A representation problem involving binary quadratic forms

By

Philif A. Leonard ${ }^{1}$) and Kenneth S. Willams ${ }^{2}$)

We let $H(-D)$ denote the group under composition of classes of primitive positive-definite integral binary quadratic forms of discriminant $-D$, where D is a positive integer. The order of the group $H(-D)$ is denoted by $h(-D)$. Throughout this note we restrict our attention to discriminants $-D$ for which the largest odd divisor D^{\prime} of D is squarefree and greater than 1 , and for which all cycles in the 2-class group $H_{2}(-D)$ are of order $\leqq 4$.

If D^{\prime} is expressible in the form $a^{2}+b^{2}$, the Lengendre symbol $\left(\frac{a+b \sqrt{-1}}{p}\right)$ is well-defined for any prime $p \equiv 1(\bmod 4)$ with $\left(\frac{D^{\prime}}{p}\right)=+1$, where we are interpreting $\sqrt{=1}$ rationally as a root of the congruence $x^{2} \equiv-1(\bmod p)$. When $H_{2}(-D)$ is cyclic of order 4 , that is, when $H(-D)$ has exactly two ambiguous classes, both in the principal genus, the symbol $\left(\frac{a+b \sqrt{-1}}{p}\right)$ can be used to distinguish between the representations of an odd power of p by the two ambiguous forms. This situation occurs precisely when
(i) $D=4 q, q($ prime $) \equiv 1(\bmod 8), h(-4 q) \equiv 4(\bmod 8)$ or
(ii) $D=16 q, q($ prime $) \equiv 5(\bmod 8)$.

In case (i) the ambiguous forms are $I=[1,0, q]$ and $A=\left[2,2, \frac{1}{2}(q+1)\right]$ and in case (ii) they are $I=[1,0,4 q]$ and $A=[4,0, q]$. If p is a prime satisfying

$$
\left(\frac{-1}{p}\right)=\left(\frac{p}{q}\right)=+1, \quad p^{h(-D) / 4}
$$

is represented primitively by I when $\left(\frac{a+b \sqrt{-1}}{p}\right)=+1$ and by A when $\left(\frac{a+b \sqrt{-1}}{p}\right)=-1$, where $q=a^{2}+b^{2}$. This result can be deduced from Cases 1.1

[^0]and 1.3 of the Table in [5: pp. 684-685], since $(a+b \sqrt{-1}) \cdot \varepsilon_{q}$ is a square, where ε_{q} denotes the fundamental unit of $Q(\sqrt{q})$ [1: p. 275]. (See also [4: p. 239] and Burde's law [2].)

In this note we treat the situation when D^{\prime} is expressible as both $a^{2}+b^{2}$ and $c^{2}+2 d^{2}$. For primes $p \equiv 1(\bmod 8)$ with $\left(\frac{D^{\prime}}{p}\right)=+1$, the Legendre symbols $\left(\frac{a+b \sqrt{-1}}{p}\right)$ and $\left(\frac{c+d \sqrt{-2}}{p}\right)$ are both well-defined. We would like to use these symbols to distinguish representations of an odd power of p by ambiguous forms when there are exactly four ambiguous classes in $H(-D)$, all in the principal genus, that is, when $H_{2}(-D)=C(4) \times C(4)$. This situation occurs when $D=128 q$, where $q \equiv 1(\bmod 8)$ is a prime such that $h(-8 q) \equiv 4(\bmod 8)$. In this case the ambiguous forms are $I=[1,0,32 q], A=[4,4,8 q+1], B=[32,0, q], A B=$ $[32,32, q+8]$. We obtain the following theorem.

