A NEW CRITERION FOR 7 TO BE A FOURTH POWER $(\bmod p)$

BY
RICHARD H. HUDSON AND KENNETH S. WILIIIAMS

ABSTRACT
A new application is made of Muskat's evaluation of the cyclotomic numbers of order fourteen, to obtain a necessary and sufficient condition for seven to be a fourth power modulo a prime $\equiv 1$ (mod 28).

1. Introduction

Let p be a prime $\equiv 1(\bmod 4)$. For small primes q with $(p / q)=+1$, necessary and sufficient criteria for q to be a fourth power modulo p have traditionally been given in terms of congruences modulo q involving the integers a and b defined by $p=a^{2}+b^{2}, a \equiv 1(\bmod 4), b \equiv 0(\bmod 2)($ see for example [2], [6], [8]).

Recently other parametric representations of p have been used to give similar criteria. For example, if $p \equiv 1(\bmod 16)$ then there are integers $x_{1}, x_{2}, x_{3}, x_{4}$ such that

$$
\left\{\begin{array}{l}
p=x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2}, \quad x_{1} \equiv 1(\bmod 8), \tag{1.1}\\
2 x_{1} x_{3}=x_{2}^{2}-2 x_{2} x_{4}-x_{4}^{2},
\end{array}\right.
$$

(see for example [5, p. 338] and [12, p. 366]) and Evans [4] has shown that

$$
\begin{equation*}
2 \text { is a fourth power }(\bmod p) \Leftrightarrow x_{3} \equiv 0(\bmod 4) . \tag{1.2}
\end{equation*}
$$

We note that (1.1) has exactly four solutions, namely ($x_{1}, \pm x_{2}, x_{3}, \pm x_{4}$) and $\left(x_{1}, \pm x_{4},-x_{3}, \mp x_{2}\right)$, so that x_{1} and $\left|x_{3}\right|$ are uniquely determined by (1.1). If

[^0]$p \equiv 1(\bmod 20)$ it follows from the work of Dickson [3, p. 402] that there are integers $x_{1}, x_{2}, x_{3}, x_{4}$ such that
\[

\left\{$$
\begin{array}{l}
16 p=x_{1}^{2}+50 x_{2}^{2}+50 x_{3}^{2}+125 x_{4}^{2}, \quad x_{1} \equiv 1(\bmod 5), \tag{1.3}\\
x_{1} x_{4}=x_{3}^{2}-4 x_{2} x_{3}-x_{2}^{2},
\end{array}
$$\right.
\]

and the authors [7] have proved that

$$
\begin{gather*}
5 \text { is a fourth power }(\bmod p) \\
\Leftrightarrow\left\{\begin{array}{l}
x_{1} \equiv 4(\bmod 8), \quad \text { if } x_{1} \equiv 0(\bmod 2) \\
x_{1} \equiv \pm 3 x_{4}(\bmod 8), \quad \text { if } x_{1} \equiv 1(\bmod 2)
\end{array}\right. \tag{1.4}
\end{gather*}
$$

All four solutions of (1.3) are given by

$$
\left(x_{1}, \pm x_{2}, \pm x_{3}, x_{4}\right),\left(x_{1}, \pm x_{3}, \mp x_{2},-x_{4}\right)
$$

so that x_{1} and $\left|x_{4}\right|$ are uniquely determined by (1.3).
In this note, we obtain a result for 7 to be a fourth power $(\bmod p)$ analogous to (1.2) and (1.4). This is done using Muskat's formulae [13] for the cyclotomic numbers of order fourteen in conjunction with an index formula given by the authors in [7]. The details for $q=7$ are considerably more complicated than those for $q=2$ and $q=5$, as the diophantine system corresponding to (1.1) and (1.3) in this case involves six parameters and the group of solutions is cyclic of order six. Our main result is given in Theorem 5.

