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A congruence modulo 8 is proved relating the class numbers of the quadratic 
fields Q(dj) and Q(d-p), where p is a prime congruent to 3 module 4. 

1. INTRODUCTION 

Throughout this paper p denotes a prime (greater than 3) which is 
congruent to 3 modulo 4. The class number of the quadratic field Q(&) 
(resp. Q(G)) is denoted by h(p) (resp. h(-p)). It is well known that (see, 
for example, [2, p. 413; 3, p. 1001) 

h(p) E A(-p) = 1 (mod 2). (l-1) 

In [7] the author determined a congruence (see (4.1) below) relating h(p) 
and It-p) modulo 4. It is the purpose of this paper to determine congruences 
relating these class numbers modulo 8. (The analogous problem for primes 
p z 1 (mod 4) has been treated by the author elsewhere [5, 7-11 I.) 

2. THE FUNDAMENTAL UNIT cp 

The fundamental unit E, (> 1) of the real quadratic field Q(&) is of the 
form (see, for example, [4, Sect. 71) 

E,= T+ U&=+(R +Sfi)‘, (2.1) 
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where T and U are positive coprime integers which satisfy 

T= 0 (mod 2), Ur 1 (mod 2), iV(&J= T2 -pU2 = +l, (2.2) 

and where R and S are positive coprime integers satisfying 

R=Srl (mod2), R2-pS’=-2, 

= +2, 

if p- 3 (mod S), (2.3) 

if p = 7 (mod 8). 

Clearly T, U, R and S are related by 

T= {(R’ +pS’), U=RS. (2.4) 

The integers R and S play a central role in everything that follows. 

3. CONGRUENCES FOR R AND S MODULO 8 

From (2.3) we have 

(g)= (RzipS2)= ($)=+l, if p-3 (mod8), 

($)= (R2ips2)= ($)=+l, if pr7 (mod8), 

so that 

S = I,3 (mod 8), if p = 3 (mod 8), 
S = 1,7 (mod 8), if p=7 (mod8). 

Then, from (2.3) and (3.1), we obtain 

LEMMA 1. (a) Ifp e 3 (mod 16) then 

(R, S) = (1, I), (3,3), (53) or (7, 1) (mod 8). 

(b) Ifp s 7 (mod 16) then 

(R, S) = (3, l), (3,7), (5, 1) or (5, 7) (mod 8). 

(c) up E 11 (mod 16) then 

(3.1) 

(R, S) = (1,3), (3, 11, (5, 1) or (7,3) (mod 8). 
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(d) Ifp- 15 (mod 16) then 

(R. s) = (1, l), (~71, (7, 1) or (7,7) (mod8). 

4. CONGRUENCES RELATING h(p) AND h(-p) (mod4) 

In [7] the author showed that 

A(-p) = h(p) + U + 1 (mod 4). (4.1) 

Appealing to (l.l), (2.3), (2.4) and (4.1) we obtain 

LEMMA 2. (a) v R E S (mod 4) 

A(-p) + h(p) = 0 (mod 4). 

(b) Zj”R = -S (mod4) 

h(y) - h(p) = 0 (mod 4). 

5. CONGRUENCES RELATING h(p) AND /I(--p) (mod8tSrArEMENT OF 
MAIN THEOREM 

It is the purpose of this paper to prove, by extending the ideas used in (71, 
a more precise form of Lemma 2. We prove 

THEOREM. (a) ZfR=S (mod4) 

h(y) + h(p) zt R + S + 2(-l)‘pP3”4 (mod 8). 

(b) If R = -S (mod 4) 

Q-p) - h(p) E R - S - 2 (mod 8). 

