Congruences Modulo 8 for the Class Numbers of $Q(\sqrt{ \pm p}), p \equiv 3(\bmod 4)$ a Prime

Kenneth S. Williams*
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
Communicated by H. Zassenhaus
Received December 15, 1980; revised May 7, 1981

A congruence modulo 8 is proved relating the class numbers of the quadratic fields $Q(\sqrt{p})$ and $Q(\sqrt{-p})$, where p is a prime congruent to 3 modulo 4 .

1. Introduction

Throughout this paper p denotes a prime (greater than 3) which is congruent to 3 modulo 4 . The class number of the quadratic field $Q(\sqrt{p})$ (resp. $Q(\sqrt{-p})$) is denoted by $h(p)$ (resp. $h(-p)$). It is well known that (see, for example, [2, p. 413; 3, p. 100])

$$
\begin{equation*}
h(p) \equiv h(-p) \equiv 1(\bmod 2) . \tag{1.1}
\end{equation*}
$$

In [7] the author determined a congruence (see (4.1) below) relating $h(p)$ and $h(-p)$ modulo 4. It is the purpose of this paper to determine congruences relating these class numbers modulo 8 . (The analogous problem for primes $p \equiv 1(\bmod 4)$ has been treated by the author elsewhere $\{5,7-11]$.)

2. The Fundamental Unit ε_{p}

The fundamental unit $\varepsilon_{p}(>1)$ of the real quadratic field $Q(\sqrt{p})$ is of the form (see, for example, [4, Sect. 7])

$$
\begin{equation*}
\varepsilon_{p}=T+U \sqrt{p}-\frac{1}{2}(R+S \sqrt{p})^{2}, \tag{2.1}
\end{equation*}
$$

[^0]where T and U are positive coprime integers which satisfy
\[

$$
\begin{equation*}
T \equiv 0(\bmod 2), \quad U \equiv 1(\bmod 2), \quad N\left(\varepsilon_{p}\right)=T^{2}-p U^{2}=+1 \tag{2.2}
\end{equation*}
$$

\]

and where R and S are positive coprime integers satisfying

$$
\begin{align*}
R \equiv S \equiv 1(\bmod 2), \quad R^{2}-p S^{2} & =-2, & & \text { if } p \equiv 3(\bmod 8) \\
& =+2, & & \text { if } p \equiv 7(\bmod 8) \tag{2.3}
\end{align*}
$$

Clearly T, U, R and S are related by

$$
\begin{equation*}
T=\frac{1}{2}\left(R^{2}+p S^{2}\right), \quad U=R S \tag{2.4}
\end{equation*}
$$

The integers R and S play a central role in everything that follows.

3. Congruences for R and S modulo 8

From (2.3) we have

$$
\begin{aligned}
& \left(\frac{-2}{S}\right)=\left(\frac{R^{2}-p S^{2}}{S}\right)=\left(\frac{R^{2}}{S}\right)=+1, \quad \text { if } \quad p \equiv 3(\bmod 8) \\
& \left(\frac{+2}{S}\right)=\left(\frac{R^{2}-p S^{2}}{S}\right)=\left(\frac{R^{2}}{S}\right)=+1, \quad \text { if } \quad p \equiv 7(\bmod 8)
\end{aligned}
$$

so that

$$
\begin{cases}S \equiv 1,3(\bmod 8), & \text { if } p \equiv 3(\bmod 8) \tag{3.1}\\ S \equiv 1,7(\bmod 8), & \text { if } p \equiv 7(\bmod 8)\end{cases}
$$

Then, from (2.3) and (3.1), we obtain
Lemma 1. (a) If $p \equiv 3(\bmod 16)$ then

$$
(R, S) \equiv(1,1),(3,3),(5,3) \quad \text { or } \quad(7,1)(\bmod 8)
$$

(b) If $p \equiv 7(\bmod 16)$ then

$$
(R, S) \equiv(3,1),(3,7),(5,1) \quad \text { or }(5,7)(\bmod 8)
$$

(c) If $p \equiv 11(\bmod 16)$ then

$$
(R, S) \equiv(1,3),(3,1),(5,1) \quad \text { or } \quad(7,3)(\bmod 8)
$$

(d) If $p \equiv 15(\bmod 16)$ then

$$
(R, S) \equiv(1,1),(1,7),(7,1) \quad \text { or } \quad(7,7)(\bmod 8) .
$$

4. Congruences Relating $h(p)$ and $h(-p)(\bmod 4)$

In [7] the author showed that

$$
\begin{equation*}
h(-p) \equiv h(p)+U+1(\bmod 4) . \tag{4.1}
\end{equation*}
$$

Appealing to (1.1), (2.3), (2.4) and (4.1) we obtain

Lemma 2. (a) If $R \equiv S(\bmod 4)$

$$
h(-p)+h(p) \equiv 0(\bmod 4) .
$$

(b) If $R \equiv-S(\bmod 4)$

$$
h(-p)-h(p) \equiv 0(\bmod 4) .
$$

 Main Theorem

It is the purpose of this paper to prove, by extending the ideas used in $[7]$, a more precise form of Lemma 2 . We prove

Theorem. (a) If $R \equiv S(\bmod 4)$

$$
h(-p)+h(p) \equiv R+S+2(-1)^{(p-3) / 4}(\bmod 8) .
$$

(b) If $R \equiv-S(\bmod 4)$

$$
h(-p)-h(p) \equiv R-S-2(\bmod 8) .
$$

The proof of this theorem is completed in Section 12, after a number of lemmas are proved in Sections 6-11. It uses the ideas of [7] but is much more complicated in its details.