2. Criteria for 2 to be a seventh power $(\bmod p)$

Let p be a prime $\equiv 1(\bmod 7)$, so that $p=14 f+1$. Let g be a fixed primitive root $(\bmod p)$. For integers h and k the number of solutions (s, t) with $0 \leqq s, t<(p-1) / 7$ of the congruence

$$
\begin{equation*}
g^{7_{s+h}}+1 \equiv g^{7_{1+k}}(\bmod p) \tag{2.1}
\end{equation*}
$$

is denoted by $(h, k)_{7}$. The number $(h, k)_{7}$ is called the cyclotomic number of order 7. The Dickson-Hurwitz sum of order 7 is defined by

$$
B_{7}(i, j)=\sum_{h=0}^{6}(h, i-j h)_{7} .
$$

As in [16, pp. 609-611], we can define integers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ (depending upon g) by

$$
\left\{\begin{array}{l}
x_{1}=2-p+7(0,0)_{7}+14(1,2)_{7}+14(1,4)_{7}+14(2,4)_{7}, \tag{2.2}\\
x_{2}=2(0,1)_{7}+(0,3)_{7}-(0,4)_{7}-2(0,6)_{7}+2(1,3)_{7}-2(1,5)_{7} \\
x_{3}=-(0,1)_{7}+2(0,2)_{7}-2(0,5)_{7}+(0,6)_{7}+2(1,3)_{7}-2(1,5)_{7}, \\
x_{4}=(0,2)_{7}+2(0,3)_{7}-2(0,4)_{7}-(0,5)_{7}-2(1,3)_{7}+2(1,5)_{7}, \\
x_{5}=-2(1,2)_{7}+(1,4)_{7}+(2,4)_{7}, \\
x_{6}=-(1,4)_{7}+(2,4)_{7}
\end{array}\right.
$$

It is known [10], [16, theorem 2] that $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ is a solution of the diophantine system

$$
\left\{\begin{array}{l}
72 p=2 x_{1}^{2}+42\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)+343\left(x_{5}^{2}+3 x_{6}^{2}\right), \quad x_{1} \equiv 1(\bmod 7) \tag{2.3}\\
12 x_{2}^{2}-12 x_{4}^{2}+147 x_{5}^{2}-441 x_{6}^{2} \\
\quad+56 x_{1} x_{6}+24 x_{2} x_{3}-24 x_{2} x_{4}+48 x_{3} x_{4}+98 x_{5} x_{6}=0 \\
12 x_{3}^{2}-12 x_{4}^{2}+49 x_{5}^{2}-147 x_{6}^{2} \\
\quad+28 x_{1} x_{5}+28 x_{1} x_{6}+48 x_{2} x_{3}+24 x_{2} x_{4}+24 x_{3} x_{4}+490 x_{5} x_{6}=0 .
\end{array}\right.
$$

The sums $B_{7}(i, 1)(0 \leqq i \leqq 6)$ have been given in terms of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ (see [9], [11]):

$$
\left\{\begin{array}{l}
84 B_{7}(0,1)=12 x_{1}+12 p-24, \tag{2.4}\\
84 B_{7}(1,1)=-2 x_{1}+42 x_{2}+49 x_{5}+147 x_{6}+12 p-24 \\
84 B_{7}(2,1)=-2 x_{1}+42 x_{3}+49 x_{5}+147 x_{6}+12 p-24, \\
84 B_{7}(3,1)=-2 x_{1}+42 x_{4}-98 x_{5}+12 p-24 \\
84 B_{7}(4,1)=-2 x_{1}-42 x_{4}-98 x_{5}+12 p-24 \\
84 B_{7}(5,1)=-2 x_{1}-42 x_{3}+49 x_{5}-147 x_{6}+12 p-24 \\
84 B_{7}(6,1)=-2 x_{1}-42 x_{2}+49 x_{5}+147 x_{6}+12 p-24 .
\end{array}\right.
$$