The proof of this theorem is completed in Section 12, after a number of 
lemmas are proved in Sections 6-l 1. It uses the ideas of [ 7] but is much 
more complicated in its details. 
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6. THE POLYNOMIALS F+(z) AND F-(z) 

We set p = exp(2;rci/p) and, for z a complex variable, we define (as in (71) 

so that 

P-1 P-1 

F+(z)= n (z-d’)- F-(z) = n (z - pj). 
j=l j=l 

($):+l ($)=-I 
(6.1) 

P-1 

F(z)=F+(z)F-(z)= n (z-/+)=+z P--l + zP-2 + 

j=l 
+ 1. (6.2) 

It is easily checked that 

F(1) =P, 

and 

F(-1) = 1, F(d) = fi, (6.3) 

F’(l) = fP(P - 11, F’(-1) = -;(p - l), 

F’(fi) = f(p - 1) f s(p + 1) i. 
(6.4) 

7. EVALUATION OF F&(-l) AND F,(Q) 

Throughout the rest of the paper the convention fi= i fi is used. We 
prove 

LEMMA. 3. 

F+(l) = (-1 1/2(h(cP)+l) 6, 

F-(l) = (-1) 
1/2(h(GP)b 1) \/-p, 

F+(-1) = F-(-l) = (-1)“4(p-3’, 

F+(i) = 

1 

09-l) l/Z(h(bp)+ 1) E-hW2 

if p = 3 (rnod’8) 3 
w5E -h@Jl2 

P 
’ 1 if p = 7 (mod 8) 

w’(-1) 1/2(h(-p)+ 1) EhW2 

F-(i) = if p = 3 (modP8) 
2 

W5ehW2 
P 2 if p = 7 (mod 8) 
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4-l) 1/2W-P) t 1) EhW12 

F, (-i) = if p- 3 (III,: 8) ’ 
W3Eh@)/2 

P ’ if p E 7 (mod 8) / 

, 

CL?-1) 1/2(h(-P)t 1) E-hW2 
3 

F-(-i) = if p = 3 (mod’8) 
W3e-h(P)12 

P 1 if p = 7 (mod 8) 

where o = (1 + i)/fi is an eighth root of unity. 

Proof: We just give the details of the evaluation of F-(i) as the other 
cases are similar. From (6.1) we have (where the dash indicates that j is 
restricted to satisfy (s) = - 1) 

P-1 P-1 
F-(i) = n’ (j-d) = j’/2(P-” 

j=l 
JJ’ (1 + id’>- 

As i$ (1 <j <p - 1) is a root of unity (not equal to l), we have 

Yj= Z_ 
q (-llnp' i"Pj" = log(l + ipj) (j = 1, 2,...,p - 1) 

n=l n 

and so 

Thus we have 

exp(yj) = 1 + ip’. 

P-1 P-1 
,rJ’ (1 + i$) = n’ exP(Yj)=exP (5’ Y,)* 

j=l j=l 

Now 

1 F (-I)“-’ i” 

2,, n 
/P-l- (;)dG-(+)‘P/? 

where we have again used the evaluation of the Gauss sum in the form which 
includes n = 0 (modp). After a little simplification we obtain 

P-1 
Z,’ yj = + 2 (+” - in 

“, (-i)” n 

n-1 n 
+;fi\ ~-( 

,Y1 n ( ) P 
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Now 

G (4)” -in = -2i F (-1)” 7ri -=-- 
n=, n “yo 2n + 1 2 

and 

From Dirichlet’s class number formulae for Q(G) and Q(G) (see, for 
example, [ 1, p. 343]), we deduce easily that 

f+i (-1)” n 
- (,)=~((;)-‘)“‘-P’ El n 

and 

F 
n=O 4 

2n+l 
P 1 

(--l)“=h(p),ogE 
2n+ 1 6 ” 

so that 

Hence 

P-1 . 7Cih(-p) \‘fy’=-T+ 
JFz, 

4 (1- (J-1) +~logc, 

and so 

P--l 

n’ (1 +ip’)=w- Iil/2(1~(2/P))h(-P)Eh(P)12 
P 

j= I 

giving 

E; (i) = op’i(Pp1)/2+ 1/2(1-(2/P))h(-P)Eh(P)/2 
- P 

= CO’(-1) 1/2(h(-P)+ 1) Eh(PV2 
P ’ if p = 3 (mod S), 

= w5Eph(p”2, if p = 7 (mod 8). 
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The value of F+(i) now follows from (6.2) and (6.3). For the values of 
F,(--i) we have only to note that 

