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AN ARTIN CHARACTER AND REPRESENTATIONS 

OF PRIMES BY BINARY QUADRATIC FORMS 

Pierre KAPLAN and Kenneth S. WILLIAMS* 

We show how the decomposition of  primes in certain dihedral 
extensions L of the rat ionals enables us to obtain results concer- 
ning representations of powers of  primes by binary quadratic forms 
and treat here in detail the case of L = Q( ~V~m, -V~m ) , where m 

is a square free posit ive integer such that the norm of the fundamen- 
tal unit  ~m of Q(vi~) is -1 . Other cases w i l l  be treated in 

subsequent papers. 

1.1ntroduction. Let N,n be squarefree rational integers, whose grea- 

test common div isor  is 1 or 2 and such that there ex is t  rational 

integers a, b and c with 

(1.1) c2N = a 2 - nb 2 , (a,b) = (b,c) = (c,a) = i 

We define 

(1.2) n = a + b/n , n' = a - b V-n 

so that 
(1.3) ( ~ •  ~ , ) 2  = 2a • 2cVl~ 
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2 KAPLAN-WILLIAMS 

We set 
(1.4) p = 2a + 2cv~I, p' = 2a - 2c~l~ , 

and consider the subfield structure of the dihedral extension 

L = Q(~, ~ ' )  = Q(~, ~ ' )  

Q(/n) Q (/61~) Q (~I~) ~ 

We define 

(1.5) K = Q(V-~, vl~) , k : Q(/61~) 

The extension L/k is  cyc l i c  of  degree 4. We remark that  

K : k ( ~ )  = k(v~T) and that  L = K ( ~ )  = K ( ~ )  . Noting that  n and 

N ( respec t i ve ly  n and p) have no common odd prime d iv isors  in k 

( respec t i ve ly  K) , appealing to H i l b e r t  [4 : Satz 4] , we obtain 

LEMMA I .  The conductor f o.__f L/k is  only d i v i s i b l e  ~ ideals o f  k 

l y ing  above 2. 

I t  is  known ([3 : Satz 7])  that  f i s  a ra t iona l  in teger .  

The Ar t in  rec ip roc i t y  map o f  the extension L/k defines a character 

• of  order 4 on a class group Cf of  b inary quadrat ic forms. 

In w we show how knowing the value o f  • on ambiguous clas- 

ses o f  Cf enables us to determine the representat ion of  cer ta in  po- 

wers o f  primes by ambiguous classes of  Cf (Proposit ions I and 2). 

In w we consider a squarefree pos i t i ve  in teger  m fo r  which 

the norm of the fundamental uni t  ~m of Q(~ )  is  - i  . Then 

(1.6) T 2 - mU 2 : -1 , 

where (T, U) denotes the least  pos i t i ve  so lut ion of  (1 .6) ,  so that  
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KAPLAN-WILLIAMS 3 

T + U ~ =  ~m or ~ . We can thus apply the preceeding with 

N = -1 , n = m, a = T, b = U, c = I and n = T + U~ . In this case 

the conductor f of  the extension L/k has been determined [ i ] .  

We have 

1 , i f  m--- 1 (rood 8) , 

(1.7) f = 2 , i f  m--- 5 (mod 8) , 

4 , i f  m--- 2 (rood 8) , 

The main result of  this paper gives the value of • on the 

ambiguous classes of Cf in this case (see Theorem 1 in w 

In w we give exp l i c i t  examples of  the results of w 

2. Representation of powers of primes and Artin character. The ideal 

class group of conductor f of the ring of integers of k is iso- 

morphic to the class group Cf of primit ive binary quadratic forms 

f = aX 2 + bXY + cY 2 = [a,b,c'] 