6. THE POLYNOMIALS $F_{+}(z)$ AND $F_{-}(z)$

We set $\rho=\exp (2 \pi i / p)$ and, for z a complex variable, we define (as in [7])

$$
F_{+}(z)=\prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=+1}}^{p-1}\left(z-\rho^{j}\right), \quad F_{-}(z)=\prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=-1}}^{p-1}\left(z-\rho^{j}\right),
$$

so that
$F(z)=F_{+}(z) F_{-}(z)=\prod_{j=1}^{p-1}\left(z-\rho^{j}\right)=\frac{z^{p}-1}{z-1}=z^{p}{ }^{1}+z^{p \quad 2}+\cdots+1$.

It is easily checked that

$$
\begin{equation*}
F(1)=p, \quad F(-1)=1, \quad F(\pm i)= \pm i \tag{6.3}
\end{equation*}
$$

and

$$
\begin{gather*}
F^{\prime}(1)=\frac{1}{2} p(p-1), \quad F^{\prime}(-1)=-\frac{1}{2}(p-1) \\
F^{\prime}(\pm i)=\frac{1}{2}(p-1) \pm \frac{1}{2}(p+1) i \tag{6.4}
\end{gather*}
$$

7. Evaluation of $F_{ \pm}(-1)$ and $F_{ \pm}(\pm i)$

Throughout the rest of the paper the convention $\sqrt{-p}=i \sqrt{p}$ is used. We prove

Lemma. 3.

$$
\begin{aligned}
F_{+}(1) & =\left(-1^{1 / 2(h(-p)+1)} \sqrt{-p},\right. \\
F_{-}(1) & =(-1)^{1 / 2(h(-p)-1)} \sqrt{-p}, \\
F_{+}(-1) & =F_{-}(-1)=(-1)^{1 / 4(p-3)}, \\
F_{+}(i) & =\left\{\begin{array}{c}
\omega^{3}(-1)^{1 / 2(h(-p)+1)} \varepsilon_{p}^{-h(p) / 2}, \\
\text { if } p \equiv 3(\bmod 8) \\
\omega^{5} \varepsilon_{p}^{-h(p) / 2} \\
\text { if } p \equiv 7(\bmod 8)
\end{array}\right\}, \\
F_{-}(i) & =\left\{\begin{array}{c}
\omega^{7}(-1)^{1 / 2(h(-p)+1)} \varepsilon_{p}^{h(p) / 2}, \\
\text { if } p \equiv 3(\bmod 8) \\
\omega^{5} \varepsilon_{p}^{h(p) / 2}, \\
\text { if } \quad p \equiv 7(\bmod 8)
\end{array}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& F_{+}(-i)=\left\{\begin{array}{c}
\omega(-1)^{1 / 2(h(-p)+1)} \varepsilon_{p}^{h(p) / 2}, \\
\text { if } p \equiv 3(\bmod 8) \\
\omega^{3} \varepsilon_{p}^{h(p) / 2}, \quad \text { if } p \equiv 7(\bmod 8)
\end{array}\right\}, \\
& F_{-}(-i)=\left\{\begin{array}{c}
\omega^{5}(-1)^{1 / 2(h(-p)+1)} \varepsilon_{p}^{-h(p) / 2}, \\
\text { if } p \equiv 3(\bmod 8) \\
\omega^{3} \varepsilon_{p}^{-h(p) / 2}, \quad \text { if } p \equiv 7(\bmod 8)
\end{array}\right\},
\end{aligned}
$$

where $\omega=(1+i) / \sqrt{2}$ is an eighth root of unity.
Proof. We just give the details of the evaluation of $F_{-}(i)$ as the other cases are similar. From (6.1) we have (where the dash indicates that j is restricted to satisfy $\left.\left(\frac{j}{p}\right)=-1\right)$

$$
F_{-}(i)=\prod_{j=1}^{p-1}\left(i-\rho^{j}\right)=i^{1 / 2(p-1)} \prod_{j=1}^{p-1}\left(1+i \rho^{j}\right)
$$

As $i p^{j}(1 \leqslant j \leqslant p-1)$ is a root of unity (not equal to 1), we have

$$
\gamma_{j}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} i^{n} \rho^{j n}}{n}=\log \left(1+i \rho^{j}\right) \quad(j=1,2, \ldots, p-1)
$$

and so

$$
\exp \left(\gamma_{j}\right)=1+i p^{j}
$$

Thus we have

$$
\prod_{j=1}^{p-1}\left(1+i \rho^{j}\right)=\prod_{j=1}^{p-1} \exp \left(\gamma_{j}\right)=\exp \left({\sum_{j=1}^{p-1} \gamma_{j}}_{j^{\prime}}\right)
$$

Now

$$
\begin{aligned}
\sum_{j=1}^{p-1} \gamma_{j} & =\sum_{j=1}^{p-1} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} i^{n} \rho^{j n}}{n} \\
& =\sum_{n-1}^{\infty} \frac{(-1)^{n-1} i^{n}}{n} \sum_{j-1}^{p-1} \rho^{j n} \\
& =\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} i^{n}}{n}\left\{p-1-\left(\frac{n}{p}\right) \sqrt{-p}-\left(\frac{n}{p}\right)^{2} p\right\},
\end{aligned}
$$

where we have again used the evaluation of the Gauss sum in the form which includes $n \equiv 0(\bmod p)$. After a little simplification we obtain

$$
\sum_{j=1}^{p^{\prime},} \gamma_{j}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-i)^{n}-i^{n}}{n}+\frac{1}{2} \sqrt{-p} \sum_{n=1}^{\infty} \frac{(-i)^{n}}{n}\left(\frac{n}{p}\right) .
$$