P-1 P-1 

F,(G)= 11 (-i-p’)= n (-i-P-j)=~,(i). 
j= I j=l 

8. THE POLYNOMIALS Y(z) AND Z(z) 

F*(z) are polynomials in z of degree i(p - 1) with coefficients in the ring 
of integers of Q(G) (see [3]). Hence we can write 

F+(z) = SW - Z(z) da i’-(z) = f(Y(z> + Z(z) fi), (8.1) 

where Y(z) and Z(z) are polynomials with rational integer coefficients. 
Clearly we have 

Y(z) =F-(z) +F+(z), 
qz> = F-(z) - F+ (z> 

LG * 
(8.2) 

Taking z = 1, -1, i in (8.2) and appealing to Lemma 3 we obtain 

Y(l)=O, Z(l) = q4)l/z’h’-P’b” 
(8.3) 

Y(-1) = 2(-1)“4@‘3’, Z(- 1) = 0, (8.4) 
y(i) = ~3(_1)~/~(h(-P)-~)(E~(P)l~ _ Eph@)12), ifp = 3 (mod 8), 

= w5(qw2 + &pm), ifp = 7 (mod 8), 

Z(i) = ~~(-l)“~(~(-~)-‘)(&ph~)‘~ + cph@)“)/fi, ifp E 3 (mod 8), 
(8.5) 

= W5(E;w2 - Ephwyfi, ifp E 7 (mod 8). 

Since (using (2.1) and 2.3)) 

,c@)/2 = (T+ q,@(‘O-U/2 (R+S\/-d> 

fi 
and 

Egh(PV2 = (T- U&W’-O/2 
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we see from (8.5) that 

Y(i) =A,(1 -i), if p = 3 (mod 8) 

=A,(1 + i), if pr7 (mod8), 

Z(i) = -B3( 1 + i), if p = 3 (mod S), 
W) 

=B,(l - i), if p = 7 (mod S), 

for rational integers A,, B,, A,, B, (see [3, Eq. (IO)]). From (6.2) and (8.1) 
we have [3, Eq. (6)]) 

Y(z)2 +pZ(z)2 = 4F(z). (8.7) 

Taking z = i in (8.7), and using (6.3) and (8.6), we obtain (see [3, Eq. (12)]) 

I 

A: -pB; = -2, if p = 3 (mod 8), 
A; -pB; = +2, if p = 7 (mod 8). (8.8) 

Clearly (8.8) shows that A,, B,, A,, B, are all odd. 

9. THE POLYNOMIALS Y'(z) AND Z'(z) 

Differentiating (8.7) with respect to z, we obtain 

Y(z) Y’(z) +pZ(z) Z’(z) = 2F’(z) (9.1) 

(see [3, Eq. (9)]). In [7, Eq. (14)] the following identity of Liouville was 
noted 

z(z) Y’(z) - Y(z) Z’(z) = 2G(z), (9.2) 

(9.3) 

Solving (9.1) and (9.2) simultaneously for Y’(z) and Z’(z), we obtain 
(making use of (8.7)) 

y,(z> = F’(z) Y(z) + PG(z) z(z) 
2F(z) ’ 

Z’(z) = 
- G(z) Y(z) + F’(z) Z(z) 

Wz) 

9.4) 
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p-1 . 
(31) =PY-PI, recalling T j $ = -ph(-p) , 

jr* i ) i 
(9.5) 

G(-1)=/1-2($-)//2(-p), (using”zr’)($)=(2-($))A(-p)), 

(9.6) 

G(i)= 12 - (+) 1 h(-p), (see [7, Eq. (17)l) (9.7) 

we have 

Y’(1) = (-1) 1/2(h( -P) - I) ph(-p), Z’(1) = (4)1/2WPbU p; l , (9.8) 

2 p-l 

y’(-l)= 5 2’ ( 1 Z’(-I)= ] (3 -21 /z-P), (9.9) 

r’(i) = i (A, - 3ph(-p) B,) + G (-PA, + 3ph(-P) BJr ifp -. 3 (mod 8), 

=+-Ph(-P)B,+~(A,-Ph(-P)ll,), ifp = 7 (mod 8), 

Z’(i) = + (3h(-p) A, -pB,) + + (3h(-p) A, - B3), ifp = 3 (mod 8). 

