ON THE DIVISIBILITY OF THE CLASS NUMBERS OF $Q(\sqrt{ }-p)$ AND $Q(\sqrt{ }-2 p)$ BY 16.

BY
PHILIP A. LEONARD AND KENNETH S. WILLIAMS*

Abstract

Let $h(m)$ denote the class number of the quadratic field $Q(v / m)$. In this paper necessary and sufficient conditions for $h(m)$ to be divisible by 16 are determined when $m=-p$. where p is a prime congruent to 1 modulo 8 , and when $m=-2 p$, where p is a prime congruent to ± 1 modulo 8 .

0. Introduction. Let $D=-p$, where p is a prime congruent to 1 modulo 8 , or $D=-2 p$, where p is a prime congruent to ± 1 modulo 8 . Let $h(D)$ denote the class number of the imaginary quadratic field $Q(\sqrt{ } D)$. For these values of D, the 2-Sylow subgroup $H_{2}(D)$ of the class group $H(D)$ of $Q(\sqrt{ } D)$ is cyclic of order ≥ 4, so that $h(D) \equiv 0(\bmod 4)$. Moreover, in each of these cases, necessary and sufficient conditions for $h(D)$ to be divisible by 8 are known in terms of congruences involving the positive integers u and v in the representation

$$
\begin{equation*}
p=u^{2}-2 v^{2} . \tag{0.1}
\end{equation*}
$$

In this paper, using the fact that $H_{2}(D)$ is cyclic, we determine the corresponding criteria for $h(D)$ to be divisible by 16 .

1. $D=-p, p \equiv l(\bmod 8)$. We set $g=u+v, h=u+2 v$ so that g and h are odd positive integers satisfying

$$
\begin{equation*}
p=2 \mathrm{~g}^{2}-h^{2} . \tag{1.1}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
\text { G.C.D. }(g, p)=\text { G.C.D. }(h, p)=\text { G.C.D. }(g, h)=1 . \tag{1.2}
\end{equation*}
$$

Brown [3: Theorem 2] has shown that

$$
\begin{equation*}
h(-p) \equiv 0(\bmod 8) \Leftrightarrow\left(\frac{g}{p}\right)=+1 \tag{1.3}
\end{equation*}
$$

[^0]and Hasse [6:p. 168] has shown that
\[

$$
\begin{equation*}
h(-p) \equiv 0(\bmod 8) \Leftrightarrow g \equiv 1(\bmod 4) \tag{1.4}
\end{equation*}
$$

\]

It is easy to see that (1.3) and (1.4) are equivalent since, by appealing to (1.1) and the law of quadratic reciprocity, we have

$$
\begin{equation*}
\left(\frac{g}{p}\right)=\left(\frac{p}{g}\right)=\left(\frac{2 g^{2}-h^{2}}{g}\right)=\left(\frac{-h^{2}}{g}\right)=\left(\frac{-1}{g}\right) . \tag{1.5}
\end{equation*}
$$

We prove the following theorem.
Theorem 1. Let $p \equiv 1(\bmod 8)$ be a prime such that $h(-p) \equiv 0(\bmod 8)$. Set $p=2 g^{2}-h^{2}$, where g and h are odd positive integers. As $h(-p) \equiv 0(\bmod 8)$ we have $(-1 / \mathrm{g})=(\mathrm{g} / \mathrm{p})=+1$. Then

$$
h(-p) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{g}{p}\right)_{4}=\left(\frac{2 h}{g}\right) .
$$

Proof. We consider integral positive-definite binary quadratic forms $a x^{2}+$ $b x y+c y^{2}$ (written (a, b, c)) of discriminant $b^{2}-4 a c=-4 p$. Clearly b must be even. Moreover all such forms are primitive, that is, G.C.D $(a, b, c)=1$. The class A of forms equivalent to the form (a, b, c) under an integral unimodular transformation of determinant +1 is written $A=[a, b, c]$. The product $A_{1} A_{2}$ of two such classes A_{1} and A_{2} is defined as follows: choose forms $\left(a_{1}, b, a_{2} c\right) \in A_{1}$ and $\left(a_{2}, b, a_{1} c\right) \in A_{2}$ and define $A_{1} A_{2}$ to be $\left[a_{1} a_{2}, b, c\right]$. These classes, with the multiplication specified above, form a finite abelian group \mathscr{H}, which is isomorphic to the class group $H(-p)$ of the imaginary quadratic field $Q(\sqrt{ }-p)$. Its order is the class number $h(-p)$.
The identity of \mathscr{H} is the class $I=[1,0, p]$ and the inverse class of $[a, b, c] \in \mathscr{H}$ is $[a,-b, c]$.