of  discriminant b 2 - 4ac = nNf 2 , i f  nN = 1 (mod 4), 4nNf 2 i f  

nN )~ 1 (mod 4) , which are taken to be posit ive when nN < 0 . We 

refer to [2], [6] for the theory of binary quadratic forms. Thus we 

can consider the Artin reciprocity map a : Cf ~ G(L/k) as a 

character X of order 4 on the group Cf . The character X is 

defined by 

X : Cf ~ Cf/H - G(L/k) ~ { 1 , i , - 1 , - i }  , 

where H = ker ~ = ker X . The Artin reciprocity map of K/k indu- 

ces a homomorphism Cf ~ G(K/k) , whose kernel H I contains H , 

and as [H 1 : HI = 2 we have 

x-i(i, - i )  = H i 

Clearly H 1 contains the principal genus C~ , and so can be defi-  
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4 KAPLAN-WILLIAMS 

ned as the kernel o f  a generic character.  Any class B o f  Cf re- 

presents primes q , prime to 2nN , and these primes sa t i s f y  

(nN)~ = +I . The class B belongs to H I i f ,  and only i f ,  such q 

are completely decomposed in K/k , that  i s ,  i f  

Thus H I is the subgroup o f  Cf g iv ing the value +1 to the gene- 

r i c  character e n on Cf def ined by 

(2.2) en(B ) : (n) , 

where B contains the form [a, b, c] , (a, 2n) = 1 

We l e t  r2k denote the 2k-rank o f  the group Cf . The 

r 2 r 2- r 4 r 2 
2 ambiguous classes are d i s t r i bu ted  anmngst 2 o f  the 2 

r 4 
genera, 2 in each (see fo r  example [5 : p. 316]).  As the group o f  

ambiguous classes is  a subgroup o f  H I we have r 4 > 1 . Moreover 

r 4 : I i f ,  and only i f ,  the genera o f  the ambiguous classes are the 

genera fo r  which e n = 1 

A prime q such that  (-~) = +1 is represented by two 
1 

inverse classes Q and Q-1 or  by one se l f - i nve rse  (= ambiguous) 

class Q of  forms of  Cf . I f  the class Q is in H 1 , that  i s ,  

i f  (~) : (~) : +1 , then ~ can be in te rp re ted  as an in teger  

modulo q and the value o f  (~) is independent o f  the choice o f  

vrn modulo q . Further Q is in H i f ,  and only i f ,  (~) : +1 

so that  

(2.3) (~) : x(Q) 
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KAPLAN-WILLIAMS 5 

Suppose now that  the class Q is in the genus of  the ambiguous 

class A . Then Q is  in H I and there ex is ts  a class B I such 

that  Q : AB~ , so that  

(2.4) (~) : x(A) { • 

We note that  fo r  any class B , {x(B)}  2 = +1 or -1 according as 

B is in H 1 or not, so that  {x(B)}  2 = en(B ) , and (2.4) beco- 

mes 

(2.5) (~) : xCA)en(BI) 

Further i f  the ambiguous class A is  in the pr inc ipa l  genus, and 

B I is  a squareroot of  A , then we have 

(2.6) x(A) : en(B1) 

The order of  a class B in the group Cf is 

(2.7) ord (B) : 2 ~  , ~ odd . 

Then the class B ~ of  order 2 ~ can be viewed as an element of  

the 2-class group o f  Cf . We note that  B and B C are in  the 

same genus. We begin by proving 

LEMMA 2. I f  r 8 = 0 and i f  a class B is in a ~enus of an ambi- 

Buous class A , then the class B ~ is an ambiguous class of the 

genus of B . 

PROOF. As the classes B and B ~ are in the same genus, there 

exists a class B 1 such that B ~ = AB~ . As r 8 = 0 , B 1 is of 

order I ,  2, or 4, so that B~ , and therefore B ~ , are ambi- 

guous. 

We f i r s t  consider the case r 8 = 0 
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6 KAPLAN-WILLIAMS 

PROPOSITION 1. Let n and N be squarefree coprime rat ional  i n te -  

gers sa t i s f y ing  (1.1) .  Let n, n' be defined as in (1.2) and l e t  f 

denote the conductor of  Q ( ~ ,  ~ ' ) / Q ( ~ I ~ ) .  

Suppose fu r the r  tha t  the 8-rank r 8 o f  the group Cf i_ff 

zero. 

