
ISRAEL. JOURNAL O F  MA-IHEMATICS. Vol. 38. No. 3. llJSI 

A NEW CRITERION FOR 7 TO RE A 
FOURTH POWER (mod p )  

I3 Y 
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A new application is made of Muskat's evaluation o f  the cyclotomic nurnhcrs of 
order Fourteen. to obtain a necessary and sufficient condition for seven to be a 
fourth power modulo a prime - I (mod 38) .  

I .  Introduction 

Let p be a prime = 1 (mod 4). For small primes q with ( p l q )  = + 1, necessary 
and sufficient criteria for q to  be a fourth power modulo p have traditionally 
been given in terms of congruences modulo q involving the integers a and b 

defined by p = a ' +  b'. a - 1 (mod 4). b - 0 (mod 2) (see for example [2], [6], 

[XI ). 
Recently other parametric representations of p have been used to  give similar 

criteria. For example, i f  p - 1 (mod 16) then there are integers x l ,  x?, X J ,  x, such 

that 

p = x f + 2 x : + 2 x f + 2 x : ,  x , - l ( m o d X ) ,  
(1.1) 

2x ,x ,  = x i -  2 x 2 ~ ~ -  x i ,  

(see for example [5 .  p. 3381 and [12. p. 3661) and Evans [4] has shown that 

( 1 -2) 2 is a fourth power (mod p )  @ xi - 0 (mod 4). 

W e  note that (1.1) has exactly four solutions, namely (x , ,  - tx2,  xi, k x , )  and 

( x I ,  k x , ,  - xi, 7 x?), so that x ,  and J x 7 J  are  uniquely determined by (1.1). If 
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p - 1 (mod 20) i t  follows from the work of Dickson (3, p. 4021 that there are 

integers x , ,  xz, x7, x, such that 

and the authors [7] have proved that 

5 is a fourth power (mod p )  

x l  - 4  (mod 8), if  x l  = O  (mod 2), 

(1.4) 
x ,  - 2 3x, (mod 8), if x ,  - 1 (mod 2). 

All four solutions of (1.3) are given by 

(XI, 2 Xz, + X.7, x,), (XI, + X.7, T Xz, - x,), 

so that x l  and (x , (  are uniquely determined by (1.3). 

In this note, we obtain a result for 7 to be a fourth power (mod p )  analogous to 
(1.2) and (1.4). This is done using Muskat's formulae [13] for the cyclotomic 

numbers of order fourteen in conjunction with an index formula given by the 

authors in [7]. The details for q = 7 are considerably more complicated than 

those for q = 2 and q = 5, as the diophantine system corresponding to  (1.1) and 

(1.3) in this case involves six parameters and the group of solutions is cyclic of 
order six. Our main result is given in Theorem 5. 

2. Criteria for 2 to be a seventh power (mod p )  

Let p be a prime - 1 (mod 7), so that p = 14f + I. Let g be a fixed primitive 

root (mod p). For integers h and k the number of solutions (s, t )  with 
0 5 s, t < (p - 1)/7 of the congruence 

(2.1) g7"h + 1 = g 7 ' i k  (mod p )  

is denoted by (h, k)7. The number (h, k), is called the cyclotomic number of 

order 7. The Dickson-Hurwitz sum of order 7 is defined by 

h 

B7(i, j )  = (h, i - jh )7. 
h = O  

As in 116, pp. 609-6111, we can define integers x, ,  x2, x3, x4, xS, xh (depending 

upon g )  by 
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It is known [lo], [16, theorem 21 that (x,, x,, x,, x,, x,, x,) is a solution of the 

diophantine system 

I 
72p = 2 x f + 4 2 ( x $ + x + x ~ ) + 3 4 3 ( x j , + 3 x ~ ) ,  x , = 1  (mod 7), 

12x5- 12x:+ 1 4 7 ~ ; -  4 4 1 ~ :  