Setting $A=\left[2,2, \frac{1}{2}(p+1)\right] \in \mathscr{H}, B=[g, 2 h, 2 g] \in \mathscr{H}$, it is easy to check that

$$
\begin{equation*}
B^{2}=A \neq I, \quad A^{2}=I, \tag{1.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\operatorname{ord}(A)=2, \quad \operatorname{ord}(B)=4 \tag{1.7}
\end{equation*}
$$

As $(g / p)=+1$, the form $(g, 2 h, 2 g)$ represents an integer s, namely $s=g$, satisfying

$$
\left(\frac{-1}{s}\right)=\left(\frac{s}{p}\right)=+1, \quad(s, 2 p)=1
$$

Thus B belongs to the principal genus of \mathscr{H}, and so, by Gauss' duplication theorem, is the square of some class $C=[l, m, n]$, that is,

$$
\begin{equation*}
C^{2}=B \tag{1.8}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
\operatorname{ord}(C)=8 \tag{1.9}
\end{equation*}
$$

Replacing (l, m,n) by an equivalent form, we can suppose that

$$
\begin{equation*}
\text { G.C.D. }(l, 2 g p)=1 . \tag{1.10}
\end{equation*}
$$

We will now show that

$$
\begin{equation*}
h(-p) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{l}{p}\right)=+1 . \tag{1.11}
\end{equation*}
$$

If $(l / p)=+1$ then, as C represents l, C must belong to the principal genus, and so is the square of some class D. From (1.9) we have ord $(D)=16$, and so $h(-p) \equiv 0(\bmod 16)$.

Conversely if $h(-p) \equiv 0(\bmod 16)$, since the 2 -Sylow subgroup of \mathscr{H} is cyclic by a theorem of Gauss, \mathscr{H} contains an element D of order 16 . Thus D^{2} is of order 8 . But there are exactly four elements of order 8 in \mathscr{H}, namely C, C^{3}, C^{5}, C^{7}, thus we must have

$$
D^{2}=C, C^{3}, C^{5} \text { or } C^{7} .
$$

In each case we see that C is a square and so C belongs in the principal genus. But C represents l so we must have $(l / p)=+1$. This completes the proof of (1.11). This technique of taking successive squareroots has been described by a number of authors [1], [5], [8], [10]. To complete the proof of the theorem we must show that

$$
\begin{equation*}
\left(\frac{l}{p}\right)=\left(\frac{\mathrm{g}}{p}\right)_{4}\left(\frac{2 h}{\mathrm{~g}}\right) . \tag{1.12}
\end{equation*}
$$

Since l is represented primitively by the form (l, m, n) and $[l, m, n]^{2}=$ [g, $2 h, 2 g], l^{2}$ is represented primitively by the form ($g, 2 h, 2 g$). Thus there are integers x and y such that

$$
\begin{equation*}
l^{2}=g x^{2}+2 h x y+2 g y^{2}, \quad(x, y)=1 . \tag{1.13}
\end{equation*}
$$

Changing the signs of both x and y, if necessary, we can suppose that x is positive. Clearly x is odd. We set

$$
\begin{equation*}
k=|h x+2 g y| \tag{1.14}
\end{equation*}
$$

so that k is an odd positive integer. From (1.1), (1.13) and (1.14) we obtain

$$
\begin{equation*}
2 g l^{2}=k^{2}+p x^{2} \tag{1.15}
\end{equation*}
$$

so that k is not divisible by p. Using (1.2), (1.10), (1.13) and (1.15), it is easy to check that
G.C.D. $(x, l)=$ G.C.D. $(x, k)=$ G.C.D. $(x, g)=$ G.C.D $\cdot(k, g)=$ G.C.D $\cdot(k, l)=1$.