Now

$$
\sum_{n=1}^{\infty} \frac{(-i)^{n}-i^{n}}{n}=-2 i \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=-\frac{\pi i}{2}
$$

and

$$
\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n}\left(\frac{n}{p}\right)=\frac{1}{2}\left(\frac{2}{p}\right) \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(\frac{n}{p}\right)-i \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left(\frac{2 n+1}{p}\right) .
$$

From Dirichlet's class number formulae for $Q(\sqrt{-p})$ and $Q(\sqrt{p})$ (see, for example, [1, p. 343$]$), we deduce easily that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(\frac{n}{p}\right)=\frac{\pi}{\sqrt{p}}\left(\left(\frac{2}{p}\right)-1\right) h(-p)
$$

and

$$
\sum_{n=0}^{\infty}\left(\frac{2 n+1}{p}\right) \frac{(-1)^{n}}{2 n+1}=\frac{h(p)}{\sqrt{p}} \log \varepsilon_{p}
$$

so that

$$
\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n}\left(\frac{n}{p}\right)=\frac{\pi h(-p)}{2 \sqrt{p}}\left(1-\left(\frac{2}{p}\right)\right)-\frac{i h(p)}{\sqrt{p}} \log \varepsilon_{p}
$$

Hence

$$
\sum_{j=1}^{p-1} \gamma_{j}=-\frac{\pi i}{4}+\frac{\pi i h(-p)}{4}\left(1-\left(\frac{2}{p}\right)\right)+\frac{h(p)}{2} \log \varepsilon_{p}
$$

and so

$$
\prod_{j=1}^{p-1}\left(1+i \rho^{j}\right)=\omega^{-1} i^{1 / 2(1-(2 / p)) h(-p)} \varepsilon_{p}^{h(p) / 2}
$$

giving

$$
\begin{array}{rlrl}
F_{-}(i) & =\omega^{-1} i^{(p-1) / 2+1 / 2(1-(2 / p)) h(-p)} \varepsilon_{p}^{h(p) / 2} \\
& =\omega^{7}(-1)^{1 / 2(h(-p)+1)} \varepsilon_{p}^{h(p) / 2}, & & \text { if } p \equiv 3(\bmod 8), \\
& =\omega^{5} \varepsilon_{p}^{h(p) / 2}, & & \text { if } p \equiv 7(\bmod 8) .
\end{array}
$$

The value of $F_{+}(i)$ now follows from (6.2) and (6.3). For the values of $F_{ \pm}(-i)$ we have only to note that

$$
\begin{aligned}
F_{ \pm}(-i)= & \prod_{j=1}^{p-1}\left(-i-\rho^{j}\right)=\prod_{j=1}^{p-1}\left(-i-\rho^{-j}\right)=\overline{F_{\mp}(i)} \\
& \left(\frac{j}{p}\right)= \pm 1 \quad\left(\frac{j}{p}\right)=\mp 1
\end{aligned}
$$

8. The Polynomials $Y(z)$ and $Z(z)$

$F_{ \pm}(z)$ are polynomials in z of degree $\frac{1}{2}(p-1)$ with coefficients in the ring of integers of $Q(\sqrt{-p})$ (see [3]). Hence we can write

$$
\begin{equation*}
F_{+}(z)=\frac{1}{2}(Y(z)-Z(z) \sqrt{-p}), \quad F_{-}(z)=\frac{1}{2}(Y(z)+Z(z) \sqrt{-p}) \tag{8.1}
\end{equation*}
$$

where $Y(z)$ and $Z(z)$ are polynomials with rational integer coefficients. Clearly we have

$$
\begin{equation*}
Y(z)=F_{-}(z)+F_{+}(z), \quad Z(z)=\frac{F_{-}(z)-F_{+}(z)}{\sqrt{-p}} \tag{8.2}
\end{equation*}
$$

Taking $z=1,-1, i$ in (8.2) and appealing to Lemma 3 we obtain

$$
\left.\begin{array}{rlr}
Y(1)-0, & Z(1)-2(-1)^{1 / 2(h(-p)-1)} \\
Y(-1)=2(-1)^{1 / 4(p-3)}, & Z(-1)=0, \\
Y(i)=\omega^{3}(-1)^{1 / 2(h(-p)-1)}\left(\varepsilon_{p}^{h(p) / 2}-\varepsilon_{p}^{-h(p) / 2}\right), & \text { if } p \equiv 3(\bmod 8), \\
=\omega^{5}\left(\varepsilon_{p}^{h(p) / 2}+\varepsilon_{p}^{-h(p) / 2}\right), & \text { if } p \equiv 7(\bmod 8), \\
Z(i)=\omega^{3}(-1)^{1 / 2(h(-p)-1)}\left(\varepsilon_{p}^{h(p) / 2}+\varepsilon_{p}^{-h(p) / 2}\right) / \sqrt{-p}, & \text { if } p \equiv 3(\bmod 8), \tag{8.5}\\
=\omega^{5}\left(\varepsilon_{p}^{h(p) / 2}-\varepsilon_{p}^{-h(p) / 2}\right) / \sqrt{-p}, & \text { if } p \equiv 7(\bmod 8) .
\end{array}\right\}
$$