Let q be a prime represented by a class Q in a genus o f  

ambiguous classes o f  Cf . Then the class Qs , where Z is  defined 

i n  (2 .7) ,  is an ambiguous class such that  

x(Q ~) = (~) 

PROOF. We apply (2.5) to the prime q and the ambiguous class 

obta in ing 

(~) : x(Q~)en(Q ) : x(Q ~) , 

- ~ - I  - ~ - I  - ~ - i  

as en(Q ) = {en(Q )}  = {+ I }  : 1 

Q~ 

We remark that  Qc = Qh' , where h' is the la rgest  odd 

d i v i so r  o f  the order h of  Cf 

Now we consider the case r 4 = i . In th is  case there are two 

ambiguous classes in the pr inc ipa l  genus, the pr inc ipa l  class I and 

another one J ; and in each genus included in H 1 there are two am- 

biguous classes A and AJ . Using (2.6) one f inds that  

r 8 = 1 ~=~ •  +1 

r2-1 
The 2-class group o f  Cf is o f  the type C(2 ~) x C(2) 

the order of  Cf , denoted by h , is given by 

T+ r 2-1 
h = 2  h' 

, so that  

where h' is odd. We now set 

s = h/2 r2+l 
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KAPLAN-WILLIAMS 7 

The i n t e g e r  s is  odd i f  and on l y  i f  r 8 = 0 . I f  a c lass B i s  a 

fou r th  power i t s  o rder  d i v i des  s I f  a c lass B is  a square but 

not a fou r th  power i t s  o rder  d i v ides  2s but not  s , so t ha t  B s 

is  ambiguous and in the p r i n c i p a l  genus, and t h e r e f o r e  B s = J . For 

any c lass B the odd number Z def ined in (2 .7)  is  a d i v i s o r  o f  s . 

I f  r 8 : 0 the ambiguous c lass B s is  equal to B s . This proves 

LEMMA 3. I f  r 4 = 1 , and i f  B is  in the p r i n c i p a l  genus, then 

B s = I o__rr J accord ing as  B i s  a fourt___~h power o r  not .  

We w i l l  a lso  need the f o l l o w i n g  lemma. 

LEMMA 4. l__f r 4 = r 8 : 1 and A, B are two c lasses in  the same 9enu s, 

the c lass A being ambiguous, then B s = I o r  J according as AB 

i__%sa fou r th  power o r  not.  

PROOF. By Lemma 2, (AB) s = I o r  J accord ing as AB is  a f ou r th  

power o r  not. As s is  even, A s = I and the r e s u l t  f o l l o w s .  

We now prove w i th  the n o t a t i o n  o f  P ropos i t i on  1 

PROPOSITION 2. Suppose r 4 = 1 and l e t  J denote the non -un i t  am- 

biguous class in  the p r i n c i p a l  genus o_ff Cf . Then 

(a) r 8 = 1 ~=~X(J) : 1 

Let q be a prime represented by a c lass in  the 9enus o f  the ambi- 

guous classes A and AJ. Then 

(b) the c lass QA is  a f o u r t h  pqwer i f ,  an d on l y  i f ,  (~) : x(A) $ 

(c) i__Zf r 8 = 0 then QS : A o_z AJ accordinq a_% 

(~) : x(A) or -x(A) , 

(d) i_f r 8 = 1 then QS = I o r  J according a_ss (~) = x(A) or 

-x(A) 
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8 KAPLAN-WILLIAMS 

PROOF.(a) (b). We apply (2.6) to J and (2.5) to q and A , noting 

that,  as r 4 = 1 , the genera of  the ambiguous classes consist of  al l  

genera sat is fy ing e n = 1 

(c) As r 8 = 0 ,  by (a) X(J) = -1  so that •  . 

But in th is case, QS = Q~ is ambiguous, by Lemma 1, and so equal to 

A or AJ .  By Theorem 1, (~) = • , so that QS = A or AJ 

according as (~) = x(A) or -x(A) respectively. 