From (1.15) we have

$$
\left(\frac{2 g l^{2}}{p}\right)_{4}=\left(\frac{k^{2}}{p}\right)_{4}=\left(\frac{k}{p}\right)=\left(\frac{p}{k}\right)=\left(\frac{p x^{2}}{k}\right)=\left(\frac{2 g l^{2}}{k}\right)
$$

so that

$$
\begin{equation*}
\left(\frac{l}{p}\right)=\left(\frac{2}{p}\right)_{4}\left(\frac{g}{p}\right)_{4}\left(\frac{2 g}{k}\right) \tag{1.16}
\end{equation*}
$$

Next from (1.1) and (1.2) we obtain

$$
\left(\frac{2}{p}\right)_{4}=\left(\frac{2 g^{4}}{p}\right)_{4}=\left(\frac{g^{2} h^{2}}{p}\right)_{4}=\left(\frac{g h}{p}\right)=\left(\frac{h}{p}\right)=\left(\frac{p}{h}\right)=\left(\frac{2 g^{2}}{h}\right)=\left(\frac{2}{h}\right),
$$

so that (1.16) becomes

$$
\begin{equation*}
\left(\frac{l}{p}\right)=\left(\frac{g}{p}\right)_{4}\left(\frac{2}{h}\right)\left(\frac{2}{k}\right)\left(\frac{g}{k}\right) . \tag{1.17}
\end{equation*}
$$

Further, from (1.1) and (1.15), we get

$$
k^{2}-1=2 g l^{2}-\left(2 g^{2}-h^{2}\right) x^{2}-1 \equiv 2 g-2+h^{2} x^{2}-1(\bmod 16),
$$

so that

$$
\frac{1}{8}\left(k^{2}-1\right) \equiv \frac{1}{4}(g-1)+\frac{1}{8}\left(h^{2} x^{2}-1\right)(\bmod 2),
$$

giving

$$
\left(\frac{2}{k}\right)=\left(\frac{2}{g}\right)\left(\frac{2}{h x}\right)
$$

so that (1.17) gives

$$
\begin{equation*}
\left(\frac{l}{p}\right)=\left(\frac{g}{p}\right)_{4}\left(\frac{2}{g}\right)\left(\frac{2}{x}\right)\left(\frac{g}{k}\right) . \tag{1.18}
\end{equation*}
$$

Finally, we have $($ as $g \equiv 1(\bmod 4))$

$$
\begin{aligned}
\left(\frac{g}{k}\right) & =\left(\frac{k}{g}\right)=\left(\frac{h x+2 g y}{g}\right)=\left(\frac{h x}{g}\right)=\left(\frac{h}{g}\right)\left(\frac{g}{x}\right) \\
& =\left(\frac{h}{g}\right)\left(\frac{4 g l^{2}}{x}\right)=\left(\frac{h}{g}\right)\left(\frac{2 k^{2}}{x}\right)=\left(\frac{h}{g}\right)\left(\frac{2}{x}\right),
\end{aligned}
$$

and using this in (1.18) we obtain

$$
\left(\frac{l}{p}\right)=\left(\frac{g}{p}\right)_{4}\left(\frac{2 h}{g}\right)
$$

as required. This completes the proof of the theorem.
We remark that in a paper to appear elsewhere [12], the second author has
shown that if $p \equiv 1(\bmod 8)$ is a prime such that $h(-p) \equiv 0(\bmod 8)$, then $h(-p) \equiv T+p-1(\bmod 16)$, where $T+U \sqrt{ } p$ is the fundamental unit of $Q(\sqrt{ })$.