We also define integers t and u by

$$
\left\{\begin{align*}
6 t & =p-2-7(0,0)_{7}-21(1,3)_{7}-21(1,5)_{7}, \tag{2.5}\\
2 u & =(0,1)_{7}+(0,2)_{7}-(0,3)_{7}+(0,4)_{7}-(0,5)_{7}-(0,6)_{7}-(1,3)_{7}+(1,5)_{7}
\end{align*}\right.
$$

(see [11, p. 298], [14, p. 64]), so that (t, u) satisfies

$$
\begin{equation*}
p=t^{2}+7 u^{2}, \quad t \equiv 1(\bmod 7) \tag{2.6}
\end{equation*}
$$

It is shown in [16, theorem 2] that $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ is not equal to either of the two "trivial" solutions ($-6 t, \pm 2 u, \pm 2 u, \mp 2 u, 0,0$) of the system (2.3). There are exactly six "non-trivial" solutions of (2.3). These are

$$
\left\{\begin{array}{l}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right), \tag{2.7}\\
\left(x_{1}, x_{3},-x_{4},-x_{2},-\frac{1}{2}\left(x_{5}+3 x_{6}\right), \frac{1}{2}\left(x_{5}-x_{6}\right)\right) \\
\left(x_{1}, x_{4},-x_{2}, x_{3},-\frac{1}{2}\left(x_{5}-3 x_{6}\right),-\frac{1}{2}\left(x_{5}+x_{6}\right)\right), \\
\left(x_{1},-x_{4}, x_{2},-x_{3},-\frac{1}{2}\left(x_{5}-3 x_{6}\right),-\frac{1}{2}\left(x_{5}+x_{6}\right)\right) \\
\left(x_{1},-x_{3}, x_{4}, x_{2},-\frac{1}{2}\left(x_{5}+3 x_{6}\right), \frac{1}{2}\left(x_{5}-x_{6}\right)\right) \\
\left(x_{1},-x_{2},-x_{3},-x_{4}, x_{5}, x_{6}\right)
\end{array}\right.
$$

see for example [9, p. 144].
Clearly from the first equation of (2.3), we have
Lemma 1. $x_{5} \equiv x_{6}(\bmod 2)$.
Leonard and Williams [9] have shown
Lemma 2. 2 is a seventh power $(\bmod p) \Leftrightarrow x_{1} \equiv 0(\bmod 2)$.
The next lemma is a special case of a result of Alderson [1, theorem 1].
Lemma 3. 2 is a seventh power $(\bmod p)$

$$
\Leftrightarrow(0,1)_{7},(0,2)_{7}, \cdots,(0,6)_{7} \text { are all even. }
$$

From the evaluation of the cyclotomic numbers of order 7 given by Leonard and Williams [11], we have (with a minor misprint corrected in the first equation)

Lemma 4.

$$
\begin{aligned}
& 588(0,1)_{7}=12 p-72+24 t+168 u-6 x_{1}+84 x_{2}-42 x_{3}+147 x_{5}+147 x_{6}, \\
& 588(0,2)_{7}=12 p-72+24 t+168 u-6 x_{1}+84 x_{3}+42 x_{4}-294 x_{6}, \\
& 588(0,3)_{7}=12 p-72+24 t-168 u-6 x_{1}+42 x_{2}+84 x_{4}-147 x_{5}+147 x_{6}, \\
& 588(0,4)_{7}=12 p-72+24 t+168 u-6 x_{1}-42 x_{2}-84 x_{4}-147 x_{5}+147 x_{6}, \\
& 588(0,5)_{7}=12 p-72+24 t-168 u-6 x_{1}-84 x_{3}-42 x_{4}-294 x_{6}, \\
& 588(0,6)_{7}=12 p-72+24 t-168 u-6 x_{1}-84 x_{2}+42 x_{3}+147 x_{5}+147 x_{6} .
\end{aligned}
$$

From Lemmas 2, 3 and 4 we obtain
Lemma 5. If 2 is a seventh power $(\bmod p)$ then x_{2}, \cdots, x_{6} are all even and $x_{5} \equiv x_{6}(\bmod 4)$.