(d) As r 8 = 1 , by Lemma 3, QS = I or J according as 

QA is a fourth power or not. The result  now follows from (b). 

I f  Q is in the principal genus we can take A = I and we 

have 

COROLLARY. Suppose r 4 = 1 . 1 ! Q is in the principal genus, then 

Q is a fourth power, i__ff and o nl~ i_ff (~) = 1 ; and qS is represen- 

ted by I o r  J according as (~) = +i o r  - 1 .  

3. Determination of Ar t in  chararacter. From now on we denote by m 

a squarefree posit ive integer for which the norm of the fundamental 

uni t  c m of Q(~) is -1 and we suppose that we are in the case 

N = -1 , n = m , a = T , b = U , c = 1 , where m, T, U sat is fy  

(1.6). We remark that m = Pl " '"  Pr " ~here r > 1 and the Pi 

are d is t inc t  primes with Pl : 2 or Pl -- 1 (mod 4) and 

P2 - " ' "  --- Pr = 1 (rood 4). Moreover al l  p r i ~  factors of  U are 

congruent to I modulo 4 and 
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KAPLAN-WILLIAMS 9 

(3.1) 

classes o f  

I f  

A contains 

I 
T --- 0 (mod 4) , i f  m-- 1 (mod 8) , 

T - I (rood 2) , i f  m-- 2 (rood 8) , 

T z 2 (rood 4) , i f  m --- 5 (n~)d 8) . 

Before stat ing Theorem 1, we recal l  the form of  the ambiguous 

Cf 

m-- 1 (r~d 8) , we have f = 1 , and an ambiguous class 

e i ther  a couple [d, O, e] and [e, O, d] of  ambiguous 

forms, or a couple [2d, 2d,~2 (d+e)] and [2e, 2e,~2 (d+e)] 

o f  ambiguous forms, with de = m, d > 0 , e > 0 

I f  m z 5 (mod 8) , we have f = 2 , and an ambiguous class 

A contains exact ly one ambiguous form Ed, O, 4el , where de : m , 

d > 0 , e > 0 

I f  m ~ 2 (mod 8) , we have f = 4 , and an ambiguous class 

A contains exact ly one ambiguous form, e i ther  [d, O, 32e] or 

[4d, 4d, d+8e]  where  2de = m , d > 0 , e > 0 

We prove 

THEOREM 1. I f  

the value o f  the Ar t in  character 

A is given as fol lows : 

I f  m-= 1 (mod 8) 

(~) �9 

x(A) : 

m is a squarefree in teger  such that  N(~m) = -1 , 

X o_f L/k on the ambiguous class 

i f  A contains the form [d ,0 ,e ]  

(~)( -1)  T/4 d+e 
, i_[f A contains the form [2d,2d, T ] 

I ff m -  5 (rood 8) 

x(A) : (2) , i f  A contains the form 

I f  m - 2 (mod 8) 

[d, O, 4e] 
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10 KAPLAN-WILLIAMS 

PROOF. I f  the ambiguous class A 

[d, 0, e'] , we say that the class A 

that i t  is even. 

contains the form [d, 0, 32e] , 

contains the form [4d, 4d, d+8e] 

contains a form of the type 

is odd ; otherwise we say 

Let A be an ambiguous class which is odd so that i t  con- 

tains the form [d, 0, e']  . Clearly i t  suffices to show that 

X(Ap) = (~) for a class Ap containing a form [p, O, mf2]p , where 

p is an odd prime divisor of m . The class Ap corresponds to the 

ideal class of conductor f in k of the ideal P of k such that 

p2 = P . Therefore X(Ap) = +1 or -1 according as P is complete- 

l y  decomposed or not in the extension L/k . Now in K , P = PIP2 , 

and from the relation T2+1 = mU 2 we see that we can choose P1 

to divide T-i , and then P1 is prime to 2(T+i) . As L = K(v~p) 

we have, denoting by [ - ]K  the quadratic residue symbol in K : 

p-1 
~--1 .2(T+i~, [4 i ]  i T (2 

= L -__~ - -__~ ]  = = = = (3.2) X(Ap) = [ ]K P1 K P1 K [~I]K ( - i )  ~) , 

as N(P1) = p 

Next we treat the two cases when 

m-= 1 (mod 8) , A contains 

m~ 2 (mod 8) , A contains 

A is even, that is,  

d+e] 
[2d, 2d, T ' 