Since (using (2.1) and 2.3))

$$
\varepsilon_{p}^{h(p) / 2}=(T+U \sqrt{p})^{(h(p)-1) / 2} \frac{(R+S \sqrt{p})}{\sqrt{2}}
$$

and

$$
\varepsilon_{p}^{-h(p) / 2}=(T-U \sqrt{p})^{(h(p)-1) / 2} \frac{(R-S \sqrt{p})}{\sqrt{2}}(-1)^{(p+1) / 4},
$$

we see from (8.5) that

$$
\begin{align*}
Y(i) & =A_{3}(1-i), & & \text { if } \quad p \equiv 3(\bmod 8), \\
& =A_{7}(1+i), & & \text { if } p \equiv 7(\bmod 8), \tag{8.6}\\
Z(i) & =-B_{3}(1+i), & & \text { if } \quad p \equiv 3(\bmod 8), \\
& =B_{7}(1-i), & & \text { if } \quad p \equiv 7(\bmod 8),
\end{align*}
$$

for rational integers $A_{3}, B_{3}, A_{7}, B_{7}$ (see [3, Eq. (10)]). From (6.2) and (8.1) we have [3, Eq. (6)])

$$
\begin{equation*}
Y(z)^{2}+p Z(z)^{2}=4 F(z) \tag{8.7}
\end{equation*}
$$

Taking $z=i$ in (8.7), and using (6.3) and (8.6), we obtain (see [3, Eq. (12)])

$$
\begin{cases}A_{3}^{2}-p B_{3}^{2}=-2, & \text { if } \quad p \equiv 3(\bmod 8) \tag{8.8}\\ A_{7}^{2}-p B_{7}^{2}=+2, & \text { if } \quad p \equiv 7(\bmod 8)\end{cases}
$$

Clearly (8.8) shows that $A_{3}, B_{3}, A_{7}, B_{7}$ are all odd.

9. The Polynomials $Y^{\prime}(z)$ and $Z^{\prime}(z)$

Differentiating (8.7) with respect to z, we obtain

$$
\begin{equation*}
Y(z) Y^{\prime}(z)+p Z(z) Z^{\prime}(z)=2 F^{\prime}(z) \tag{9.1}
\end{equation*}
$$

(see [3, Eq. (9)]). In [7, Eq. (14)] the following identity of Liouville was noted

$$
\begin{equation*}
Z(z) Y^{\prime}(z)-Y(z) Z^{\prime}(z)=2 G(z) \tag{9.2}
\end{equation*}
$$

where

$$
\begin{equation*}
G(z)=\frac{1}{z-1} \sum_{j=1}^{p-1}\left(\frac{j}{p}\right) z^{p-1-j} \tag{9.3}
\end{equation*}
$$

Solving (9.1) and (9.2) simultaneously for $Y^{\prime}(z)$ and $Z^{\prime}(z)$, we obtain (making use of (8.7))

$$
\left\{\begin{align*}
& Y^{\prime}(z)=\frac{F^{\prime}(z) Y(z)+p G(z) Z(z)}{2 F(z)} \\
& Z^{\prime}(z)=-G(z) Y(z)+F^{\prime}(z) Z(z) \\
& 2 F(z)
\end{align*}\right.
$$

Since

$$
\begin{gather*}
G(1)=p h(-p), \quad\left(\text { recalling } \sum_{j=1}^{p-1} j\left(\frac{j}{p}\right)=-p h(-p)\right), \tag{9.5}\\
G(-1)=\left\{1-2\left(\frac{2}{p}\right)\right\} h(-p), \quad\left(\text { using } \sum_{j=1}^{1 / 2(p-1)}\left(\frac{j}{p}\right)=\left(2-\left(\frac{2}{p}\right)\right) h(-p)\right), \tag{9.6}\\
G(i)=\left\{2-\left(\frac{2}{p}\right)\right\} h(-p), \quad \text { (see [7, Eq. (17)]) } \tag{9.7}
\end{gather*}
$$

we have

$$
\begin{array}{rlrl}
Y^{\prime}(1)= & (-1)^{1 / 2(h(-p)-1)} p h(-p), \quad Z^{\prime}(1)=(-1)^{1 / 2(h(-p)-1)} \frac{p-1}{2}, \\
& Y^{\prime}(-1)=\left(\frac{2}{p}\right) \frac{p-1}{2}, \quad Z^{\prime}(-1)=\left\{\left(\frac{2}{p}\right)-2\right\} h(-p), \\
Y^{\prime}(i)= & \frac{1}{2}\left(A_{3}-3 p h(-p) B_{3}\right)+\frac{i}{2}\left(-p A_{3}+3 p h(-p) B_{3}\right), & \text { if } p \equiv 3(\bmod 8), \\
= & \frac{1}{2}\left(p A_{7}-p h(-p) B_{7}+\frac{i}{2}\left(A_{7}-p h(-p) B_{7}\right),\right. & \text { if } p \equiv 7(\bmod 8), \\
Z^{\prime}(i)= & \frac{1}{2}\left(3 h(-p) A_{3}-p B_{3}\right)+\frac{i}{2}\left(3 h(-p) A_{3}-B_{3}\right), & \text { if } p \equiv 3(\bmod 8), \\
= & \frac{1}{2}\left(-h(-p) A_{7}+B_{7}\right)+\frac{i}{2}\left(h(-p) A_{7}-p B_{7}\right), & \text { if } p \equiv 7(\bmod 8) . \tag{9.10}
\end{array}
$$

10. $h(p)$ Determined Modulo 8

In [7, Eq. (20)] we showed that

$$
\begin{align*}
h(-p) & \equiv-A_{3} B_{3}(\bmod 4), & & \text { if } p \equiv 3(\bmod 8) \\
& \equiv-A_{7} B_{7}(\bmod 4), & & \text { if } p \equiv 7(\bmod 8) \tag{10.1}
\end{align*}
$$

Our next task in this paper is to extend (10.1) to a congruence modulo 8 . We prove

Lemma 4.