We also note that Theorem 1 answers a question of Brown [4: p. 417].
2. $D=-2 p, p \equiv 1(\bmod 8)$. In the representation (0.1) clearly u is odd and v is even. Replacing (u, v) by the representation ($3 u+4 v, 2 u+3 v$), if necessary, we can suppose that

$$
\begin{equation*}
u \equiv 1(\bmod 4) \tag{2.1}
\end{equation*}
$$

By a theorem of Hasse [7: p. 234] [8: p. 5], we have

$$
\begin{equation*}
h(-2 p) \equiv 0(\bmod 8) \Leftrightarrow u \equiv 1(\bmod 8) \Leftrightarrow\left(\frac{u}{p}\right)=+1 . \tag{2.2}
\end{equation*}
$$

Assuming that $h(-2 p) \equiv 0(\bmod 8)$, in view of (2.2), the symbol $(u / p)_{4}$ is well-defined and independent of the choice (u, v) satisfying (0.1) and the condition $u \equiv 1(\bmod 8)$. Proceeding exactly as in the proof of Theorem 1 , but with I, A, B replaced by $[1,0,2 p],[2,0, p],[u, 4 v, 2 u]$ respectively, we obtain

$$
h(-2 p) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{l}{p}\right)=+1,\left(\frac{l}{p}\right)=\left(\frac{u}{p}\right)_{4},
$$

which establishes the following theorem.
Theorem 2. Let $p \equiv 1(\bmod 8)$ be a prime such that $h(-2 p) \equiv 0(\bmod 8)$. Set $p=u^{2}-2 v^{2}$, where u and v are positive integers with u chosen to satisfy $u \equiv 1$ $(\bmod 8)$. Then

$$
h(-2 p) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{u}{p}\right)_{4}=+1 .
$$

In a forthcoming paper [10], Kaplan and the second author have established a congruence modulo 16 involving $h(-2 p)$ and $h(2 p)$ (the narrow class number of the real quadratic field $Q(\sqrt{ } 2 p)$). Using this congruence together with Theorem 2 in the case when $p \equiv 1(\bmod 8)$ is such that $h(2 p) \equiv 0(\bmod 8)($ so that $p \equiv 1(\bmod 16))$ and one of the equations $x^{2}-2 p y^{2}=-1$ or +2 is solvable in integers x and y, we can obtain a necessary and sufficient condition for $h(2 p) \equiv 0(\bmod 16)$.

Corollary. Let $p \equiv 1(\bmod 16)$ be a prime such that $h(2 p) \equiv 0(\bmod 8)$ and such that one of the equations $x^{2}-2 p y^{2}=-1,+2$ is solvable in integers x and y. Set $p=u^{2}-2 v^{2}$, where u and v are positive integers with u chosen so that $u \equiv 1$ $(\bmod 8)$. Then

$$
h(2 p) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{u}{p}\right)_{4}=+1
$$

3. $D=-2 p, p \equiv 7(\bmod 8)$. In this case it is well-known that

$$
h(-2 p) \equiv\left\{\begin{array}{lll}
0(\bmod 8), & \text { if } & p \equiv 15(\bmod 16), \tag{3.1}\\
4(\bmod 8), & \text { if } & p \equiv 7(\bmod 16),
\end{array}\right.
$$

see for example [2: Cor. 7.4], [7: p. 234].
We restrict our attention to primes $p \equiv 15(\bmod 16)$. From (0.1) we deduce that $u \equiv \pm 1(\bmod 8)$. Replacing the representation (u, v) by $(3 u+4 v, 2 u+3 v)$, if necessary, we can suppose that $u \equiv 1(\bmod 8)$. Replacing (u, v) by $(17 u+24 v, 12 u+17 v)$, if necessary, we can further suppose that $u \equiv 1$ $(\bmod 16)$. Again proceeding exactly as in the proof of Theorem 1, we obtain

$$
h(-2 p) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{2}{l}\right)=+1,\left(\frac{2}{l}\right)=\left(\frac{v}{u}\right),
$$

which establishes the following theorem.
Theorem 3. Let $p \equiv 15(\bmod 16)$ be a prime. Set $p=u^{2}-2 v^{2}$, where u and v are positive integers with u chosen to satisfy $u \equiv 1(\bmod 16)$. Then