=f(-h(-p)A,fB,)+r(h(--p)A,--pB,). ifp = 7 (mod 8). 
(9.10) 

10. h(-p) DETERMINED MODULO 8 

In [7, Eq. (20)] we showed that 

h(-p) E -A,B, (mod 4), if p = 3 (mod 8), 

s -A,B, (mod 4), if p = 7 (mod 8). 
(10.1) 

Our next task in this paper is to extend (10.1) to a congruence modulo 8. 
We prove 
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LEMMA 4. 

h(-p) =A,B, t 2B, (mod 8), if p = 3 (mod 8), 

z A,B, + 2B, (mod S), if p = 7 (mod 8). 

Proof: It is known that Y(z) and Z(z) have the form (see [7, Eq. (7)]) 

(P-3)/4 (P-3)/4 

Y(z) = 7 a,(Z(P-l”*-n -z”), Z(z) = s jJJz(P’-‘)lZ-” + z”), (10.2) 
n=O n=O 

where the a, and b, are integers. (This is a consequence of the easily proved 
result z’~-‘)‘*F*($) = --F,(z) (z # O).) Differentiating (10.2) with respect to 
z we obtain (see [7, Eq. (8)]) 

We now consider two cases according as p = 3 or 7 (mod 8), just providing 
the details when p G 3 (mod 8). With p = 81+ 3, taking z = i in (10.3) we 
obtain 

Y’(i) = 

I 
\‘ 

o<r<r/z 
l&,(41-4mt1)- \‘ 

O<ms-i-l)l2 
a4mt,(4m f 1) 

+ “ 
O<m<G- I)/2 

a4*+,(4m - 41t l)t T‘ 
0+?lz/2- I 

a4mt 3(4m + 3) 
i 

t i L’ a,,4m- 
i 

T 
oizu2 o<m3ii-1,/2 

a4m+ ,4(1- m> - y a4m+2(4mt2) 
O<rnS(l- I)/2 

t x a,,+,(41- 4m - 2) . 
O<m<l/2- I I 

Hence from (9.10) we have 

f(A, - 3ph(-p)B,)= 1 arm - \’ aJm+, t x a4mt2 
O<m<l/Z OSm<T-u/2 O<rn<(/-I)/? 

- \’ a4, + 3 (mod 41 
o<m<1/2-1 
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E L7 qm - T‘ a,, + I (mod 4) 
O<m<l o,<z/-1 

= -$Y(-1) (by (10.2)) 
=- 1 (by (8.4)) 

and thus 

A, - 3ph(-p) B, = -2 (mod 8), 

h(y) E A,B, + 2B, (mod 8). 

Similarly, with p = 8Z+ 7. we obtain 

It-p) = A,B, + 2B, (mod 8). 

11. CONSIDERATION OF (R + S &)h(p’ 

From (8.1) and (8.6) we have 

F-(i) = + (Y(i) + Z(i) 6) 

=I 

$(A,(1 -i)-B,(l +i)ifi), if p-3 (mod8). 

~(~,(l+i)+B,(l-i)i~), if p = 7 (mod 8), 

+,+B,fi), if p E 3 (mod S), 
= 

+,+B,&, if p=7 (mod8), 

=I 
$4 +B, v’h if p E 3 (mod 8), 

$4 +B, v’i% if p E 7 (mod 8). 

On the other hand, from Lemma 3, we have 

F-(i) = 
i 

W’(-1) l/Z(h(-P)+ 1 +W 
P ’ if p E 3 (mod 8), 

W5ehW2 
P ’ if p E 7 (mod 8), 
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g2 C-1) 
1/2(h(-P’t “(R + s &)hW, if p = 3 (mod 8), 

if p = 7 (mod 8). 

Equating these two expressions for F-(i) we obtain 

LEMMA 5. 