$$
\begin{aligned}
h(-p) & \equiv A_{3} B_{3}+2 B_{3}(\bmod 8), & & \text { if } p=3(\bmod 8), \\
& \equiv A_{7} B_{7}+2 B_{7}(\bmod 8), & & \text { if } p \equiv 7(\bmod 8) .
\end{aligned}
$$

Proof. It is known that $Y(z)$ and $Z(z)$ have the form (see [7, Eq. (7)])

$$
\begin{equation*}
Y(z)=\sum_{n=0}^{(p-3) / 4} a_{n}\left(z^{(p-1) / 2-n}-z^{n}\right), \quad Z(z)=\sum_{n=0}^{(p-3) / 4} b_{n}\left(z^{(p-1) / 2-n}+z^{n}\right) \tag{10.2}
\end{equation*}
$$

where the a_{n} and b_{n} are integers. (This is a consequence of the easily proved result $z^{(p-1) / 2} F_{ \pm}\left(\frac{1}{z}\right)=-F_{\mp}(z)(z \neq 0)$.) Differentiating (10.2) with respect to z we obtain (see [7, Eq. (8)])

$$
\left\{\begin{array}{l}
Y^{\prime}(z)=\sum_{n=0}^{(p-33 / 4} a_{n}\left(\left(\frac{p-1}{2}-n\right) z^{(p-3) / 2-n}-n z^{n-1}\right), \tag{10.3}\\
Z^{\prime}(z)=\sum_{n=0}^{(p-3) / 2} b_{n}\left(\left(\frac{p-1}{2}-n\right) z^{(p-3) / 2-n}+n z^{n-1}\right)
\end{array}\right.
$$

We now consider two cases according as $p \equiv 3$ or $7(\bmod 8)$, just providing the details when $p \equiv 3(\bmod 8)$. With $p=8 l+3$, taking $z=i$ in (10.3) we obtain

$$
\begin{aligned}
& Y^{\prime}(i)= \\
& \left\{\sum_{0 \leqslant m \leqslant l / 2} a_{4 m}(4 l-4 m+1)-\sum_{0 \leqslant m \leqslant l-1) / 2} a_{4 m+1}(4 m+1)\right. \\
& \left.+\sum_{0 \leqslant m \leqslant(l-1) / 2} a_{4 m+2}(4 m-4 l+1)+\sum_{0 \leqslant m<l / 2-1} a_{4 m+3}(4 m+3)\right\} \\
& +i\left\{a_{0 \leqslant m \leqslant l / 2} a_{4 m} 4 m-\underset{0 \leqslant m \leqslant l l-1) / 2}{ } a_{4 m+1} 4(l-m)-\sum_{0 \leqslant m \leqslant(l-1) / 2} a_{4 m+2}(4 m+2)\right. \\
& \left.+\sum_{0 \leqslant m \leqslant l / 2-1} a_{4 m+3}(4 l-4 m-2)\right\} .
\end{aligned}
$$

Hence from (9.10) we have

$$
\begin{aligned}
\frac{1}{2}\left(A_{3}-3 p h(-p) B_{3}\right)= & \sum_{0 \leqslant m \leqslant I / 2} a_{4 m}-\sum_{0 \leqslant m \leqslant(l-1) / 2} a_{4 m+1}+\sum_{0 \leqslant m \leqslant(1-1) / 2} a_{4 m+2} \\
& -\sum_{0 \leqslant m \leqslant 1 / 2-1} a_{4 m+3}(\bmod 4)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv \sum_{0 \leqslant m \leqslant 1} a_{2 m}-\sum_{0 \leqslant m \leqslant 1-1} a_{2 m+1}(\bmod 4) \\
& =-\frac{1}{2} Y(-1) \quad(\text { by }(10.2)) \\
& =-1 \quad(\text { by }(8.4))
\end{aligned}
$$

so

$$
A_{3}-3 p h(-p) B_{3} \equiv-2(\bmod 8)
$$

and thus

$$
h(-p) \equiv A_{3} B_{3}+2 B_{3}(\bmod 8) .
$$

Similarly, with $p=8 l+7$, we obtain

$$
h(-p) \equiv A_{7} B_{7}+2 B_{7}(\bmod 8)
$$

11. CONSIDERATION of $(R+S \sqrt{p})^{h(p)}$

From (8.1) and (8.6) we have

$$
\begin{aligned}
F_{-}(i) & =\frac{1}{2}(Y(i)+Z(i) \sqrt{-p}) \\
& = \begin{cases}\frac{1}{2}\left(A_{3}(1-i)-B_{3}(1+i) i \sqrt{p}\right), & \text { if } p \equiv 3(\bmod 8) \\
\frac{1}{2}\left(A_{7}(1+i)+B_{7}(1-i) i \sqrt{p}\right), & \text { if } p \equiv 7(\bmod 8),\end{cases} \\
& = \begin{cases}\frac{1-i}{2}\left(A_{3}+B_{3} \sqrt{p}\right), & \text { if } p \equiv 3(\bmod 8), \\
\frac{1+i}{2}\left(A_{7}+B_{7} \sqrt{p}\right), & \text { if } p \equiv 7(\bmod 8),\end{cases} \\
& = \begin{cases}\frac{\omega^{7}}{\sqrt{2}}\left(A_{3}+B_{3} \sqrt{p}\right), & \text { if } p \equiv 3(\bmod 8), \\
\frac{\omega}{\sqrt{2}}\left(A_{7}+B_{7} \sqrt{p}\right), & \text { if } p \equiv 7(\bmod 8)\end{cases}
\end{aligned}
$$

