g) $p=97$ (see Table 2 (VIII)). We have

$$
\begin{gathered}
(a, b)=(9,-4) ; \quad a \equiv 1(\bmod 4), \quad b \equiv 12(\bmod 16) \\
(c, d)=(5,-6) ; \quad c \equiv 1(\bmod 4), \quad d \equiv 2(\bmod 8) \\
(x, u, v, w)=(7,-4,2,2) ; \quad x \equiv-1(\bmod 8), \quad w \equiv 2(\bmod 8)
\end{gathered}
$$

As $b \equiv 60(\bmod 64), d \equiv 10(\bmod 16), u \equiv 4(\bmod 8)$, by Theorem $2(\mathrm{VII})$, we have

$$
2^{(p-1) / 32}=2^{3} \equiv \frac{(-32)(-46)}{(48)(20)} \equiv \frac{23}{15} \equiv 8(\bmod 97)
$$

5. Acknowledgement. We wish to thank Mr. Lee-Jeff Bell for doing some calculations for us in connection with the preparation of this paper.
Table 1

b	d	Cases	$2^{(p-1) / 16}(\bmod p)$	Examples
$b \equiv 0(\bmod 16)$	$d \equiv 0(\bmod 4)$	$\begin{gathered} b \equiv 0(\bmod 32), d \equiv 0(\bmod 8) \\ \text { or } \\ b \equiv 16(\bmod 32), d \equiv 4(\bmod 8) \end{gathered}$	+1	$\begin{aligned} & p=2113 \\ & p=257 \end{aligned}$
		$\begin{gathered} b \equiv 0(\bmod 32), d \equiv 4(\bmod 8) \\ \text { or } \\ b \equiv 16(\bmod 32), d \equiv 0(\bmod 8) \end{gathered}$	-1	$\begin{aligned} & p=1249 \\ & p=1217 \end{aligned}$
$\begin{gathered} b \equiv 8(\bmod 16) \\ b \text { chosen } \equiv 8(\bmod 32) \end{gathered}$		$d \equiv 0(\bmod 8)$	$-b / a$	$p=353$
		$d \equiv 4(\bmod 8)$	$+b / a$	$p=113$
	$\begin{gathered} d \equiv 2(\bmod 4) \\ d \text { chosen } \equiv 2(\bmod 8) \end{gathered}$	$b \equiv 12(\bmod 32)$	$\frac{-(a+b) d}{a c}$	$p=193$
b chosen $\equiv 12(\bmod 16)$		$b \equiv 28(\bmod 32)$	$\frac{+(a+b) d}{a c}$	$p=17$

Table 2

	$b(\bmod 64), d(\bmod 16), u(\bmod 8), u+w(\bmod 8)$	$2^{(p-1) / 32}(\bmod p)$
I $\quad b \equiv 0(32), d \equiv 0(8)$	$(b, d, u+w) \equiv(0,0,0),(0,8,4),(32,0,4),(32,8,0)$	+1
	Examples $p=47713,10657,31649,50753$	
	$(b, d, u+w) \equiv(0,0,4),(0,8,0),(32,0,0),(32,8,4)$	-1
	Examples $p=25121,18593,51137,2113$	
$\begin{aligned} & \\ & \text { II } \equiv 16(32), d \equiv 4(8) \\ & \text { Choose }\end{aligned}$	$u+w \equiv 4$	+1
	Example $p=2593$	
	$u+w \equiv 0$	-1
	Example $p=257$	
$\begin{gathered} b \equiv 0(32), d \equiv 4(8) \\ \text { III } \\ \text { Choose } \\ d \equiv 4(16), w \equiv 2(8) \\ b d\left(x^{2}-2 v^{2}\right) \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p) \end{gathered}$	$(b, u) \equiv(0,6),(32,2)$	$-b / a$
	Examples $p=10337,1249$	
	$(b, u) \equiv(0,2),(32,6)$	$+b / a$
	Examples $p=10337,1249$	
	$(d, u+w) \equiv(0,0),(8,4)$	$-b / a$
	Examples $p=14753,1217$	
	$(d, u+w) \equiv(0,4),(8,0)$	$+b / a$
	Examples $p=4481,11329$	

