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AN ARTIN CHARACTER AND REPRESENTATIONS
OF PRIMES BY BINARY QUADRATIC FORMS

Pierre KAPLAN and Kenneth S. WILLIAMS*

We show how the decomposition of primes in certain dihedral
extensions L of the rationals enables us to obtain results concer-
ning representations of powers of primes by binary quadratic forms
and treat here in detail the case of L = Q( VE;, V=) » where m

is a square free positive integer such that the norm of the fundamen-
tal unit e Of Q(vm) is -1 . Other cases will be treated in

subsequent papers.

1.Introduction. Let N,n be squarefree rational integers, whose grea-
test common divisor is 1 or 2 and such that there exist rational
integers a, b and c¢ with

(1.1) 2N = a® - nb? , (a,b) = (b,c) = (c,a) = 1
We define

(1.2) n=at+bh, n' =a-bvm

so that

(1.3) A & /)% = 2a £ 20
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2 KAPLAN-WILLIAMS

We set
(1.4) p=2a+2/N, p'=2a-2/N ,

and consider the subfield structure of the dihedral extension
L = Q(/n, /') = QvVo, V')

L
o) o(f'ﬁf‘“/m 3(/5) 25"
n n n, P P
| |
\o(/ﬁ)/ owﬁh(;lfm/

\(!/

We define
(1.5) K =Q(/n, /N) , k = Q(/nN)

The extension L/k 1is cyclic of degree 4. We remark that

K = k(/n) = k(/N) and that L = K(v) = K(v/p) . Noting that n and
N (respectively n and p) have no common odd prime divisors in k
{respectively K) , appealing to Hilbert [4 : Satz 4] , we obtain

LEMMA 1. The conductor f of L/k is only divisible by ideals of k
lying above 2.

It is known ([3 : Satz 7]) that f ds a rational integer.
The Artin reciprocity map of the extension L/k defines a character
X of order 4 on a class group Cf of binary quadratic forms.

In §2 we show how knowing the value of y on ambiguous clas-

ses of Cf enables us to determine the representation of certain po-
wers of primes by ambiguous classes of Cf (Propositions 1 and 2).

In §3 we consider a squarefree positive integer m for which
the norm of the fundamental unit ¢_ of Q(/m) is -1 . Then

m
(1.6) 2 -m?=-1

where (T, U) denotes the least positive solution of (1.6), so that
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KAPLAN-WILLIAMS 3

T+ U/m = €q O 8; . We can thus apply the preceeding with

N==-1,n=ma=T,b=U,c=1 and n=T+ U/m . In this case
the conductor f of the extension L/k has been determined [1].
We have

1,if m=1 (md 8) ,
(1.7) f = 2 ,if m=5 (mod 8) ,
4, if m=2 (mod 8) ,

The main result of this paper gives the value of y on the
ambiguous classes of Cf in this case (see Theorem 1 in §3).

In §4 we give explicit exampies of the results of §3.

2. Representation of powers of primes and Artin character. The jdeal
class group of conductor f of the ring of integers of k is iso-
morphic to the class group Cf of primitive binary quadratic forms

2

£ = ax? + bXY + oY
2

= {a,b,c]

of discriminant b% - dac = nNf2 , if nN =1 (mod 4), 4nNFe if
nN # 1 (mod 4) , which are taken to be positive when nN < 0 . We
refer to [2], [6] for the theory of binary quadratic forms. Thus we
can consider the Artin reciprocity map o : Ce - G(L/k) as a

character x of order 4 on the group Cg . The character y is

defined by
X : Cf - Cf/H o G(L/k) ~ {1,i,-1,-1}

where H = ker ¢ = ker y . The Artin reciprocity map of K/k indu-
ces a homomorphism Ce - G(K/k) 5 whose kernel Hy contains H ,

and as [H1 : Hl =2 we have

-1 _
X (1: '1) = H1

Clearly H1 contains the principal genus Ci , and so can be defi-

341



4 KAPLAN-WILLIAMS

ned as the kernel of a generic character. Any class B of Ce re-
presents primes q , prime to 2nN , and these primes satisfy