Proof. By Lemmas 3 and 4, we have

$$
\begin{aligned}
2 x_{1}+4 x_{2}-2 x_{3}+3 x_{5}+3 x_{6} & \equiv 4(\bmod 8), \\
2 x_{1}+4 x_{3}+2 x_{4}+2 x_{6} & \equiv 4(\bmod 8), \\
2 x_{1}+2 x_{2}+4 x_{4}-3 x_{5}+3 x_{6} & \equiv 4(\bmod 8), \\
2 x_{1}-2 x_{2}+4 x_{4}-3 x_{5}+3 x_{6} & \equiv 4(\bmod 8), \\
2 x_{1}+4 x_{3}-2 x_{4}+2 x_{6} & \equiv 4(\bmod 8), \\
2 x_{1}+4 x_{2}+2 x_{3}+3 x_{5}+3 x_{6} & \equiv 4(\bmod 8),
\end{aligned}
$$

from which it follows easily that

$$
x_{2} \equiv x_{3} \equiv x_{4} \equiv 0(\bmod 2) .
$$

Moreover, by Lemma 2, we have $x_{1} \equiv 0(\bmod 2)$. The first two congruences now give $x_{5} \equiv x_{6} \equiv 0(\bmod 2)$ and the third gives $x_{5} \equiv x_{6}(\bmod 4)$.

Hence by Lemmas 1 and 5 we have
Lemma 6. If ($\left.x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ is such that

$$
x_{5} \equiv x_{6} \equiv 1(\bmod 2)
$$

or

$$
x_{5} \equiv x_{6} \equiv 0(\bmod 2), \quad x_{5} \not \equiv x_{6}(\bmod 4),
$$

then 2 is not a seventh power $(\bmod p)$.
Next we prove
Lemma 7. If f is even and $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ is such that

$$
x_{5} \equiv x_{6} \equiv 0(\bmod 2), \quad x_{5} \equiv x_{6}(\bmod 4)
$$

then
(i) $x_{1} \equiv 2(\bmod 4)$,
(ii) $x_{2} \equiv x_{3} \equiv x_{4} \equiv x_{5} \equiv x_{6} \equiv 0(\bmod 4)$,
(iii) $x_{5} \equiv x_{6}(\bmod 8)$,
(iv) $x_{2}+x_{3}+x_{4} \equiv 2 f(\bmod 8)$.

Proof. As $x_{5} \equiv x_{6} \equiv 0(\bmod 2), x_{5} \equiv x_{6}(\bmod 4)$, we can define integers y_{6} and z by

$$
x_{5}=2 y_{6}+4 z, \quad x_{6}=2 y_{6} .
$$

Taking each of the three equations in (2.3) modulo 64 , we obtain

$$
\begin{align*}
& \text { (2.8) } x_{1}^{2}+21\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)+24\left(y_{6}^{2}+y_{6} z+z^{2}\right) \equiv 4-8 f(\bmod 32), \tag{2.8}\\
& \text { (2.9) } 3 x_{2}^{2}-3 x_{4}^{2}-4 y_{5}^{2}-4 z^{2}-4 x_{1} y_{6}+6 x_{2} x_{3}-6 x_{2} x_{4}+12 x_{3} x_{4} \equiv 0(\bmod 16), \\
& 3 x_{3}^{2}-3 x_{4}^{2}+8 y_{6}^{2}+8 y_{6} z+4 z^{2}+28 x_{1} y_{6} \\
& \text { (2.10) } \quad+28 x_{1} z+12 x_{2} x_{3}+6 x_{2} x_{4}+6 x_{3} x_{4} \equiv 0(\bmod 16) . \tag{2.10}
\end{align*}
$$