On the other hand, from Lemma 3, we have

$$
F_{-}(i)= \begin{cases}\omega^{7}(-1)^{1 / 2(h(-p)+1} \varepsilon_{p}^{h(p) / 2}, & \text { if } p \equiv 3(\bmod 8) \\ \omega^{5} \varepsilon_{p}^{h(p) / 2}, & \text { if } p \equiv 7(\bmod 8),\end{cases}
$$

$$
= \begin{cases}\frac{\omega^{7}}{2^{h(p) / 2}}(-1)^{1 / 2(h(-p)+1)}(R+S \sqrt{p})^{h(p)}, & \text { if } p \equiv 3(\bmod 8) \\ \frac{\omega^{5}}{2^{h(p) / 2}}(R+S \sqrt{p})^{h(p)}, & \text { if } p \equiv 7(\bmod 8)\end{cases}
$$

Equating these two expressions for $F_{-}(i)$ we obtain

Lemma 5.

$$
\begin{aligned}
(R+ & S \sqrt{p})^{h(p)} & & \\
& =(-1)^{(h(-p)+1) / 2} 2^{(h(p)-1) / 2}\left(A_{3}+B_{3} \sqrt{p}\right), & & \text { if } p \equiv 3(\bmod 8), \\
& =-2^{(h(p)-1) / 2}\left(A_{7}+B_{7} \sqrt{p}\right), & & \text { if } p \equiv 7(\bmod 8) .
\end{aligned}
$$

We next expand $(R+S \sqrt{p})^{h(p)}$ in such a way that, using Lemma 5 , we can obtain $A_{3}, B_{3}, A_{7}, B_{7}$ as polynomials in R and S with integral coefficients. This is done by using the following well-known identity (see, for example, [6])

$$
\begin{equation*}
\alpha^{2 m+1}+\beta^{2 m+1}=\sum_{j=0}^{m}(-1)^{j} \frac{2 m+1}{2 m+1-j}\binom{2 m+1-j}{j}(\alpha+\beta)^{2 m+1-2 j}(\alpha \beta)^{j} \tag{11.1}
\end{equation*}
$$

Taking $\alpha=R+S \sqrt{p}$ and $\beta= \pm(R-S \sqrt{p})$ in (11.1) and adding, we obtain (as $R^{2}-p S^{2}=(-1)^{(p+1) / 4} 2$)

$$
\begin{aligned}
(R+ & S \sqrt{p})^{2 m+1} \\
= & \sum_{j=0}^{m}(-1)^{((p-3) / 4) j} \frac{2 m+1}{2 m+1-j}\binom{2 m+1-j}{j} 2^{2 m-j} R^{2(m-j)+1} \\
& +\sqrt{p} \sum_{j-0}^{m}(-1)^{((p+1) / 4) j} \frac{2 m+1}{2 m+1-j}\binom{2 m+1-j}{j} \\
& \times 2^{2 m-j} p^{m-j} S^{2(m-j)+1}
\end{aligned}
$$

Changing the summation variable from j to $k=m-j$, and noting that

$$
\frac{2 m+1}{2 m+1-j}\binom{2 m+1-j}{j}=\frac{2 m+1}{m+k+1}\binom{m+k+1}{m-k}=\frac{2 m+1}{2 k+1}\binom{m+k}{m-k}
$$

we obtain

$$
\begin{aligned}
(R+S \sqrt{p})^{2 m+1}= & \sum_{k=0}^{m}(-1)^{((p-3) / 4)(m-k)} \frac{2 m+1}{2 k+1}\binom{m+k}{m-k} 2^{m+k} R^{2 k+1} \\
& +\sqrt{p} \sum_{k=0}^{m}(-1)^{((p+1) / 4)(m-k)} \frac{2 m+1}{2 k+1}\binom{m+k}{m-k} \\
& \times 2^{m+k} p^{k} S^{2 k+1}
\end{aligned}
$$

Taking $m=\frac{1}{2}(h(p)-1)$ in this identity and applying Lemma 5 we obtain
Lemma 6. (i) $p \equiv 3(\bmod 8)$

$$
\begin{aligned}
A_{3}= & (-1)^{(h(-p)+1) / 2} h(p) \sum_{k=0}^{(h(p)-1) / 2} \frac{2^{k}}{2 k+1}\binom{(h(p)+2 k-1) / 2}{(h(p)-2 k-1) / 2} R^{2 k+1}, \\
B_{3}= & (-1)^{(h(-p)+h(p)) / 2} h(p) \sum_{k=0}^{(h(p)-1) / 2} \frac{(-1)^{k} 2^{k}}{2 k+1} \\
& \times\binom{(h(p)+2 k-1) / 2}{(h(p)-2 k-1) / 2} p^{k} S^{2 k+1} .
\end{aligned}
$$

(ii) If $p \equiv 7(\bmod 8)$

$$
\begin{aligned}
& A_{7}=(-1)^{(h(p)+1) / 2} h(p) \sum_{k=0}^{(h(p)-1) / 2} \frac{(-1)^{k} 2^{k}}{2 k+1}\binom{(h(p)+2 k-1) / 2}{(h(p)-2 k-1) / 2} R^{2 k+1}, \\
& B_{7}=-h(p) \sum_{k=0}^{(h(p)-1) / 2} \frac{2^{k}}{2 k+1}\binom{(h(p)+2 k-1) / 2}{(h(p)-2 k-1) / 2} p^{k} S^{2 k+1}
\end{aligned}
$$