(%?) =41 . The class B belongs to H1 if, and only if, such gq
are completely decomposed in K/k , that is, if

(2.1) @ - @ -1

Thus H1 is the subgroup of Cf giving the value +1 to the gene-

ric character e, on Cf defined by

_ (N
(2.2) e, (B) = (3)
where B contains the form f[a, b, ¢] , (a, 2n) =1

We let r K denote the 2k-rank of the group Ce - The
ro 2 romry ry
2 ambiguous classes are distributed amongst 2 of the 2
r

genera, 2 4 in each (see for example [5 : p. 316]). As the group of
ambiguous classes is a subgroup of H1 we have ry > 1 . Moreover
rp =1 if, and only if, the genera of the ambiguous classes are the
genera for which e, = 1

A prime q such that Q%?) = +1 1is represented by two

inverse classes Q and Q_1 or by one self-inverse (= ambiguous)
class Q of forms of Cf . If the class Q 1is in H1 , that is,

if (g) = (g) =+1 , then /n can be interpreted as an integer
modulo q and the value of (g) is independent of the choice of
/i modulo q . Further Q dis in H if, and only if, (%) = +1
so that

(2.3) @ = x@

342



KAPLAN-WILLIAMS 5

Suppose now that the class Q 1is in the genus of the ambiguous
class A . Then @ is in H1 and there exists a class B1 such

that Q = AB% ,» SO that

(2.4) @ = x(A) € x(8))3°

We note that for any class B , {X(B)}2 =+1 or -1 according as

B s in H; or not, so that {X(B)}2 = en(B) , and (2.4) beco-
mes

(2.5) @ = x(Ae,(By)

Further if the ambiguous class A 1is in the principal genus, and
B1 is a squareroot of A , then we have

(2.6) x(A) = e, (B])
The order of a class B in the group Ce is
(2.7) ord (B) =22 , % odd .

Then the class Bl of order 2” can be viewed as an element of
the 2-class group of Cf . We note that B and B are in the

same genus. We begin by proving

LEMMA 2. If rg =0 and if a class B {s in a genus of an ambi-

=

guous class A , then the class B™ 1is an ambiguous class of the
genus of B .

2

PROOF. As the classes B and B are in the same genus, there

exists a class Bl such that BZ = ABE . As rg = 0, Bl is of
order 1, 2, or 4, so that B% , and therefore Bk , are ambi-

guous.
We first consider the case rg = 0

343



6 KAPLAN-WILLIAMS

PROPOSITION 1. Let n and N be squarefree coprime rational inte-
gers satisfying (1.1). Let n, n' be defined as in (1.2) and let f
denote the conductor of Q(vn, /n')/Q(/nN).

Suppose further that the 8-rank rg of the group Cf if

Zero.

Let q be a prime represented by a class Q in a genus of
ambiguous classes of C. . Then the class Q2 » where £

is defined

in (2.7), is an ambiguous class such that

x(@ = @

PROOF. We apply (2.5) to the prime q and the ambiguous class Q

obtaining
-{2-1)

@ = @@ © )= x@h
-%-1 -2-1 -2-1
as e (Q Z)={e (@} ° = (1 2 =1

We remark that Ql = Qh » where h' s the largest odd
divisor of the order h of Cf

Now we consider the case ryg = 1 . In this case there are two

ambiguous classes in the principal genus, the principal class I and
another one J ; and in each genus included in Hl there are two am-

biguous classes A and AJ . Using (2.6) one finds that
rg = 1 &= y(J) =+1

r,~1
The 2-class group of C. is of the type C(2%) x C(2) ©  , so that

the order of Cf » denoted by h , is given by

T+r2-1

h=2 h' ,

where h' ds odd. We now set

r,+1
s =h/2?
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KAPLAN-WILLIAMS 7

The integer s 1is odd if and only if rg = 0. If aclass B is a

fourth power its order divides s . If a class B is a square but
not a fourth power its order divides 2s but not s , so that BS
is ambiguous and in the principal genus, and therefore B = J . For
any class B the odd number & defined in (2.7) is a divisor of s .

