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O N  THE DIVISIBILITY OF THE CLASS NUMBERS 
OF Q ( J - ~ )  AND Q ( J - 2 p )  BY 16. 

H Y 

PHILIP A. LEONARD AND KENNETH S. W I L L I A ~ ~ S *  

AHSI.KACT. Let h 0 1 1 )  &note the class number of the quadratic 
field Q(v"r11). I n  this papcr necessary and sufficient conditions for 
h(tt1)  to he divisible by 16 arc determined a h c n  I I I  = -p. where 1) is 
a prime congruent to 1 modulo 8. ~inii when t t l  - 2 p .  where p i \  a 
prime congruent to +I  modulo 8. 

0. Introduction. Let D  = -p, where p is a prime congruent to 1 modulo 8, or 
D  = -2p, where p is a prime congruent to i 1 modulo 8. Let h ( D )  denote the 
class number of the imaginary quadratic field Q ( J D ) .  For these values of D, 
the 2-Sylow subgroup H2(D'I of the class group H ( D )  of Q ( J D )  is cyclic of 
order 2 4 ,  so that h(D)=O (mod 4). Moreover, in each of these cases, neces- 
sary and sufficient conditions for h ( D )  to be divisible by 8 are known in terms 
of congruences involving the positive intesers u and u in the representation 

In this paper, using the fact that H,(D) is cyclic, we determine the corres- 
ponding criteria for h ( D )  to be divisible by 16. 

1. D = -P, p -- 1 (mod 8). We set g = u + v, I 1  = u + 2v so that g and h  are 
odd positive integers satisfying 

(1.1) p = 2g2 - h', 

Clearly we have 

(1 .2)  G.C.D.(~.~)=G.C.D.(I~,?I)=G.C.D.(~, h ) = 1  

Brown [ 3 :  Theorem 21 has shown that 
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and Hasse [6: p. 1681 has shown that 

I t  is easy to see that (1.3) and (1.4) are equivalent since, by appealing to (1.1) 
and the law of quadratic reciprocity, we have 

We prove the following theorem. 

THEOREM 1. Let p - 1 (mod 8) be a prime such rhat h(-p) -0 (mod 8). Set 
p = 2g2- h2, where g and h are odd positive inregers. As h(-p) = 0 (mod 8) we 
have (- l lg )  = (glp) = + l .  Then 

Proof. We consider integral positive-definite binary quadratic forms ax2 + 
bxy +cy2 (written (a, b, c)) of discriminant b2-4ac = -4p. Clearly b must be 
even. Moreover all such forms are primitive, that is, G.C.D (a, b, c) = 1. The 
class A of forms equivalent to the form (a. b, c )  under an integral unimodular 
transformation of determinant +1 is written A = [a, b, c]. The product A,A, of 
two such classes A,  and A, is defined as follows: choose forms (a,, b, a,c) E A ,  
and (a,, b, a,c) E A, and define A lA2  to be [ala2, b, c]. These classes, with the 
multiplication specified above, form a finite abelian group X, which is isomor- 
phic to the class group H(-p) of the imaginary quadratic field Q ( J - ~ ) .  Its 
order is the class number h(-p). 

The identity of X is the class I = [I,  0, p ]  and the inverse class of [a. b, c] E X 
is [a, -b, c]. 

Setting A = [2,2, i (p + I)]€ X, B = [g, 2h, 2g] E X, it is easy to check that 

so that 

As (glp) = +1, the form (g, 2h, 2g) represents an integer s, namely s = g, 
satisfying 

Thus B belongs to the principal genus of X, and so, by Gauss' duplication 
theorem, is the square of some class C = [ I ,  m, n], that is, 
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Clearly we have 

Replacing (I, m, n) by an equivalent form, we can suppose that 

(1.10) G.C.D.(l, 2gp) = 1. 

We will now show that 

If (l/p) = + 1  then, as C represents I, C must belong to the principal genus, 
and so is the square of some class D. From (1.9) we have ord (D)  = 16, and so 
h(-p)=O (mod 16). 

Conversely if h(-p) = 0 (mod 16), since the 2-Sylow subgroup of X is cyclic 
by a theorem of Gauss, X contains an element D of order 16. Thus D2 is of 
order 8. But there are exactly four elements of order 8 in X, namely C, C', C S ,  
C7, thus we must have 

D 2 =  C, C3,  C5 or C7. 

In each case we see that C is a square and so C belongs in the principal 
genus. But C represents 1 so we must have (llp) = + l .  This completes the proof 
of (1.11). This technique of taking successive squareroots has been described 
by a number of authors [I], [5], [8], [lo]. To  complete the proof of the theorem 
we must show that 

Since 1 is represented primitively by the form (I, m, n) and [ l ,  m, nI2= 
[g, 2h, 2g], 1' is represented primitively by the form (g, 2h, 2g). Thus there are 
integers x and y such that 

Changing the signs of both x and y, if necessary, we can suppose that x is 
positive. Clearly x is odd. We set 

(1.14) k = (hx + 2gy 1, 

so that k is an odd positive integer. From (1.1), (1.13) and (1.14) we obtain 

so that k is not divisible by p. Using (1.2), (1. lo), (1.13) and (1.15), it is easy to 
check that 