Clearly from (2.9) and (2.10) we have

$$
x_{2} \equiv x_{3} \equiv x_{4}(\bmod 2) .
$$

Taking (2.8) modulo 8 , and supposing that $x_{2} \equiv x_{3} \equiv x_{4} \equiv 1(\bmod 2)$, we obtain

$$
x_{1}^{2}+7 \equiv 4(\bmod 8),
$$

which is impossible. Hence we must have

$$
x_{1} \equiv x_{2} \equiv x_{3} \equiv x_{4} \equiv 0(\bmod 2) .
$$

Thus we can define integers $y_{i}(i=1,2,3,4)$ by $x_{i}=2 y_{i}$. Using these in (2.8), (2.9), (2.10), we obtain

$$
\begin{equation*}
y_{1}^{2}+5\left(y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)-2\left(y_{6}^{2}+y_{6} z+z^{2}\right) \equiv 1-2 f(\bmod 8), \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
-y_{2}^{2}+y_{4}^{2}-y_{6}^{2}-z^{2}+2 y_{1} y_{6}+2 y_{2} y_{3}+2 y_{2} y_{4} \equiv 0(\bmod 4) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
-y_{3}^{2}+y_{4}^{2}+2 y_{6}^{2}+2 y_{6} z+z^{2}+2 y_{1} y_{6}+2 y_{1} z+2 y_{2} y_{4}+2 y_{3} y_{4} \equiv 0(\bmod 4) \tag{2.13}
\end{equation*}
$$

From (2.11), (2.12), (2.13) we obtain, as f is even,

$$
\begin{gathered}
y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}+2\left(y_{6}^{2}+y_{6} z+z^{2}\right) \equiv 1(\bmod 4) \\
y_{2}+y_{4}+y_{6}+z \equiv 0(\bmod 2) \\
y_{3}+y_{4}+z \equiv 0(\bmod 2)
\end{gathered}
$$

These congruences give the following possible residues $(\bmod 2)$ for $y_{1}, y_{2}, y_{3}, y_{4}$, y_{6}, z.

y_{1}	y_{2}	y_{3}	y_{4}	y_{6}	z
1	0	0	0	0	0
1	1	1	0	0	1
1	0	1	1	1	0
1	1	0	1	1	1

The second of these possibilities cannot occur in view of (2.13) and the third and fourth in view of (2.12). Hence we have

$$
x_{1} \equiv 2(\bmod 4), \quad x_{2} \equiv x_{3} \equiv x_{4} \equiv x_{5} \equiv x_{6} \equiv 0(\bmod 4), \quad x_{5} \equiv x_{6}(\bmod 8)
$$

proving (i), (ii) and (iii). Finally, from (2.11), we have, with $y_{2}=2 z_{2}, y_{3}=2 z_{3}$, $y_{4}=2 z_{4}$,

$$
1+4\left(z_{2}^{2}+z_{3}^{2}+z_{4}^{2}\right) \equiv 1-2 f(\bmod 8),
$$

that is

$$
z_{2}+z_{3}+z_{4} \equiv f / 2(\bmod 2)
$$

giving

$$
x_{2}+x_{3}+x_{4} \equiv 2 f(\bmod 8),
$$

which is (iv).
Putting Lemmas 1, 2, 6 and 7 together we obtain
Theorem 1. If f is even then

$$
2 \text { is a seventh power }(\bmod p) \Leftrightarrow x_{5} \equiv x_{6} \equiv 0(\bmod 2), \quad x_{5} \equiv x_{6}(\bmod 4),
$$

or, equivalently,
2 is not a seventh power $(\bmod p)$
$\Leftrightarrow x_{S} \equiv x_{6} \equiv 1(\bmod 2) \quad$ or $\quad x_{5} \equiv x_{6} \equiv 0(\bmod 2), \quad x_{5} \not \equiv x_{6}(\bmod 4)$.
3. Congruences for ind ${ }_{8}(2)$ and $\operatorname{ind}_{8}(7)$

If n is an integer not divisible by p, the index of n with respect to g, written $\operatorname{ind}_{8}(\boldsymbol{n})$, is that integer b such that $n \equiv g^{b}(\bmod p), 0 \leqq b \leqq p-2$. We prove the following more precise form of Theorem 1.