If rg= 0 the ambiguous class BY  is equal to 8% . This proves

LEMMA 3. If r, =1, and if B is in the principal genus, then

BS = I or J according as B 1is a fourth power or not.

LEMMA 4. If ry = rg = 1 and A, B are two classes in the same genus,

the ¢lass A being ambiguous, then 8BS = 1 or J according as AB
is a fourth power or not.

PROOF. By Lemma 2, (AB)S =1 or J according as AB is a fourth
power or not. As s s even, AS = T and the result follows.

We now prove with the notation of Proposition 1

PROPOSITION 2. Suppose ry = 1 and let J denote the non-unit am-
biguous class in the principal genus of Cf . Then
(a) r8=1 = x(J) =1

Let g be a prime represented by a class in the genus of the ambi-
guous classes A and AJ. Then

(b) the class QA is

(o

fourth power if, and only if, (%) = y(A) ,

0 then QS=A r AJ according as

@) = x(A) or -x(A) ,

(¢} if rg

(d) if r8=1 then QS=I or J according as (%) = x(R) or
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8 KAPLAN-WILLIAMS

PROOF. (a) (b). We apply (2.6) to J and (2.5) to g and A, noting
that, as rg = 1 , the genera of the ambiguous classes consist of all

genera satisfying e, =1
(c) As rg =0 ,by (a) x(J) = -1 so that x(AJd) = -x(A) .
But in this case, QS = Q2 is ambiguous, by Lemma 1, and so equal to
A or AJ . By Theorem 1, (%) =x(Q%) , sothat Q5 =A or AJ
according as (%) = x(A) or -x(A) respectively.
(d) As rg = 1, byLemma 3, Q° =1 or J according as
QA is a fourth power or not. The result now follows from (b).

If Q 1is in the principal genus we can take A =1 and we
have

COROLLARY. Suppose r, = 1. If Q is in the principal genus, then
Q is a fourth power, if and only if (%) =1; and q° is represen-

ted by I or J according as (g) =+l or -1.

3. Determination of Artin chararacter. From now on we denote by m

a squarefree positive integer for which the norm of the fundamental

unit €n of Q(v/m) 1is -1 and we suppose that we are in the case

N=-1,n=m,a=T,b=U,c=1, where m, T, U satisfy
(1.6). We remark that m = Py --- Py » where r>1 and the Pi

are distinct primes with Py = 2 or Py = 1 (mod 4) and
Pp ... Ep.=1 (mod 4). Moreover all prime factors of U are

congruent to 1 modulo 4 and
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KAPLAN-WILLIAMS 9

T=0 (mod4), if m=1 (mod 8) ,
(3.1) T=1(md2) , if m=2 (mod 8) ,
T=2 (md4) , if m=5 (mod 8) .

Before stating Theorem 1, we recall the form of the ambiguous
classes of Ce

[f m=1 (mod 8) , we have f =1, and an ambiguous class
A contains either a couple [d, 0, e] and [e, 0, d] of ambiguous
forms, or a couple [2d, 2d,Y, (d+e)] and [2e, 2e,Y, (d+e)]
of ambiguous forms, with de =m, d>0, e>0

If m=5 (md 8) , we have f = 2 , and an ambiguous class
A contains exactly one ambiguous form [d, O, 4e] , where de =m,
d>0,e>0

If m=2 (mod 8) , we have f =4 , and an ambiguous class
A contains exactly one ambiguous form, either [d, 0, 32e] or
[4d, 4d, d+8e] where 2de =m , d>0, e >0

We prove

THEOREM 1. If m 1is a squarefree integer such that N(e ) = -1,

the value of the Artin character x of L/k on the ambiguous class
A dis given as follows :
1

If m= mod 8)
(%) s Aif A contains the form [d,0,e]
X(A) = 2 T/4
(@07, if A contains the form [2d,2d, 9%9]
If m=5 (mod 8)

x(A) = (%) , if A contains the form [d, 0, 4e]

—
-
=3
[}

2 (mod 8)
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10 KAPLAN-WILLIAMS

() » if A contains the form [d, 0, 32e] ,

x(A) =

-(5) s if A contains the form [4d, 4d, d+8e] .