(2.3) + 56x ,x, + 2 4 x 2 ~ ~  - 24x2x, + 48x3x4 + 98x5xh = 0, 

12x:- 12x$+ 4 9 ~ : -  1 4 7 ~ :  

The sums B7(i, 1) (0 5 i 5 6) have been given in terms of x,, x,, x3, x,, x5, X6 (see 

[91, [il l):  

We also define integers t and u by 

(see [ l l ,  p. 2981, [14, p. 64]), so that (t, u )  satisfies 
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It is shown in [16, theorem 21 that (x , ,  x,, x3, x,, x,, x,) is not equal t o  either of the  
two "trivial" solutions ( - 6t, 2 2u. 2 2u, + 2u, 0,O) of the system (2.3). There  are  

exactly six "non-trivial" solutions of (2.3). These are  

see for example [9, p. 1441. 

Clearly from the first equation of (2.3), we have 

LEMMA I .  xs --= xh  (mod 2). 

Leonard and Williams [9] have shown 

LEMMA 2. 2 is a seventh power (mod p )  a x l  - 0 (mod 2). 

T h e  next lemma is a special case of a result of Alderson [ I ,  theorem I]. 

LEMMA 3. 2 is a seventh power (mod p )  

(0, I),, (0,2),, . ., (0,6), are al l  even. 

From the  evaluation of the cyclotomic numbers of order  7 given by Leonard 

and Williams [ l  11, we have (with a minor misprint corrected in the first equation) 
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From Lemmas 2, 3 and 4 we obtain 

LEMMA 5 .  If 2 is a seventh power (mod p )  then x,, . . -, x, are all even and 
X, -- X, (mod 4). 

PROOF. By Lemmas 3 and 4, we have 

2x ,  + 4x, - 2x3 + 3x, + 3x, = 4 (mod 8), 

2x I + 4x3 + 2x4 + 2 x ,  - 4 (mod 8), 

2~ + 2x7 + 4x4 - 3x5 + 3x6 = 4 (mod 8), 

2x ,  - 2x2 + 4x4 - 3x5 + 3x, = 4 (mod 8), 

2x ,  + 4x3 - 2x,+ 2x, 4 (mod 8), 

2x ,  + 4x2 + 2x3 + 3x5 + 3x, = 4 (mod 8), 

from which it follows easily that 

x2 = x3 -- x4 = 0 (mod 2). 

Moreover, by Lemma 2, we have x ,  = 0 (mod 2). T h e  first two congruences now 
give x5 -- X, = 0 (mod 2) and the  third gives x5 -- x6 (mod 4). 

Hence by Lemmas 1 and 5 we have 

LEMMA 6. If (XI, ~ 2 ,  x3, x4, x,, xh) is such that 

x5 -- x6 - 1 (mod 2) 

then 2 is not a seventh power (mod p ) .  

Next we prove 

LEMMA 7. If f is even and (x i ,  x2, x3, x4, x,, x6) is such thal 

x5 -- x6 = 0 (mod 2), x, = x ,  (mod 4), 

then 

(i) x ,  - 2 (mod 4), 

(ii) x2 - x3 - x4 -- X, = X, 0 (mod 4), 
(iii) X, -- x(, (mod 8), 
(iv) x2 + x3 + x4 -- 2f (mod 8). 
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PROOF. AS x5 -- xh = 0 (mod 2), xs -- xh (mod 4), we can define integers y,, and 

z by 

Taking each of the three equations in (2.3) modulo 64, we obtain 

(2.9) 3xi - 3x 1 - 4y - 42 - 4x yh + 6x2x3 - 6x2x4 + 1 2x3x4 = 0 (mod 16), 

3x : -3xf+8yi+8yhz  + 4 z 2 + 2 8 x , y h  

(2.10) + 28xlz + 12x2x3 + 6x214 + 6x3x4 -- 0 (mod 16). 

Clearly from (2.9) and (2.10) we have 

xz -- x7 - x4 (mod 2). 