$$
h(-2 p) \equiv 0(\bmod 16) \Leftrightarrow\left(\frac{v}{u}\right)=+1
$$

This result should be compared with the following result of the second author: if $p \equiv 15(\bmod 16)$ is prime then $h(-2 p) \equiv U(\bmod 16)$, where $T+U \sqrt{ } 2 p$ is the fundamental unit of $Q(\sqrt{ } 2 p)$.
4. Conclusion. For $D<0$ there remains one further case when the 2-Sylow subgroup $H_{2}(D)$ of $H(D)$ is cyclic of order ≥ 4 (see for example [9]), namely,

$$
\begin{equation*}
D=-p q, p(\text { prime }) \equiv 1(\bmod 4), q(\text { prime }) \equiv 3(\bmod 4),\left(\frac{p}{q}\right)=+1 . \tag{4.1}
\end{equation*}
$$

In this case it is known (see for example [9: Théorème 8]) that

$$
\begin{equation*}
h(-p q) \equiv 0(\bmod 8) \Leftrightarrow\left(\frac{-q}{p}\right)_{4}=+1 \tag{4.2}
\end{equation*}
$$

It would be interesting to obtain an explicit necessary and sufficient condition for $h(-p q) \equiv 0(\bmod 16)$ in this case too, but since (4.2) already involves the Dirichlet symbol $(-q / p)_{4}$ this may be difficult.

The authors would like to thank Pierre Kaplan of the University of Nancy, France for a helpful comment in connection with the proof of Theorem 1. Kaplan [10] has obtained various criteria for the existence of cycles of order 16 in the class group of certain quadratic fields.

References

1. Helmut Bauer, Zur Berechnung der 2-Klassenzahl der quadratische Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 248 (1971), 42-46.
2. Bruce C. Berndt, Classical theorems on quadratic residues, L'Enseignement Math. 22 (1976), 261-304.
3. Ezra Brown, The class number of $Q(\sqrt{ }-p)$, for $p \equiv 1(\bmod 8)$ a prime, Proc. Amer. Math. Soc. 31 (1972), 381-383.
4. Ezra Brown, The power of 2 dividing the class-number of a binary quadratic discriminant, \mathbf{J}. Number Theory 5 (1973), 413-419.
5. Ezra Brown, Class numbers of quadratic fields. Symp. Mat. 15 (1975), 403-411.
6. Helmut Hasse, Über die Klassenzahl des Körpers $P(\sqrt{ }-p)$ mit einer Primzahl $p \equiv 1\left(\bmod 2^{3}\right)$, Aequationes Math. 3 (1969), 165-169.
7. Helmut Hasse, Über die Klassenzahl des Körpers $P(\sqrt{ }-2 p)$ mit einer Primzahl $p \neq 2, \mathbf{J}$. Number Theory 1 (1969), 231-234.
8. Helmut Hasse, Über die Teilbarkeit durch 2^{3} der Klassenzahl imaginär-quadratischer Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 241 (1970), 1-6.
9. Pierre Kaplan, Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan 25 (1973), 596-608.
10. Pierre Kaplan, Cycles d'ordre au moins 16 dans le 2 -groupe des classes d'idéaux de certains corps quadratiques, Bull. Soc. Math. France Mém. No. 49-50 (1977), 113-124.
11. Pierre Kaplan and Kenneth S. Williams, On the class numbers of $Q(\vee \pm 2 p)$ modulo 16 , for $p \equiv 1(\bmod 8)$ a prime, Acta Arith. (to appear).
12. Kenneth S. Williams, On the class number of $Q(\sqrt{ }-p)$ modulo 16 , for $p \equiv 1(\bmod 8)$ a prime, Acta Arith. (to appear).

Arizona State University
Tempe, Arizona, U.S.A.
82581
Carleton University
Ottawa, Ontario. Canada
K1S 5B6

[^0]: Received by the editors May 2, 1980.
 AMS (1980) classification numbers: 12A25, 12A50.
 Key words and phrases: class number, imaginary quadratic field, binary quadratic forms.

 * Research supported by the Natural Sciences and Engineering Research Council of Canada under grant A-7233.