PROOF. If the ambiguous class A contains a form of the type
{d, 0, e'] , we say that the class A 1s odd ; otherwise we say
that it is even.

Let A be an ambiguous class which is odd so that it con-
tains the form [d, 0, e'] . Clearly it suffices to show that

X(Ap) = (%) for a class A_ containing a form [p, 0, Eg—] » where

3
p 1is an odd prime divisor of m . The class Ap corresponds to the

ideal class of conductor f din k of the ideal P of Kk such that

P2 = p . Therefore X(Ap) = +1 or -1 according as P is complete-

ly decomposed or not in the extension L/k . Now in K , P = P1P2 s

and from the relation T2+1 = mU2

we see that we can choose P1
to divide T-i , and then P, s prime to 2(T+i) . As L = K(/p)

we have, denoting by [--]K the quadratic residue symbol in K :

p-1
(3.2)  x(Ay) = [P_i—]K - [ﬂ%ﬂlK - [%}K - [f:l;]K ¥ - (%) :
as N(Pl) =p
Next we treat the two cases when A 1is even, that is,
m=1 (mod 8) , A contains [2d, 2d, g%g] s
m= 2 (mod 8) , A contains [4d, 4d, d+8e]

Let m =1 (mod 8) and suppose that the ambiguous class A

is even, so that A contains the form [2d, 2d, Q%EJ . where

de =m . Since A 1is the product of the classes of [2, 2, l%ﬂ]

and [d, 0, el 1in C1 , 1t suffices to prove
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KAPLAN-WILLIAMS 11

x((2,1 + ) = (174,

as the ideal class of (2,1 + /-m} corresponds to the class of the
forn 12,2, 3 ).

We begin by showing that if x((2,1 + /-m)) = +1 then
T=0 (mod 8). In k we have 2 = (2,1 + Vcﬁ)z and in Q(i) we
have 2 = (1+1')2 (as ideals). If x((2,1 + /=m)) = 1 the ideal
(2,1 + +m) 1is completely decomposed in L/k so that the ideal
(1+i) s completely decomposed in L/Q(i), and thus in the subexten-
sion Q(/&, + /en)/Q(1). Since Q(/e, + /ep) = Q(/(T+D)) = Q(/A-TH),
by a result of Hilbert [3: Satz 8], the congruence

1-Ti =22 (mod (1+1)%)

is solvable in Z[i). Thus, there are rational integers a, b, x, ¥
such that

1= Ti = (atbi)? + 8(1+i) (xtyi),

that is, with X = x-y,

1=a% - b2+ 4x,
(3.3)

-T = 2ab + 4X + 8y.

Clearly a 1is odd and b 1is even. Thus, taking (3.3) modulo 8, we
obtain, with b = 2¢,

=
0

¢ (mod 2), -T = 4(c+X) (mod 8),

so that

T =0 (mod 8),
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12 KAPLAN-WILLIAMS

as required.

We next show that if T =0 (mod 8) then x((2,1 + v-m)) = +1.

Interpreting +m as U modulo 8, we see that, if T =0 (mod 8),

then T+Uv = 1 (mod 8), so that, as 2 decomposes as 2%22 in K,

both congruences T+Uv/m = x§ (mod 2?) (j = 1,2) have solutions in

the ring of integers of K as indeed they are solvabie in Z. This
completes the case when m = 1 (mod 8).

Finally let m = 2 (mod 8) and suppose that the ambiguous
class A is even. As above it suffices to prove that X takes the
value -1 on the class A0 of the form [4,4,1+4m].

Now inclusion induces a natural homomorphism of the ideal
class group of conductor 4 of R onto the ideal class group of con-
ductor 2 of R, whose kernel consists of the two ideal classes cor-
responding to I and Ao'

If x(Ao) had the value 1, then X would take the value 1

on the whole principal ideal class of conductor 2 of R, contradic-
ting the fact that the conductor of the extension L/k 1is 4.