[4d, 4d, d+8e] 

Let m m 1 (nlod 8) and suppose tbat the ambiguous class 
d+e is even, so that A contains the form [2d, 2d, T ] , where 

l+m] de = m . Since A is the product of the classes of [2, 2, T 

and [d, 0, e] in C 1 , i t  suffices to prove 

A 
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KAPLAN-WILLIAMS 11 

X((2,1 + ~ ) )  = (-1) T/4 , 

as the ideal class of (2,1 + ~ )  corresponds to the class of the 

form [2,2, ~-~ ]. 

We begin by showing that i f  X((2,1 + ~ ) )  = +1 then 

T ~ 0 (mod 8). In k we have 2 = (2,1 + ~ ) 2  and in Q(i) we 

have 2 = (I+i) 2 (as ideals). I f  X((2,1 + ~ ) )  = 1 the ideal 

(2,1 + ~ )  is completely decomposed in L/k so that the ideal 

(1+i) is completely decomposed in L/Q(i), and thus in the subexten- 

sion Q ( ~  + V~m)/Q(i ). Since Q ( ~  + vr~) : Q ( ( T ~ )  : Q ( ~ ) ,  

by a result of Hilbert [3: Satz 8], the congruence 

1 - Ti . Z 2 (mod (1+i) 5) 

is solvable in K [ i ] .  Thus, there are rational integers a, b, x, y 

such that 

1 = Ti = (a+bi) 2 + 4( l+i)(x+yi) ,  

that is, with X = x-y, 

~ 1 = a 2 - b 2 + 4X, 

(3.3) 

L - T  = 2ab + 4X + 8y. 

Clearly a is odd and b is even. Thus, taking (3.3) modulo 8, we 

obtain, with b = 2c, 

X E c (mod 2), -T m 4(c+X) (mod 8), 

so that 

T , 0 (mod 8), 
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12 KAPLAN-WILLIAMS 

as required. 

We next show that i f  T - 0 (mod 8) then X((2,1 + V~)) = +1. 

Interpreting v~T as U modulo 8, we see that, i f  T - 0 (mod 8), 

2 2 in K, then T+UV~-z 1 (mod 8), so that, as 2 decomposes as 2122 

both congruences T+UV~-~ x~ (mod 29) (j = 1,2) have solutions in 
J J 

the ring of integers of K as indeed they are solvable in Z. This 

completes the case when m m 1 (mod 8). 

Finally le t  m - 2 (mod 8) and suppose that the ambiguous 

class A is even. As above i t  suffices to prove that X takes the 

value -1 on the class A o of the form [4,4,1+4m]. 

Now inclusion induces a natural homomorphism of the ideal 

class group of conductor 4 of R onto the ideal class group of con- 

ductor 2 of R, whose kernel consists of the two ideal classes cor- 

responding to I and A o- 

I f  X(Ao) had the value 1, then X would take the value 1 

on the whole principal ideal class of conductor 2 of R, contradic- 

ting the fact that the conductor of the extension L/k is 4. 

4. Example s of applications of the results. In this section we keep 

the hypotheses made at the beginning of w 3. Here the subgroup H 1 

is the subgroup of Cf whose classes B satisfy e_l(B ) = +1. 

We denote by q a prime represented by a class Q of deter- 

minant -mf 2, where f is given by (1.7), and q is such that the 

genus of Q contains ambiguous classes. Then (2.1) holds, that is, 

in the present case : 
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I f ,  for Cf, r 4 = 1, then (4.1) ensures that the genus of Q con- 

tains ambiguous classes, and Proposition 2 (a) together with Theorem 1 

gives the value of r 8. In some cases we are able to prove that 

N(~m) : - I .  