(R + S fi)hW’ 

= (-1) (h(-P’+l’/2 pP’-l’lZ(4 +B, fi), 

= -2(kb)-‘)‘2& + B, fi), 
if p = 3 (mod S), 
if p E 7 (mod 8). 

We next expand (R + S fi)h(p) in such a way that, using Lemma 5, we 
can obtain A 3, B,, A,, B, as polynomials in R and S with integral coef- 
ficients. This is done by using the following well-known identity (see, for 
example, [ 61) 

Takinga=R+S~andP=f(R-S~)in(ll.l)andadding,weobtain 
(as R2 -pS2 = (-1)@+1”4 2) 

(R + S &)*m-tl 

m 
= y (-l)((P--3)/4)j 

j=O 

2zm+: Lj (2m +' -j) 22m-jR*(m-i)+I 

+ 6 f (-1)(@+1)/4)i 

j=O 
,;yj (2my) 

x 22m-j P 
m--is*(m-j)+l 

Changing the summation variable from j to k = m -j, and noting that 
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we obtain 

(R + fj &)2m+l = 6 (-1)(@-3)/4)Cm-k) zl: (z ‘i) 2mtkRZktl 

ke0 

m 

+6 
v (-l)(@t 1)/4)(m-k) 

k:O 

x2 m+kPkS2k+‘. 

Taking m = +(/z(p) - 1) in this identity and applying Lemma 5 we obtain 

LEMMA 6. (i) p = 3 (mod 8) 

A, = (-1) Wp)+l)12h(p) 
VI@)--1)/z 2k 

v 
( 

Mp) + 2k- 1)/z 

k=O 2kf 1 (h(p)-2k- 1)/2 ’ 

B, = (-1) wP)+h@))/2j4p) 
(06 1)/z (-1)” 2k 

k:O 2k+ 1 

(h(p) + 2k - 1)/2 

(h(p) - 2k - I)/2 
pkS2k+l 

’ 

(ii) Zfp = 7 (mod 8) 

(h(p) + 2k - 1)/2 R2k+, 
(h(p) - 2k - 1)/2 i ’ 

@(P) + 2k- 1)/2 
(h(p) - 2k- I)/2 ’ 

Reducing the expressions in Lemma 6 modulo 8, we obtain (using 4.2)). 

LEMMA 7. (i) Zfp = 3 (mod 8) then 

(A3, B3)c (7(-1)‘RtS”2 R, 7(--1)‘Rts”2 S) (mod S), 

if h(p) = 1 (mod 8), 

z (5(-1)(R+S”Z R, 3(-1)(RtS)‘2 S) (mod 8), 

if h(p) = 3 (mod S), 

G (5(-l)(RfS)'2 R, 5(-1)'RtS"2 S) (mod 8), 

if h(p) = 5 (mod S), 

E (7(-1)‘RtS”2 R, (-1)‘RtS)‘2 S) (mod 8), 

if h(p) E 7 (mod 8). 



CONGRUENCESMOD 8 195 

(ii) Ifp = 7 (mod 8) fhen 

(A,, B,) = (7R, 7s) (mod 8), if h(p) E 1 (mod S), 

E (R, 7s) (mod S), if h(p) = 3 (mod S), 

E (R, S) (mod 8), if h(p) = 5 (mod 8), 

= (7R, S) (mod 8), if h(p) E 7 (mod 8). 

The next lemma tells us the congruence classes of (A3, B3) and (A,, B,) 
modulo 8. 

LEMMA 8. (a) If p = 3(mod 16) then 

(A,,B,) = (1, 11, (L7), (3,3) or (3,5) (mod 8). 

(b) Ifp E 7 (mod 16) then 

(A,,B,) = (3, I), (3,7), (5, 1) or (5,7) (mod 8). 

(c) Ifp = 11 (mod 16) then 

(A3, B,) = (5, 11, (5,7), (7,3) 01 (7,5) (mod 8). 

(d) Ifp- 15 (mod 16) [hen 

(A,,B,)- (1, I), (1,7), (7, 1) or (7,7) (mod 8). 