4. Examples of applications of the results. In this section we keep
the hypotheses made at the beginning of § 3. Here the subgroup H;

is the subgroup of Cf whose classes B satisfy e_l(B) = +1.

We denote by q a prime represented by a class Q of deter-
minant -mfZ, where f 1is given by (1.7), and q is such that the
genus of Q contains ambiguous classes. Then (2.1) holds, that is,
in the present case :

- - m _
)  -=d-1
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KAPLAN-WILLIAMS 13

If, for Cf, ry = 1, then (4.1) ensures that the genus of Q con-

tains ambiguous classes, and Proposition 2 (a) together with Theorem 1
gives the value of rg- In some cases we are able to prove that

N(sm) = -1,

Example 1. m = PiPpe-Pps ¥ = 2 or an odd number, all p; = 1

(mod 8), all (%1]7 =-1, 9% J;f=1 Here r;=1 and N(g) = -1,

as the only ambiguous ciasses of discriminant -4m and +m in the
principal genera are the principal classes and, respectively, the

class J of [2,2, -“l;l] and the class of [-1,0,m]).

T/4

One has rg =1 if and only if (-1) =1, that is, T=10

(mod 8).

Here one has X(A) = 1 for all odd classes, and

X(A) = (-l)T/4 for all even classes so that :

(a) If rg =0, the class Q* is the odd or the even ambi-

guous class of the genus of Q according as (%m) =1 or -l.

€
(b) If rg =1, Q° =1 or J according as —g‘— =1or -1.
P
Example 2. m = pyp,, where p;= p,= 5 (mod 8) and (-F% = -1

f=1.
Here N(em) ==-l, rp=1 and J 1is the class of [2p;,2p,,

P{P
172 _h
T].Also s=g.

We find first, as x(J) = -(-1)'/%, that rg =1 if,and only
if, T =4 (mod 8).

(a) If rg = 0, X(I) = 1,X(J) = -1, and X(Ip;,0.p5)) = -1,
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14 KAPLAN-WILLIAMS

so that x(I) = 1, where 1 is the class of [2,2,(pypp*1)/2], and :

—_1.=j—=—g—=- 2’=- i
If | q) (pl) (p2) 1, then Q I or J according

If (G =1, () = () = -1, then ¢* =1 or {Ipy,0.p,])

(b) If rg =1, x(I) = x(d) = 1, and x([py,0:p,1) = x(D)=-1,

1f (:l) = (il) = (1L) =1, then QS =1 or J according as
q Py )
€
m = -
( q) =1 or -1
1 (=1, (3 = (L) = -1, then ¢ =0 or I accor-
q Py Py
Em
dingas () =1 or -1

We remark that this example is Case VI of Theorem 2 of [71],
but with the case rg= 1 treated as well.

Example 3. All p; = 1 (mod 8) and rg =0 (rp 21y >rg 0) ;

f=1.
For all ambiguous classes one has e_; = 1. Also for the odd
ambiguous classes one has X{A) = +1, and for the even ambiguous

classes A = Al one has x(g) = (-I)T/4. This means that for the
classes K of order 4 whose square is odd, one has e2(K) =1, and

for the classes K of order 4 whose square is even, then ez(k) =
(-l)T/4. If (-l)T/4 were 1, then all classes of order 1, 2 or 4
would give value 1 to e_; ; but, as rg =0, a class L has an odd

power L" of order 1, 2 or 4, and for any class L the character
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KAPLAN-WILLIAMS 15

e_l(L) = e_l(Ln) would be 1. This contradicts the fact that there

always exists a class giving to the generic characters any set of va-
lues compatible with the product formula, so that (-1)T/4 = -1, and
X(A) = +1 for odd classes, x(ﬂ) = -1 for even classes. Hence in
this case we must have T = 4 (mod 8). Applying Proposition 1 one

€
sees that the class Q2 is odd or even according as (1?) = +1 or -1.