Example 1. m = plP2...pr, r = 2 or an odd number, a l l  Pi z 1 

(mod 8), a l l  (~.~.) = -1, i r j ; f = 1. Here r 4 = 1 and N(~m) = -1, 

as the only ambiguous classes of discriminant -4m and +m in the 

principal genera are the principal classes and, respectively, the 

class J of [2,2, ~ ]  and the class of [-1,0,m]. 

One has r 8 = 1 i f  and only i f  (-1) T/4 = I ,  that is ,  T . 0 

(mod 8). 

Here one has X(A) = 1 for a l l  odd classes, and 

X(A) = ( - I )  T/4 for a l l  even classes so that : 

(a) I f  r 8 = O, the class Q~ is the odd or the even ambi- 

Sm guous class of the 9enus o_ff Q accordinQ as (-~-) = 1 or  -1. 

(b) I f  r 8 = I ,  QS = I o r  J acco rd in  9 a s  
~m 

( q )  = I o r  - I .  

(~) : - I  

[2P1,2P 2, 

.Example 2. m = plP2, where Pl E P2 m 5 (mod 8).and 

f = 1. 

Here N(~m) = -1, r 4 = 1 and J is the class of 

PlP2 h 
] . Also s = ~  . 

We find f i r s t ,  as X(J) = -(-1) T/4, that 

i f ,  T - 4 (mod 8). 

r 8 ~ 1 i_ff, and. o.nlu 

(a) I f  r 8 = O,X(1) = 1, X(J) = -1, and X([Pl,0,P2] ) = -1, 
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14 KAPLAN-WILLIAMS 

so that X(i) = I,  where 

~m a_Es ( ~ ) =  1 o_s - i .  

l__ff (Z~)= 1, (p-~l) 

accordinq as (-~) = 1 or 

(b) I f  

so that : 

is the class of [2,2,(plP2+1)/2], and : 

= -1, then Qs = I or J according 

= (~22) = -1 ,  then Q~ = I or {[Pl,0,P2]} 

- I .  

r 8 = 1, X(1) = x(J) = 1, and X([Pl,0,P2]) = X( I ) : - l ,  

(~ )  = I o__r - I .  

= 1, then QS = I or J according as 

ding a__s ~m (~-) : 1 o r  - i .  

= -1, then QS = j or I accor- 

We remark that this example is Case VI of Theorem 2 of [7], 

but with the case r8= 1 treated as well. 

Example 3. All Pi " I (mod 8) and r 8 = 0 (r 2 > r  4 > r 8 : O) ; 

f = 1. 

For al l  ambiguous classes one has e_l = I. Also for the odd 

ambiguous classes one has X(A) = +1, and for the even ambiguous 

classes A : AI one has x(A) : (- I)  T/4. This means that for the 

classes K of order 4 whose square is odd, one has e2(K ) = 1, and 

for the classes K of order 4 whose square is even, then e2(K ) = 

(-1) T/4. I f  (- I)  T/4 were 1, then all classes of order i ,  2 or 4 

would give value 1 to e_l ; but, as r 8 = O, a class L has an odd 

power L n of order 1, 2 or 4, and for any class L the character 
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KAPLAN-WILLIAMS 15 

= e I(L n) would be I. This contradicts the fact that there e. l (L) 

always exists a class giving to the generic characters any set of va- 

lues compatible with the product formula, so that (-1) T/4 = -1, and 

X(A) = +1 for odd classes, x(A) = -1 for even classes. Hence in 

this case we must have T ~ 4 (mod 8). Applying Proposition 1 one 

that the class Q~ is odd or even according as ({-~) = +i or  -1. sees 

ExamPle 4. a) m = plP2, Pl z 1, P2 ~ 5 (mod 8) ; (P l) = - I .  
~z 

.Pi) = 
b) m = p l . . .p r ,  al l  Pi - 5 (mod 8), r odd, al l  ~ -  -1, 

i , j .  

c) m = plP2P3, al l  Pi ~ 5 (mod 8), (p~) = 1, 

d) m = plP2P3 , Pl - 5, P2 - P3 - 1 (mod 8), 2 or 3 of the 

(~-~.) : - I .  