Theorem. Let $q \equiv 1(\bmod 8)$ be a prime such that $h(-8 q) \equiv 4(\bmod 8)$. Set

$$
2 q=a^{2}+b^{2}, \quad q=c^{2}+2 d^{2}
$$

Let $p \equiv 1(\bmod 8)$ be a prime satisfying $(p / q)=+1$. Then $p^{h(-8 q) / 4}$ is represented primitively by

$$
\begin{aligned}
& I, \quad \text { if } \quad\left(\frac{a+b \sqrt{-1}}{p}\right)=\left(\frac{c+d \sqrt{-2}}{p}\right)=+1 \\
& A, \quad \text { if } \quad\left(\frac{a+b \sqrt{-1}}{p}\right)=-1,\left(\frac{c+d \sqrt{-2}}{p}\right)=+1 \\
& B, \quad \text { if } \quad\left(\frac{a+b \sqrt{-1}}{p}\right)=(-1)^{(q-9) / 8},\left(\frac{c+d \sqrt{-2}}{p}\right)=-1 \\
& A B, \quad \text { if } \quad\left(\frac{a+b \sqrt{-1}}{p}\right)=(-1)^{(q-1) / 8},\left(\frac{c+d \sqrt{-2}}{p}\right)=-1
\end{aligned}
$$

We emphasize that to avoid a factor $(2 / p)_{4}(p / 2)_{4}$ the theorem is actually stated in terms of the representation $2 q=a^{2}+b^{2}$, rather than the representation $q=$ $a^{2}+b^{2}$. We illustrate the theorem by taking $q=17$, so that $h(-8.17)=4, a=5$, $b=3, c=3, d=2$. Let p be a prime satisfying

$$
p \equiv 1,9,25,33,49,81,89,121(\bmod 136)
$$

Then the theorem asserts that

$$
\begin{aligned}
& p=x^{2}+544 y^{2} \Leftrightarrow\left(\frac{5+3 \sqrt{-1}}{p}\right)=\left(\frac{3+2 \sqrt{-2}}{p}\right)=+1, \\
& p=4 x^{2}+4 x y+137 y^{2} \Leftrightarrow\left(\frac{5+3 \sqrt{-1}}{p}\right)=-1,\left(\frac{3+2 \sqrt{-2}}{p}\right)=+1,
\end{aligned}
$$

$$
\begin{gathered}
p=32 x^{2}+17 y^{2} \Leftrightarrow\left(\frac{5+3 \sqrt{-1}}{p}\right)=\left(\frac{3+2 \sqrt{-2}}{p}\right)=-1 \\
p=32 x^{2}+32 x y+25 y^{2} \Leftrightarrow\left(\frac{5+3 \sqrt{-1}}{p}\right)=+1, \quad\left(\frac{3+2 \sqrt{-2}}{p}\right)=-1
\end{gathered}
$$

For example, with $p=281 \equiv 9(\bmod 136)$, we have

$$
\left(\frac{5+3 \sqrt{-1}}{p}\right)=\left(\frac{164}{281}\right)=-1, \quad\left(\frac{3+2 \sqrt{-2}}{p}\right)=\left(\frac{61}{281}\right)=-1
$$

so that p is represented by the form [32,0,17], and, indeed, $p=32 x^{2}+17 y^{2}$ with $x=2, y=3$.

Proof of Thoerem. Set

$$
\begin{array}{rll}
p=a_{1}^{2}+b_{1}^{2}, & a_{1} \equiv 1(\bmod 2), & b_{1} \equiv 0(\bmod 2) \\
q=a_{2}^{2}+b_{2}^{2}, & a_{2} \equiv 1(\bmod 2), & b_{2} \equiv 0(\bmod 2)
\end{array}
$$

so that we may take

$$
a=a_{2}+b_{2}, \quad b=a_{2}-b_{2}
$$

Since

$$
\left(\frac{b_{1}}{a_{1}}\right)^{2} \equiv-1(\bmod p)
$$

we have, using [4: p. 323, Théorème 1, 2)],

$$
\left(\frac{a+b \sqrt{-1}}{p}\right)=\left(\frac{a a_{1}+b b_{1}}{p}\right)=\left(\frac{2 q}{p}\right)_{4}\left(\frac{p}{2 q}\right)_{4}
$$