Reducing the expressions in Lemma 6 modulo 8, we obtain (using 4.2)).
Lemma 7. (i) If $p \equiv 3(\bmod 8)$ then

$$
\begin{array}{r}
\left(A_{3}, B_{3}\right) \equiv\left(7(-1)^{(R+S) / 2} R, 7(-1)^{(R+S) / 2} S\right)(\bmod 8), \\
\text { if } h(p) \equiv 1(\bmod 8), \\
\equiv\left(5(-1)^{(R+S) / 2} R, 3(-1)^{(R+S) / 2} S\right)(\bmod 8), \\
\text { if } h(p) \equiv 3(\bmod 8), \\
\equiv\left(5(-1)^{(R+S) / 2} R, 5(-1)^{(R+S) / 2} S\right)(\bmod 8), \\
\text { if } h(p) \equiv 5(\bmod 8), \\
\equiv\left(7(-1)^{(R+S) / 2} R,(-1)^{(R+S) / 2} S\right)(\bmod 8), \\
\text { if } h(p) \equiv 7(\bmod 8)
\end{array}
$$

(ii) If $p \equiv 7(\bmod 8)$ then

$$
\begin{aligned}
\left(A_{7}, B_{7}\right) & \equiv(7 R, 7 S)(\bmod 8), & & \text { if } h(p) \equiv 1(\bmod 8), \\
& \equiv(R, 7 S)(\bmod 8), & & \text { if } h(p) \equiv 3(\bmod 8), \\
& \equiv(R, S)(\bmod 8), & & \text { if } h(p) \equiv 5(\bmod 8), \\
& \equiv(7 R, S)(\bmod 8), & & \text { if } h(p) \equiv 7(\bmod 8) .
\end{aligned}
$$

The next lemma tells us the congruence classes of $\left(A_{3}, B_{3}\right)$ and $\left(A_{7}, B_{7}\right)$ modulo 8.

Lemma 8. (a) If $p \equiv 3(\bmod 16)$ then

$$
\left(A_{3}, B_{3}\right)=(1,1),(1,7),(3,3) \text { or }(3,5)(\bmod 8)
$$

(b) If $p \equiv 7(\bmod 16)$ then

$$
\left(A_{7}, B_{7}\right) \equiv(3,1),(3,7),(5,1) \text { or }(5,7)(\bmod 8)
$$

(c) If $p \equiv 11(\bmod 16)$ then

$$
\left(A_{3}, B_{3}\right) \equiv(5,1),(5,7),(7,3) \text { or }(7,5)(\bmod 8)
$$

(d) If $p=15(\bmod 16)$ then

$$
\left(A_{7}, B_{7}\right) \equiv(1,1),(1,7),(7,1) \text { or }(7,7)(\bmod 8)
$$

Proof. We just provide the details for $p \equiv 3(\bmod 16)$. By Lemma 1 we have

$$
(-1)^{(R+s) / 2} R \equiv 5 \text { or } 7(\bmod 8)
$$

and by Lemma 7 we have

$$
A_{3} \equiv 5(-1)^{(R+S) / 2} R \text { or } 7(-1)^{(R+S) / 2} R(\bmod 8)
$$

so

$$
\begin{gathered}
A_{3} \equiv 1 \text { or } 3(\bmod 8) \\
\text { If } \quad A_{3} \equiv 1(\bmod 8), \quad B_{3}^{2} \equiv 11 p B_{3}^{2} \equiv 11\left(A_{3}^{2}+2\right) \equiv 1(\bmod 16), \\
B_{3} \equiv 1,7(\bmod 8) .
\end{gathered}
$$

If $A_{3} \equiv 3(\bmod 8), \quad B_{3}^{2} \equiv 11 p B_{3}^{2} \equiv 11\left(A_{3}^{2}+2\right) \equiv 9(\bmod 16)$,

$$
B_{3} \equiv 3,5(\bmod 8)
$$

Putting together Lemmas 4 and 8 we obtain

Lemma 9. (a) If $p \equiv 3(\bmod 16)$ then

$$
\begin{aligned}
h(-p) & \equiv 1(\bmod 8), \\
& \equiv 3(\operatorname{lod} 8), \quad\left(A_{3}, B_{3}\right) \equiv(3,5)(\bmod 8), \\
& \equiv 5(\bmod 8), \\
& \quad \text { if } \quad\left(A_{3}, B_{3}, B_{3}\right) \equiv(1,1)(\bmod 8), \\
& \equiv 7(\bmod 8), \\
& \text { if } \quad\left(A_{3}, B_{3}\right) \equiv(3,3)(\bmod 8), \\
& \equiv 2) .
\end{aligned}
$$

(b) If $p \equiv 7(\bmod 16)$ then

$$
\begin{aligned}
& h(-p) \equiv 1(\bmod 8), \\
& \quad \text { if } \quad\left(A_{7}, B_{7}\right) \equiv(5,7)(\bmod 8), \\
& \equiv 3(\bmod 8), \\
& \equiv \text { if } \quad\left(A_{7}, B_{7}\right) \equiv(3,7)(\bmod 8), \\
& \equiv 7(\bmod 8), \\
& \\
& \text { if } \quad\left(A_{7}, B_{7}\right) \equiv(3,1)(\bmod 8), \\
& \text { if } \quad\left(A_{7}, B_{7}\right) \equiv(5,1)(\bmod 8) .
\end{aligned}
$$

(c) If $p \equiv 11(\bmod 16)$ then

$$
\begin{aligned}
h(-p) & \equiv 1(\bmod 8), \\
& \quad \text { if } \quad\left(A_{3}, B_{3}\right) \equiv(5,7)(\bmod 8), \\
& \equiv 3(\bmod 8), \\
& \left.\quad \text { if } \quad\left(A_{3}, B_{3}\right) \equiv(7,3)(\bmod 8)\right), \\
& \equiv 7(\bmod 8), \\
& \quad \text { if } \quad\left(A_{3}, B_{3}\right) \equiv(7,5)(\bmod 8), \\
& \equiv(5,1)(\bmod 8) .
\end{aligned}
$$