Taking (2.8) modulo 8, and supposing that x2 -- x3 = x4 = 1 (mod 2), we obtain 

x :+7=4(mod8) ,  

which is impossible. Hence we must have 

Thus we can define integers y, (i  = 1,2,3,4) by x, = 2yi. Using these in (2.8), 
(2.9), (2.10), we obtain 

From (2.11), (2.12), (2.13) we obtain, as f is even, 

y3 + y4 + z = 0 (mod 2). 

These congruences give the following possible residues (mod 2) for y,, y2, y3, y4, 

Yh, 2. 
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The second of these possibilities cannot occur in view of (2.13) and the third and 
fourth in view of (2.12). Hence we have 

X I  - 2  (mod 4), x z  - x 3  = x 4 - x S  = x , - 0  (mod 4), x s  - x ,  (mod 8), 

proving (i), (ii) and (iii). Finally, from (2.11), we have, with y2 = 2z2, y3 = 2z3, 

y4 = 224, 

that is 

giving 

2 2  + 2 3  + z4 -- f 12 (mod 2), 

xz + x 3  + x 4  = 2f (mod 8), 

which is (iv). 
Putting Lemmas 1, 2, 6 and 7 together we obtain 

THEOREM 1. If f is even then 

2 is a seventh power (mod p )  a x s  -- X ,  -- 0 (mod 2), x s  -- X ,  (mod 4), 

or, equivalently, 

2 is not a seventh power (mod p )  

a x s  = X ,  = 1 (mod 2) or xs - x ,  = 0 (mod 2), x 5  f X ,  (mod 4). 

3. Congruences for ind, (2) and ind, (7) 

If n is an integer not divisible by p, the index of n with respect to g, written 
in$ fn) ,  is that integer b such that n = g b  (mod p),  0 5 b 5 p - 2. We prove the 
following more precise form of Theorem 1. 

THEOREM 2. If f is even, then 
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I 0 (mod 7), if X, -- xh = 0 (mod 2), x 5  - x, (mod 4), 

k 1 (mod 7), if x5 -- X, -- 1 (mod 2), x5 f x(, (mod 4), 
ind,(2) - 

-t 2 (mod 7), if x5 -- X, = 0 (mod 2), x5 f x(, (mod 4), 

r 3 (mod 7), if x, x ,  = I (mod 2), X,  X, (mod 4). 

PROOF. In view of Theorem 1 we need only treat the cases when ind,(2) f 0 

(mod 7). A s  2 is not a seventh power (mod p ) ,  by Theorem 1, we have 

x5 -- X, -- 1 (mod 2) o r  x5 - x, = 0 (mod 2), x5  + x,, - 2 (mod 4). 

From Muskat's table 3 [13, p. 2771 for the cyclotomic numbers of order 14 and 

the expressions for B7(i, 1) (1 5 i 5 6) given in (2.4), we obtain 

4{(4, 8)14 - (1, 1 I),,) = x, + x,, if ind, (2) = 1 (mod 7), 

2{(1, 9)1, - (2, $)I,) = 16, i f  ind, (2) - 2 (mod 7), 

2{(1,6)14 - (2,8)1,) = x,, if ind,(2) = 5 (mod 7), 

4{(4, 8)1, - (l,4),,) = x, + x,, if ind, (2) = 6 (mod 7). 

If ind, (2) = k 1 (mod 7), we have X, + X, 3 0 (mod 4), and thus by Theorem 1, 

we have X, = xh 1 (mod 2), X, f X, (mod 4). 

If ind,(2) - * 2 (mod 7), we have x,= 0 (mod 2), and thus by Theorem 1, we 

obtain X, = X, - 0 (mod 2), X, f X, (mod 4). 

If ind,(2) = 2 3 (mod 7), we have xs -- X, (mod 4), and so by Theorem 1, we 

deduce that x, - x, - 1 (mod 2). 
This completes the proof of Theorem 2. 