In al l  these cases f = 2 and one sees that r 4 = 1, r 8 = O, 

as the only ambiguous class ~ I of determinant -4m in the principal 

genus is the class of [4,0,m]. One can then apply Proposition 1. For 

example in case a) we have : 

~m as (-~-) = 1 or -1. 

ding as (~ )  = 1 or -1, where 

m [qj ,O,4~j j  ]. (This is the result of 

= 1, then Qs = I or I according 

= -1, then Qs = A 1 or 

Aj denotes the class of 

[7] ,  Theorem 2, IV). 

A 2 accor- 
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16 KAPLAN-WILLIAMS 

P l  
Example 5. m = plP2, Pl ~ 1, P2 ~ 5 (mod 8), (~ )  = 1, f = 2. 

Here r 2 = 2, r 4 = 2. We suppose N(r = -1 and r 8 = O. A 

prime q z 1 (mod 4) represented by a genus of ambiguous forms of 
discriminant -4m is represented by the principal genus ; i t  is thus 
represented by the principal genus of discriminant -16m, and by Pro- 
position 2 

Q~ = I or A 1 

(This is the result of 

if (---~q)= 1, Q~= I or A 2 if (---~q) 

[7], Theorem 2, I I I ) .  

= - I .  

Example 6. 

(p~) = -1. Here f = 2, r 2 = 2. We suppose that 

r 8 = O. 

( ~  Qs ~'m ) = I,  and = I or A I i f  (-~) = - I .  

I f  (Z~)= (p_~l) = 1 and (p-~)= (p-~) 

A 3 i f  Cq) = 1 and Qg= A2I or A3~ i f  

PI) .Pl) 
m = plP2P3 , Pl ~ 5, P2 ~ P3 s I (mod 8), (P-22 = (P-33 = 1, 

N(,m) = -1 and 

Q~= I or AII i f  

= 1, then Q~ = A 2 

(~)  = - i .  

o r  

Example 7. 

(P=_~I) = -1 ; f = 2. 
P3 

m = plP2P3, Pl -- 5, P2 - P3 - i (mod 8), (Pl)~_~2 = (~_~3-P2) =+I, 

= 3, r 4 = 2. We suppose N(r = -1 and r 8 = O. 

= (~1)= (p-~2) = (~3), then Q~= I or A 2 is 

or A2 i f  ( ~ ) = - i .  

= (p-~2)= 1, (p-~l) = (p-~3)=-1, then Qs A 3 or 

Here r 2 

I f  (~) 

=z,O~=~ 
I f  (~ )  
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i f  A I or i f  

Example 8. m = 2p, p -- 1 (mod 4) ; f = 4. 

The ambiguous classes of discriminant -64m are I ,  A, I ,  

containing respectively [1, O, 32p], [32, O, p], [4, 4, 8p+1], 

[4p, 4p, p+8]. 

I f  p - 5 (mod 8), then I and A are in the principal genus, 

so that r 4 = 1 and as X(1) = X(I) = 1, X(A) = X(A) = -1 one finds 

by Proposition 2 that r 8 = 0 and : 

I f  ( ~ ) =  (2)= (P)= I, then Q~ : I or R according as 

(~ )  : 1 o r  - 1 .  

I f  ( ~ ) =  i ,  (~)= ( ~ ) = - I ,  then Q~ = I or A according 

~m as (~ )  = I or -1. 

I f  p - 1 (mod 8), I ,  A, I and A are in the principal ge- 

nus, so that r 4 = 2, and X(1) = X(A) = 1, X(I) = • = -1 and 

using Proposition 1 : 

I f  p is such that N(Cm) = - i  and r 8 = O, and q such 

that (Z~) (~) (~) 1 then Qs I or A i f  (r = = = = = I ,  and 

Qs I or R i f  ( ~ ) = - 1 .  
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