(d) If $p \equiv 15(\bmod 16)$ then

$$
\begin{aligned}
h(-p) & \equiv 1(\bmod 8), \\
& \\
& \equiv 3\left(\operatorname{if} \quad\left(A_{7}, B_{7}\right) \equiv(7,1)(\bmod 8),\right. \\
& \equiv 5\left(\operatorname{lif} \quad\left(A_{7}, B_{7}\right) \equiv(1,1)(\bmod 8),\right. \\
& \equiv 7(\bmod 8), \\
& \\
& \text { if } \quad\left(A_{7}, B_{7}\right) \equiv(1,7)(\bmod 8), \\
& \left.B_{7}\right) \equiv(7,7)(\bmod 8) .
\end{aligned}
$$

12. Proof of Theorem

The theorem now follows easily from Lemmas 1,7 and 9 . We just give the details when $p \equiv 3(\bmod 16)$, as the other cases can be treated similarly (see Table).

We remark that tables of $h(p), h(-p)$ and ε_{p} show that every one of the 64 possible cases of $(h(p), R, S)(\bmod 8)$ actually occurs.

Next we give a single numerical example to illustrate the theorem. Wc take $p=9539 \equiv 3(\bmod 16)$. In this case

$$
\varepsilon_{p}=\frac{1}{2}(293+3 \sqrt{9539})^{2}
$$

TABLE I

$\begin{gathered} h(p) \\ (\bmod 8) \end{gathered}$	$\begin{array}{r} R(\bmod 8) \\ \quad(\text { from } L \end{array}$	$S(\bmod 8)$ Lemma 1)	$A_{3}(\bmod 8)$ (from L	$B_{3}(\bmod 8)$ emma 7)	$h(-p)(\bmod 8)$ (from Lemma 9)	$\begin{aligned} & h(-p) \\ & \quad+(-1)^{R-s) / 2} h(p) \\ & (\bmod 8) \end{aligned}$
1	1	1	1	1	3	4
1	3	3	3	3	7	0
1	5	3	3	5	1	0
1	7	1	1	7	5	4
3	1	1	3	5	1	4
3	3	3	1	7	5	0
3	5	3	1	1	3	0
3	7	1	3	3	7	4
5	1	1	3	3	7	4
5	3	3	1	1	3	0
5	5	3	1	7	5	0
5	7	1	3	5	1	4
7	1	1	1	7	5	4
7	3	3	3	5	1	0
7	5	3	3	3	7	0
7	7	1	1	1	3	4

so $R=293 \equiv 5 \quad(\bmod 8), \quad S \equiv 3 \quad(\bmod 8)$. Thus by the theorem $h(-p)-h(p) \equiv 0(\bmod 8)$. Indeed $h(-p)=55, h(p)=7$.

Finally we remark that as (appealing to (2.3) and (2.4))

$$
\begin{aligned}
&\left(\frac{T}{U}\right)=\left(\frac{-1}{S}\right), \quad \text { if } \quad p \equiv 3(\bmod 8) \\
&=\left(\frac{-1}{R}\right), \quad \text { if } \quad p \equiv 7(\bmod 8)
\end{aligned}
$$

the theorem can also be formulated in the form
Theorem ${ }^{\prime}$.

$$
h(-p) \equiv h(p)\left(2+p U-2\left(\frac{T}{U}\right)\right)(\bmod 8)
$$

Acknowledgments

The author acknowledges a remark of Pierre Kaplan (University of Nancy) which simplified his original proof of Lemma 3. He would also like to thank Mr. Lee-Jeff Bell who did some computing for him in connection with this paper.

References

1. Z. I. Borevich and I. R. Shafarevich. "Number Theory," Academic Press. New York, 1966.
2. E. Brown, The power of 2 dividing the class number of a binary quadratic discriminant, J. Number Theory 5 (1973), 413-419.
3. E. Brown, Class numbers of real quadratic number fields, Trans. Amer. Math. Soc. 190 (1974), 99-107.
4. E. L. Ince, Cycles of reduced ideals in quadratic fields, in "Mathematical Tables Volume IV," British Association for the Advancement of Science, London, 1934.
5. Pierre Kaplan and Kenneth S. Williams, Congruence modulo 16 for the class numbers of the quadratic fields $Q(\sqrt{ \pm p})$ and $Q(\sqrt{ \pm 2 p})$ for p a prime congruent to 5 modulo 8, to appear.
6. Kenneth S. Williams, A generalisation of Cardan's solution of the cubic. Math. Gaz. 46 (1962), 221-223.
7. K. S. Williams. The class number of $Q(\sqrt{-p})$ modulo 4 , for $p \equiv 3(\bmod 4)$ a prime. Pacific J. Math. 83 (1979), 565-570.
8. K. S. Williams, On the class number of $Q(\sqrt{-p})$ modulo 16 , for $p \equiv 1(\bmod 8)$ a prime. Acta Arith., in press.
9. K. S. Williams, The class number of $Q(\sqrt{-2 p})$ modulo 8 , for $p \equiv 5(\bmod 8)$ a prime. Rocky Mountain J. Math. 11 (1981), 19-26.
10. K. S. Williams. On the class number of $Q(\sqrt{ \pm 2 p})$ modulo 16 , for $p \equiv 1(\bmod 8)$ a prime, Acta Arith., in press.
11. K. S. Williams, The class number of $Q(\sqrt{p})$ modulo 4 , for $p \equiv 5(\bmod 8)$ a prime. Pacific J. Math, in press.

[^0]: * Research supported by the Natural Sciences and Fingineering Research Council of Canada under Grant A-7233.