Proof. We just provide the details for p s 3 (mod 16). By Lemma 1 we 
have 

C-1) (R tsv2 R E 5 or 7 (mod S), 

and by Lemma 7 we have 

A, E 5(-1)(R+S”2 R or 7(-1)‘R+S)‘2 R (mod 8), 

so 

If A,= 1 (mod8), 

If A, G 3 (mod 8), 

A, E 1 or 3 (mod 8). 

B:E llpB:- ll(A:+2)- 1 (mod 16), 

B, G 1,7 (mod 8). 

B:K IlpB:- ll(A:+2)-9 (mod 16), 

B, E 3,5 (mod 8). 

Putting together Lemmas 4 and 8 we obtain 
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LEMMA 9. (a) If p = 3 (mod 16) then 

Q-p) = 1 (mod 8), if V3,B3) = (3,5) (mod 81, 

= 3 (mod S), if (A3, B3) = (1, 1) (mod 81, 

= 5 (mod 8) if (A3, B3) = (L7) (mod 81, 

E 7 (mod S), if (AI, B,) = (3, 3) (mod 8). 

(b) Zfp = 7 (mod 16) then 

/z-p) = 1 (mod 8), if (A,, B,) = (5,7) (mod 8), 

= 3 (mod 8), zf (A,. B,) = (3, 7) (mod 8) 

= 5 (mod 8), if (A,,B,)= (3, 1) (mod 8) 

= 7 (mod 8), if (A,, B,) = (5, 1) (mod 8). 

(c) Ifp = 11 (mod 16) then 

/z-p) E 1 (mod 8), if (A,,B,) = (5, 7) (mod 8>, 

= 3 (mod 8), if (A3, BJ = (7,3) (mod 8)), 

= 5 (mod 8), if (AI, B3) = (7.5) (mod 8), 

= 7 (mod8), if (A3, B3) = (5, 1) (mod 8). 

(d) Ifp= 15 (mod 16) then 

/z-p) z 1 (mod S), if (A,, B,) = (7, 1) (mod 8), 

= 3 (mod 8), if (A,,B,) = (1, 1) (mod 8), 

= 5 (mod 8), if (A,, B,) = (1, 7) (mod 8), 

= 7 (mod 8), if (A,, B,) = (7,7) (mod 8). 

12. PROOF OF THEOREM 

The theorem now follows easily from Lemmas 1, 7 and 9. We just give the 
details when p = 3 (mod 16) as the other cases can be treated similarly (see 
Table). 

We remark that tables of h(p), /z-p) and sp show that every one of the 64 
possible cases of (h(p), R, S) (mod 8) actually occurs. 

Next we give a single numerical example to illustrate the theorem. We 
take p = 9539 = 3 (mod 16). In this case 

&p = f(293 + 3 m)2, 
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TABLE I 

h(p) R(mod 8) S(mod 8) A,(mod 8) B&mod 8) h(-p)(mod 8) M-p) 
+ (-l)R-““2 h(p) 

(mod 8) (from Lemma 1) (from Lemma 7) (from Lemma 9) (mod 8) 

1 I 1 1 1 3 4 
1 3 3 3 3 1 Cl 
1 5 3 3 5 1 01 
1 7 1 1 7 5 4 
3 1 1 3 5 1 4 
3 3 3 1 I 5 0 
3 5 3 1 1 3 0 
3 7 1 3 3 7 4 
5 1 1 3 3 7 4 
5 3 3 1 1 3 0 
5 5 3 1 7 5 0 
5 1 1 3 5 1 4 
7 1 1 1 7 5 4 
7 3 3 3 5 1 0 
1 5 3 3 3 I 0 
1 7 1 1 1 3 4 

so R = 293 _= 5 (mod8), S=3 (mod 8). Thus by the theorem 
h(-p) - h(p) = 0 (mod 8). Indeed h(-p) = 55, h(p) = 7. 

Finally we remark that as (appealing to (2.3) and (2.4)) 

if p s 3 (mod 8), 

if p s 7 (mod 8), 

the theorem can also be formulated in the form 

THEOREM'. 

(mod 8). 
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