(1.16) 

G.C.D.(x, l)=G.C.D.(x, k)=G.C.D.(x, g)=G.C.D.(k, g)=G.C.D.(k, 1 ) =  1. 
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From (1.15) we have 

so that 

Next from (1.1) and (1.2) we obtain 

so that (1.16) becomes 

Further, from (1.1) and (1.15), we get 

so that 

$(k2- l)=b(g - l )+$(h2x2- 1) (mod 2), 

giving 

so that (1.17) gives 

Finally, we have (as g = 1 (mod 4)) 

and using this in (1.18) we obtain 

as required. This completes the proof of the theorem. 
We remark that in a paper to appear elsewhere [12], the second author has 
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shown that if p = 1 (mod 8) is a prime such that h(-p) = 0 (mod 8). then 
h(-p) = T +  p - 1 (mod 16), where T+ uJp is the fundamental unit of Q ( J ~ ) .  

We also note that Theorem 1 answers a question of Brown [4: p. 4171. 

2. D = -2p, p = 1 (mod 8). In the representation (0.1) clearly u is odd and v 
is even. Replacing (u, v) by the representation (3u + 4v. 2u + 3v), if necessary, 
we can suppose that 

(2.1) u = 1 (mod 4). 

By a theorem of Hasse [7: p. 23411 [8: p. 51, we have 

Assuming that h(-2p)=0 (mod 8), in view of (2.2), the symbol (ulp), is 
well-defined and independent of the choice (u, v) satisfying (0.1) and the 
condition u = 1 (mod 8). Proceeding exactly as in the proof of Theorem 1, but 
with I, A, B replaced by [I ,  0,2p], [2,0, pl, [u, 4v, 2u] respectively, we obtain 

which establishes the following theorem. 

THEOREM 2. Let p = 1 (mod 8) be a prime such that h(-2p)=0 (mod 8). Set 
p = u2-2v2, where u and v are positive integers with u chosen to satisfy u =  1 
(mod 8). Then 

U 
h ( - 2 ~ ) - - 0  (mod 16)c) (-) = + I .  

P 4 

In a forthcoming paper [lo]. Kaplan and the second author have established 
a congruence modulo 16 involving h(-2p) and h(2p) (the narrow class number 
of the real quadratic field ~ ( 4 2 ~ ) ) .  Using this congruence together with 
Theorem 2 in the case when p = 1 (mod 8) is such that h(2p)eO (mod 8) (so 
that p = 1 (mod 16)) and one of the equations x2- 2py2 = -1 or +2 is solvable 
in integers x and y, we can obtain a necessary and sufficient condition for 
h(2p) = 0 (mod 16). 

COROLLARY. Let p = 1 (mod 16) be a prime such that h(2p) = 0  (mod 8)  and 
such that one of the equations x2-2py2 = -1, +2 is solvable in integers x and y. 
Set p = u2-2v2, where u and v are positive integers with u chosen so that u = 1 
(mod 8). Then 

h(2p)=0 (mod 16)c) - = + l .  (3, 
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3.  D = -2p, p = 7  (mod 8). In this case it is well-known that 

0 (mod 8), if p = 15 (mod 16), 
h ( - 2 p ) ~ { ~  ( mod 8), if p - 7 (mod 16), 

see for example [2: Cor. 7.41, [7: p. 2341. 
We restrict our attention to primes p = 15 (mod 16). From (0.1) we deduce that 
u = * 1 (mod 8). Replacing the representation (u, v) by (3u + 4v, 2u + 3v), if 
necessary, we can suppose that u - 1 (mod 8). Replacing (u, v) by 
(17u + 24v, 12u + 17v), if necessary, we can further suppose that u = 1 
(mod 16). Again proceeding exactly as in the proof of Theorem 1, we obtain 

h(-Zp)=O (mod l6)W ( T )  = +1, (;) = (:), 
which establishes the following theorem. 

THEOREM 3. Let p = 15 (mod 16) be a prime. Set p = u2 - 2v2, where u and v 
are positive integers with u chosen to satisfy u - 1 (mod 16). Then 

h(-2p)-0 (mod 1 6 ) ~  - = + l .  (3 
This result should be compared with the following result of the second 

author: if p = 1 5  (mod 16) is prime then h(-2p)=U (mod l6) ,  where 
T +  u J ~ ~  is the fundamental unit of Q ( J ~ ~ ) .  

4. Conclusion. For D < 0 there remains one further case when the 2-Sylow 
subgroup H2(D) of H ( D )  is cyclic of order 2 4  (see for example [9]), namely, 

(4.1) D = -pq, p(prime) = 1 (mod 4), q(prime) = 3 (mod 4), (t) = +I .  

In this case it is known (see for example [9: ThCorkme 81) that 

It would be interesting to obtain an explicit necessary and sufficient condition 
for h(-pq)=0 (mod 16) in this case too, but since (4.2) already involves the 
Dirichlet symbol (-q/p), this may be difficult. 

The authors would like to thank Pierre Kaplan of the University of Nancy, 
France for a helpful comment in connection with the proof of Theorem 1. 
Kaplan [lo] has obtained various criteria for the existence of cycles of order 16 
in the class group of certain quadratic fields. 
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