Now $p^{h(-8 q) / 4}$ is represented primitively by either $x^{2}+8 q y^{2}$ or $8 x^{2}+q y^{2}$. In the first case, as $h(-8 q) / 4$ is odd, by a result of Kaplan [4: p. 361] we have

$$
\left(\frac{2 q}{p}\right)_{4}\left(\frac{p}{2 q}\right)_{4}=(-1)^{y}
$$

In the second case, by a similar calculation, we obtain

$$
\left(\frac{2 q}{p}\right)_{4}\left(\frac{p}{2 q}\right)_{4}=(-1)^{x}\left(\frac{2}{q}\right)_{4}\left(\frac{q}{2}\right)_{4}
$$

As $h(-8 q) \equiv 4(\bmod 8)$, we have $(2 / q)_{4}=-1[3:$ Théorème 3], so that

$$
\left(\frac{2 q}{p}\right)_{4}\left(\frac{p}{2 q}\right)_{4}=\left\{\begin{array}{lll}
(-1)^{x}, & \text { if } q \equiv 9(\bmod 16) \\
(-1)^{x+1}, & \text { if } q \equiv 1(\bmod 16)
\end{array}\right.
$$

Hence, if $q \equiv 1(\bmod 16)$, we have:
$p^{h(-8 q) / 4}$ is represented primitively by

$$
[1,0,32 q] \quad \text { or } \quad[32,32, q+8], \quad \text { if }\left(\frac{a+b \sqrt{-1}}{p}\right)=+1
$$

$$
[4,4,8 q+1] \quad \text { or } \quad[32,0, q], \quad \text { if }\left(\frac{a+b \sqrt{-1}}{p}\right)=-1
$$

and, if $q \equiv 9(\bmod 16)$, we have:
$p^{h(-8 q) / 4}$ is represented primitively by

$$
\begin{aligned}
& {[1,0,32 q] \quad \text { or }[32,0, q], \quad \text { if }\left(\frac{a+b \sqrt{-1}}{p}\right)=+1} \\
& {[4,4,8 q+1] \text { or } \quad[32,32, q+8], \text { if }\left(\frac{a+b \sqrt{-1}}{p}\right)=-1}
\end{aligned}
$$

Finally as $Q(\sqrt{-2 q}, \sqrt{q}, \sqrt{c+d \sqrt{-2}})$ is (with $c+d \sqrt{-2}$ suitably normalized [6: p. 107]) the 4-class field for $Q(\sqrt{-2 q})$, we have

$$
\left(\frac{c+d \sqrt{-2}}{p}\right)=\left\{\begin{array}{lll}
+1, & \text { if } p^{h(-8 q) / 4}=x^{2}+8 q y^{2}, & (x, y)=1 \\
-1, & \text { if } p^{h(-8 q) ; 4}=8 x^{2}+q y^{2}, & (x, y)=1
\end{array}\right.
$$

This completes the proof of the theorem.

References

[1] J. A. Brandler, Residuacity properties of real quadratic units. J. Number Theory 5, 271 -286 (1973).
[2] K. Budde, Ein rationales biquadratisches Reziprozitätsgesetz. J. Reine Angew. Math. 235, 175-184 (1969).
[3] P. Kaplan, Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2 -groupe des classes est cyclique, et réciprocité biquadratique. J. Math. Soc. Japan 25, 596-608 (1973).
[4] P. Kaplan, Sur le 2 -groupe des classes d'idéaux des corps quadratiques. J. Reine Angew. Math. 283/284, 313-363 (1976).
[5] Ph. A. Leonard and K. S. Williams, The quadratic and quartic character of certain quadratic units. II. Rocky Mountain J. Math. 9, 683-692 (1979).
[6] Ph. A. Leonard and K. S. Williaks, The quartic characters of certain quadratic units. J. Number Theory 12, 106-109 (1980).

Eingegangen am 22.4. 1980
Anschrift der Autoren:
Philip A. Leonard
Arizona State University
Tempe, Arizona 85281
USA
Kenneth S. Williams
Carleton University Ottawa, Ontario K1S 5B6 Canada

[^0]: ${ }^{1}$) Research partially supported by the Faculty Grant-in-Aid Program at Arizona State University.
 ${ }^{2}$) Research partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant A-7233.