Theorem 2. If f is even, then

$$
\operatorname{ind}_{8}(2) \equiv \begin{cases}0(\bmod 7), \text { if } x_{5} \equiv x_{\curvearrowleft} \equiv 0(\bmod 2), & x_{5} \equiv x_{\curvearrowleft}(\bmod 4) \\ \pm 1(\bmod 7), \text { if } x_{5} \equiv x_{6} \equiv 1(\bmod 2), & x_{5} \neq x_{6}(\bmod 4) \\ \pm 2(\bmod 7), \text { if } x_{5} \equiv x_{6} \equiv 0(\bmod 2), & x_{5} \neq x_{6}(\bmod 4) \\ \pm 3(\bmod 7), \text { if } x_{5} \equiv x_{6} \equiv 1(\bmod 2), & x_{5} \equiv x_{6}(\bmod 4)\end{cases}
$$

Proof. In view of Theorem 1 we need only treat the cases when ind ${ }_{g}(2) \not \equiv 0$ $(\bmod 7)$. As 2 is not a seventh power $(\bmod p)$, by Theorem 1, we have

$$
x_{5} \equiv x_{6} \equiv 1(\bmod 2) \quad \text { or } \quad x_{5} \equiv x_{6} \equiv 0(\bmod 2), \quad x_{5}+x_{6} \equiv 2(\bmod 4) .
$$

From Muskat's table 3 [13, p. 277] for the cyclotomic numbers of order 14 and the expressions for $B_{7}(i, 1)(1 \leqq i \leqq 6)$ given in (2.4), we obtain

$$
\begin{array}{ll}
4\left\{(4,8)_{14}-(1,11)_{1+}\right\}=x_{5}+x_{6}, & \text { if } \operatorname{ind}_{g}(2) \equiv 1(\bmod 7), \\
2\left\{(1,9)_{14}-(2,8)_{1+4}\right\}=x_{6}, & \text { if } \operatorname{ind}_{g}(2) \equiv 2(\bmod 7), \\
4\left\{(2,11)_{14}-(2,4)_{14}\right\}=x_{5}-x_{6}, & \text { if } \operatorname{ind}_{g}(2) \equiv 3(\bmod 7), \\
4\left\{(2,5)_{14}-(2,4)_{14}\right\}=x_{5}-x_{6}, & \text { if } \operatorname{ind}_{g}(2) \equiv 4(\bmod 7), \\
2\left\{(1,6)_{14}-(2,8)_{14}\right\}=x_{6}, & \text { if } \operatorname{ind}_{g}(2) \equiv 5(\bmod 7), \\
4\left\{(4,8)_{14}-(1,4)_{14}\right\}=x_{5}+x_{6}, & \text { if } \operatorname{ind}_{8}(2) \equiv 6(\bmod 7)
\end{array}
$$

If $\operatorname{ind}_{g}(2) \equiv \pm 1(\bmod 7)$, we have $x_{5}+x_{6} \equiv 0(\bmod 4)$, and thus by Theorem 1 , we have $x_{5} \equiv x_{6} \equiv 1(\bmod 2), x_{5} \neq x_{6}(\bmod 4)$.

If $\operatorname{ind}_{8}(2) \equiv \pm 2(\bmod 7)$, we have $x_{5} \equiv 0(\bmod 2)$, and thus by Theorem 1, we obtain $x_{5} \equiv x_{6} \equiv 0(\bmod 2), x_{5} \neq x_{6}(\bmod 4)$.