P1
Example 4. a) m = ’ =1, =5 (mod 8) ; (=) = -1
LXdmp'e ) P1P2s Py Py ( ) (pZ)
- - Piy _ .
by m = Ppe--Pps all p;j =5 (mod 8), r odd, all (53 = -1,
ix]d.
P1
c)ms P1PoP3s all P; =5 (mod 8), (35) =1,
P2 P3
2y = (I = -1,
P3) (Pl)

d) m = pypyp3s Py =5, py = p3 =1 (mod 8), 2 or 3 of the

In all these cases f = 2 and one sees that ry = 1, rg = 0,

as the only ambiguous class # I of determinant -4m in the principal
genus is the class of [4,0,m]. One can then apply Proposition 1. For
example in case a) we have :

If (%%) = (iL) = (ﬁL) =1, then Q¥ =1 or 1 according
2
€

as (T”‘)=1 or -1.

i (2h

5

"
—
-
—

= () = -1, then Q* = Ay or A, accor-
€
ding as (jg) =1 or -1, where Aj denotes the class of

[95,0,4 él-]. (This is the result of [7], Theorem 2, IV).
J
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16 KAPLAN-WILLIAMS

- - - Pl =
Example 5. m = PyPps Py = 1, Py = 5 (mod 8), (BE) =1, f = 2.

Here r, = 2, rg = 2. We suppose N(em) = -1 and rg = 0. A

prime q =1 (mod 4) represented by a genus of ambiguous forms of
discriminant -4m is represented by the principal genus ; it is thus
represented by the principal genus of discriminant -16m, and by Pro-
position 2

Q¥ =1 or A, if (%)=1,Qz=f or A, if (~i—l"—')=-1-

(This is the result of [7], Theorem 2, III).

Example 6. m = pip,P3> P; = 5, P, = P3 = 1 (mod 8), (——) ( ) =1,

( ) -1. Here f =2, r, = 2. We suppose that N(g ) = -1 and
rg = 0. ) -
aty = _9_ = _9_ = _q_ = h R/= :
If ) (pl) (pz) (p3) 1, then Q* =1 or AT if

—1

1A &
(—5"1)=1, and Q* =1 or A if (—q"-‘)=-1.

If (== )-(i) 1 and (i)=(5qg)=1, then Q% = A, or

- - €
I or Al if (-9) = -1.

A 2 3 q

£
5 if (T;“-)=1 and Q¥ = A

_ B B p1, _ P2, _
Example 7. m PiPoP3s Pp = 5, Pp = P3 = 1 (mod 8), (55 = (55) =+1,

P1, | .=
35)' 1;f=2.
Here r, =3, r, = 2. We suppose N(g ) = -1 and rg=0.
If (‘_1=() (—‘L) (), then Q¥ =1 or &, is
q P3
Emy _ L_71 3oaf (oM L
(TT) =1,0Q0%=1 or A, if (TT) = -1,

T =1, 4y - (9 = - 2.
If q) (ﬁ%) 1, (pl) (p3) 1, then Q% = A5 or

354



KAPLAN-WILLIAMS 17
T Emy _ L = . em, _
AII if (7T) =1,Q" = A1 or A3I if (7T) = -1,
Example 8. m = 2p, p =1 (mod 4) ; f = 4,
The ambiguous classes of discriminant -64m are I, A, f, A

containing respectively
[4p, 4p, p+8].

If p

and as X(I) = X(f) =1, X(A) =
that rg =0 and:

so that ry = 1
by Proposition 2

If ('_q1 - (%) = (&) = 1, then *=1 or
(%?) =1 or ~I.

If ('_q1 =1, (%) = @ = -1, then ot =
as ng) =1 or -l.

If p=1 (mod 8), I, A, I and A are in

nus, so that r, = 2, and X(I) = X(A) = 1, X(I)

using Proposition 1 :

If p is such that N(em) ==-1 and rg

that (:ql) =3 = @) =1 then *=1 or A

q
*=1 or A if (fg'_)=-1.

355

(1, 0, 32pl, [32, 0, pl, [4, 4, 8p+ll,

5 (mod 8), then I and A are in the principal genus,

X(R) = -1 one finds

A according as

I or A according

the principal ge-

X(A) = -1 and

0, and q such

£
if (—(';l) =1, and
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