V	$b \equiv 8(16), d \equiv 4(8)$	$(b, u+w) \equiv(56,0),(24,4)$	$\frac{-(a+b) d}{a c}$
		Examples $p=15361,1889$	
	Choose	$(b, u+w) \equiv(56,4),(24,0)$	$\frac{+(a+b) d}{a c}$
	$b \equiv 24(32), d \equiv 4(16)$	Examples $p=9377,577$	
VI	$b \equiv 8(16), d \equiv 0(8)$	$(b, d, u) \equiv(8,0,6),(8,8,2),(40,0,2),(40,8,6)$	$\frac{-(a+b) d}{a c}$
	Choose	Examples $p=2273,353,1601,13921$	
$\begin{aligned} b & \equiv 8(32), w \equiv 2(8) \\ b d\left(x^{2}-2 v^{2}\right) & \equiv a c\left(u^{2}+2 u w-w^{2}\right)(\bmod p)\end{aligned}$		$(b, d, u) \equiv(8,0,2),(8,8,6),(40,0,6),(40,8,2)$	$\frac{+(a+b) d}{a c}$
		Examples $p=2273,353,1601,13921$	
VII	$b \equiv 4(8), d \equiv 2(4)$	$(b, d, u) \equiv(12,2,0),(12,10,4),(44,2,4),(44,10,0)$	$\frac{(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}$
		Examples $p=673,10273,449,2081$	
		$(b, d, u) \equiv(28,2,0),(28,10,4),(60,2,4),(60,10,0)$	$-(d x+c v)(b(u+w)+a(u-w))$
	Choose	Examples $p=$?, 1409, 3041, 641	$2 b d\left(u^{2}+w^{2}\right)$
	$b \equiv 12(16), d \equiv 2(8), w \equiv 2(8)$	$(b, d, u) \equiv(12,2,4),(12,10,0),(44,2,0),(44,10,4)$	$\frac{-(d x+c v)(a(u+w)-b(u-w))}{2 b d\left(u^{2}+w^{2}\right)}$
		Examples $p=2753,193,5441,929$	
		$(b, d, u) \equiv(28,2,4),(28,10,0),(60,2,0),(60,10,4)$	$\underline{(d x+c v)(b(u+w)+a(u-w))}$
		Examples $p=15937,11489,4129,97$	$2 b d\left(u^{2}+w\right)$

References

1. A. Aigner, Kriterien zum 8. und 16. Potenzcharakter der Reste 2 und -2, Deutsche Math., 4 (1939), 44-52.
2. P. Barrucand and H. Cohn, Note on primes of type $x^{2}+32 y^{2}$, class number, and residuacity, J. Reine Angew. Math., 238 (1969), 67-70.
3. A. Cunningham, On 2 as a 16-ic residue, Proc. London Math. Soc., (1) 27 (1895/6), 85-122.
4. G. L. Dirichlet, Ueber den biquadratischen Charakter der Zahl "Zwei", J. Reine Angew. Math., 57 (1860), 187-188.
5. R. J. Evans, Resolution of sign ambiguities in Jacobi and Jacobsthal sums, Pacific J. Math., 81 (1979), 71-80.
6. \qquad , The 2^{r} th power character of 2, J. Reine Angew. Math., 315 (1980), 174-189.
7. R. J. Evans and J. R. Hill, The cyclotomic numbers of order sixteen, Math. Comp., 33 (1979), 827-835.
8. C. F. Gauss, Theoria residuorum biquadraticorum. I, Commentationes soc. reg. sc. Gotting. recentiores., 6 (1828), 27- . II. 7 (1832), 89- , (See Untersuchungen über Höhere Arithmetik, Chelsea Publ. Co. (N. Y.) (1965), 511-586.)
9. H. Hasse, Der 2^{n} te Potenzcharakter von 2 im Körper der 2^{n} ten Einheitswurzeln, Rend. Circ. Mat. Palermo, Serie II, 7 (1958), 185-244.
10. Emma Lehmer, On the number of solutions of $u^{k}+D \equiv w^{2}(\bmod p)$, Pacific J. Math., 5 (1955), 103-118.
11. _ On Euler's criterion, J. Austral. Math. Soc., 1 (1959), 64-70.
12. P. A. Leonard and K. S. Williams, A rational sixteenth power reciprocity law, Acta Arith., 33 (1977), 365-377.
13. J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math., 286/287 (1976), 248-256.
14. C. G. Reuschle, Mathematische Abhandlung, enthaltend neue Zahlentheoretische Tabellen, Programm zum Schlusse des Schuljahrs 1855-56 am Königlichen Gymnasium zu Stuttgart (1856), 61 pp .
15. A. E. Western, Some criteria for the residues of eighth and other powers, Proc. London Math., (2), 9 (1911), 244-272.
16. A. L. Whiteman, The sixteenth power residue character of 2, Canad. J. Math., 6 (1954), 364-373.
17. \qquad , The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc., 86 (1957), 401-413.

Received November 19, 1979 and in revised form August 18, 1981. Research supported by grant no. A-7233 of the Natural Sciences and Engineering Research Council Canada.

University of South Carolina
Columbia, SC U.S.A 29208
and
Carleton University
Ottawa, Ontario, Canada K1S 5B6