If $\operatorname{ind}_{g}(2) \equiv \pm 3(\bmod 7)$, we have $x_{5} \equiv x_{5}(\bmod 4)$, and so by Theorem 1 , we deduce that $x_{5} \equiv x_{6} \equiv 1(\bmod 2)$.

This completes the proof of Theorem 2.
An immediate application of theorem 1 of [7] (with $e=7, k=4, l=14$) gives
Lemma 8. If f is even, then

$$
\operatorname{ind}_{k}(7) \equiv 2 \sum_{i=0}^{6} \sum_{j=0}^{1} \sum_{k=1}^{3}(2 i+1,7 j+k)_{t 4}+f(\bmod 4)
$$

Applying Muskat's formulae [13, tables 1 and 3] for the cyclotomic numbers of order 14 in Lemma 8, we obtain, using (2.4) and Lemma 7 (iv), the following theorem.

Theorem 3. If f is even, then

$$
\operatorname{ind}_{g}(7) \equiv \begin{cases}1-\frac{1}{2} x_{1}(\bmod 4), & \text { if } \operatorname{ind}_{g}(2) \equiv 0(\bmod 7), \\ f-1-\frac{1}{2}\left(x_{5}+3 x_{6}\right)(\bmod 4), & \text { if } \operatorname{ind}_{g}(2) \equiv \pm 1(\bmod 7), \\ f-1-\frac{1}{2}\left(x_{5}-3 x_{6}\right)(\bmod 4), & \text { if } \operatorname{ind}_{g}(2) \equiv \pm 2(\bmod 7), \\ f-1+x_{5}(\bmod 4), & \text { if } \operatorname{ind}_{g}(2) \equiv \pm 3(\bmod 7) .\end{cases}
$$

Putting Theorems 2 and 3 together we obtain
Theorem 4. If f is even, then
$\operatorname{ind}_{g}(7) \equiv\left\{\begin{array}{l}1-\frac{1}{2} x_{1}(\bmod 4), \text { if } x_{5} \equiv x_{\varsigma} \equiv 0(\bmod 2), x_{5} \equiv x_{6}(\bmod 4), \\ f-1-\frac{1}{2}\left(x_{5}+3 x_{6}\right)(\bmod 4), \text { if } x_{5} \equiv x_{\mathrm{h}} \equiv 1(\bmod 2), x_{5} \neq x_{6}(\bmod 4), \\ f-1-\frac{1}{2}\left(x_{5}-3 x_{6}\right)(\bmod 4), \text { if } x_{5} \equiv x_{6} \equiv 0(\bmod 2), x_{5} \neq x_{6}(\bmod 4), \\ f-1+x_{5}(\bmod 4), \text { if } x_{5} \equiv x_{6} \equiv 1(\bmod 2), x_{5} \equiv x_{6}(\bmod 4) .\end{array}\right.$
Clearly, from (2.7), if ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$) is a solution of (2.3) satisfying $x_{5} \equiv x_{6} \equiv 0(\bmod 2), x_{5} \equiv x_{6}(\bmod 4)$, all six solutions satisfy the same congruences. If not, then two of the six solutions of (2.3) satisfy $x_{5} \equiv x_{6} \equiv 1(\bmod 2)$, $x_{5} \not \equiv x_{6}(\bmod 4) ;$ two satisfy $x_{5} \equiv x_{6} \equiv 0(\bmod 2), x_{5} \neq x_{6}(\bmod 4) ;$ two satisfy $x_{5} \equiv x_{6} \equiv 1(\bmod 2), x_{5} \equiv x_{6}(\bmod 4)$. Hence, in this case, we can always choose a non-trivial solution of (2.3) satisfying $x_{5} \equiv x_{6} \equiv 1(\bmod 2), x_{5} \equiv x_{5}(\bmod 4)$. Thus Theorem 4 yields our main result