An immediate application of theorem 1 of [7] (with e = 7, k = 4, 1 = 14) gives 

LEMMA 8. I f f  is even, then 

6 1 3  

ind, (7) = 2 x x (2i + l . 7 j  + k ),, + f (mod 4). 
1 = 0  j = O  k = l  

Applying Muskat's formulae [13, tables 1 and 31 for the cyclotomic numbers of 

order 14 in Lemma 8, we obtain, using (2.4) and Lemma 7 (iv), the following 

theorem. 
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THEOREM 3 .  I f f  is even, then 

[ I - ! x ,  (mod 4). if ind, (2 )  = 0 (mod 7 ) ,  

I f - 1 - i ( x  + 3xh) (mod 4),  if ind, (2 )  = '-c 1 (mod 7 ) .  
ind, (7 )  = 

f - 1 - ;(xS - 3x6) (mod 4),  if ind, ( 2 )  - -t 2 (mod 7 ) ,  

f - l + x 5 ( m o d 4 ) .  if ind, ( 2 )  + 3 (mod 7 ) .  

Putting Theorems 2 and 3 together we obtain 

THEOREM 4. I f f  is even, then 

[ 1 -Ax, (mod 4 ) ,  i f x 5 = x , . - 0  (mod 2),  x 5 = x h  (mod 4).  

i f - 1 - ! (x ,  + 3xb)  (mod 4). i f  x5 = x ,  -= 1 (mod 2). x ,  f x ,  (mod 4) ,  
ind, ( 7 )  = 

f - 1 - j(x5 - 3xh) (mod 4 ) ,  if x5  -- xh - 0 (mod 2),  x5 f x6 (mod 4 ) ,  

I f - 1 + X S  (mod 4) ,  if xs  - xh 1 (mod 2), x s  -- xh (mod 4).  

Clearly, from (2.7), i f  ( x , ,  x2,  x,, x,, x5, xh )  is a solution o f  (2.3) satisfying 
x5 = xh = O (mod 2),  x ,  - X 6  (mod 4) ,  all six solutions satisfy the same congru- 

ences. I f  not ,  then two o f  the six solutions o f  (2.3) satisfy xs  -- xh -- 1 (mod 2),  

x5 f x,, (mod 4 ) ;  two satisfy x5 -- x(, -- 0 (mod 2),  x5 f xh (mod 4.); two satisfy 

x5  = xh = 1 (mod 2) ,  x5 -- xh (mod 4).  Hence, in this case, we can always choose a 

non-trivial solution o f  (2.3) satisfying x5 -- xh -- 1 (mod 2),  xS  -- xh (mod 4).  Thus  

Theorem 4 yields our main result. 

THEOREM 5.  Suppose f is even and ( x , ,  x2 ,  x3, x,, x5,  xh) denotes a non -trivial 
solution of (2.3). If x l  = O  (mod 2),  then 

7 is a fourth power (mod p ) G x = 2 (mod 8) .  

If x f 0 (mod 2),  we can choose the solution so that x5 = x6 = 1 (mod 2),  xs  = x h  

(mod 4).  Then 

7 is a fourth power (mod p )  G xs -- 1 - f (mod 4.). 

4. Four mumerical examples (see table 2 o f  [15])  

EXAMPLE 1. p = 29, f = 2 

( X I ,  XZ, 13, X4, X.5, ~ h )  = (1,  3, - 27 - 2, - 1, - I ) ,  

X S =  - 1 = 1 - f  (mod 4),  
7 8' (mod 29). 
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xs = 1 f 1 - f (mod 4), 

7 = 106' (mod 197), (1061197) = - 1. 

EXAMPLE 3. p = 673, f = 48 

( X I , X ? , X ~ , X , , X , , X ~ ) = ( ~ ~ , ~ O , ~ ,  - 12, -4, -4), 
x = 22 = - 2 (mod 8), 

7 - 396' (mod 673), (3961673) = - 1. 

EXAMPLE 4. p = 953, f = 68 

(XI, x?, X3, X4,X5, ~ h )  = (50, 12,8, - 28,4,4), 
x = 50 - 2 (mod 8), 
7 = 160"mod 953). 
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