Theorem 5. Suppose f is even and ($\left.x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ denotes a non-trivial solution of (2.3). If $x_{1} \equiv 0(\bmod 2)$, then

$$
7 \text { is a fourth power }(\bmod p) \Leftrightarrow x_{1} \equiv 2(\bmod 8) .
$$

If $x_{1} \not \equiv 0(\bmod 2)$, we can choose the solution so that $x_{5} \equiv x_{6} \equiv 1(\bmod 2), x_{5} \equiv x_{6}$ $(\bmod 4)$. Then

7 is a fourth power $(\bmod p) \Leftrightarrow x_{5} \equiv 1-f(\bmod 4)$.
4. Four numerical examples (see table 2 of [15])

Example 1. $\quad p=29, f=2$
$\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{5}\right)=(1,3,-2,-2,-1,-1)$,
$x_{5}=-1 \equiv 1-f(\bmod 4)$,
$7 \equiv 8^{4}(\bmod 29)$.
Example 2. $\quad p=197, f=14$
$\left(x_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \boldsymbol{x}_{6}\right)=(-13,1,8,6,1,-3)$,
$x_{5}=1 \not \equiv 1-f(\bmod 4)$,
$7 \equiv 106^{2}(\bmod 197),(106 / 197)=-1$.
Example 3. $p=673, f=48$
$\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(22,20,8,-12,-4,-4)$,
$x_{1}=22 \equiv-2(\bmod 8)$,
$7 \equiv 396^{2}(\bmod 673),(396 / 673)=-1$.
Example 4. $p=953, f=68$
$\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(50,12,8,-28,4,4)$,
$x_{1}=50 \equiv 2(\bmod 8)$,
$7 \equiv 160^{4}(\bmod 953)$.

References

1. Helen Popova Alderson, On the septimic character of 2 and 3, Proc. Camb. Phil. Soc. 74 (1973), 421-433.
2. Allan Cunningham and Thorold Gosset, 4-tic \& 3-bic residuacity-tables, Mess. Math. $\mathbf{5 0}$ (1920), 1-30.
3. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
4. Ronald J. Evans, Resolution of sign ambiguities in Jacobi and Jacobsthal sums, Pacific J. Math. (to appear).
5. Reinaldo E. Giudici, Joseph B. Muskat, and Stanley F. Robinson, On the evaluation of Brewer's character sums, Trans. Amer. Math. Soc. 171 (1972), 317-347.
6. Thorold Gosset, On the law of quartic reciprocity, Mess. Math. 41 (1911), 65-90).
7. Richard H. Hudson and Kenneth S. Williams, Some new residuacity criteria. Pacific J. Math. (to appear).
8. Emma Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.
9. Philip A. Leonard and Kenneth S. Williams, The septic character of 2, 3, 5 and 7, Pacific J. Math. 52 (1974), 143-147.
10. Philip A. Leonard and Kenneth S. Williams, A diophantine system of Dickson, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974), 145-150.
11. Philip A. Leonard and Kenneth S. Williams, The cyclotomic numbers of order seven, Proc. Amer. Math. Soc. 51 (1975), 295-300.
12. Philip A. Leonard and Kenneth S. Williams, A rational sixteenth power reciprocity law, Acta Arith. 33 (1977), 365-377.
13. J. B. Musk at, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1965/66), 263-279.
14. Albert Leon Whiteman, Theorems on quadratic partitions, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 60)-65.
15. Kenneth S. Williams, A quadratic partition of primes $\equiv 1(\bmod 7)$, Math. Comp. 28 (1974). 1133-1136.
16. Kenneth S. Williams, Elementary treatment of a quadratic partition of primes $p \equiv 1(\bmod 7)$, Illinois J. Math. 18 (1974), 608-621.

Department of Mathematics and Statistics

University of South Carolina
Columbia, SC 29208 USA
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S, 5B6

[^0]: ${ }^{\dagger}$ Research supported by Natural Sciences and Engineering Research Council Canada Grant No A-7233.

 Received June 6, 1980

