AN ARTIN CHARACTER AND REPRESENTATIONS OF PRIMES BY BINARY QUADRATIC FORMS

Pierre KAPLAN and Kenneth S. WILLIAMS*

We show how the decomposition of primes in certain dihedral extensions L of the rationals enables us to obtain results concerning representations of powers of primes by binary quadratic forms and treat here in detail the case of L = Q($\sqrt{\epsilon_m}$, $\sqrt{-\epsilon_m}$), where m is a square free positive integer such that the norm of the fundamental unit ϵ_m of Q(\sqrt{m}) is -1. Other cases will be treated in subsequent papers.

1. <u>Introduction</u>. Let N,n be squarefree rational integers, whose greatest common divisor is 1 or 2 and such that there exist rational integers a, b and c with (1.1) $c^2N = a^2 - nb^2$, (a,b) = (b,c) = (c,a) = 1. We define (1.2) $n = a + b\sqrt{n}$, $n' = a - b\sqrt{n}$ so that (1.3) $(\sqrt{n} \pm \sqrt{n}')^2 = 2a \pm 2c\sqrt{N}$.

Research supported by Natural Sciences and Engineering Research Council Canada Grant N° A-7233

We set (1.4) $\rho = 2a + 2c_v N$, $\rho' = 2a - 2c_v N$, and consider the subfield structure of the dihedral extension

 $L = Q(\sqrt{n}, \sqrt{n}') = Q(\sqrt{\rho}, \sqrt{\rho}') .$

We define

(1.5) $K = Q(\sqrt{n}, \sqrt{N}), k = Q(\sqrt{nN})$

The extension L/k is cyclic of degree 4. We remark that $K = k(\sqrt{n}) = k(\sqrt{N})$ and that $L = K(\sqrt{n}) = K(\sqrt{p})$. Noting that n and N (respectively n and p) have no common odd prime divisors in k (respectively K), appealing to Hilbert [4 : Satz 4], we obtain <u>LEMMA 1. The conductor</u> f of L/k is only divisible by ideals of k <u>lying above</u> 2.

It is known ([3 : Satz 7]) that f is a rational integer. The Artin reciprocity map of the extension L/k defines a character χ of order 4 on a class group C_f of binary quadratic forms.

In §2 we show how knowing the value of χ on ambiguous classes of C_f enables us to determine the representation of certain powers of primes by ambiguous classes of C_f (Propositions 1 and 2).

In §3 we consider a squarefree positive integer m for which the norm of the fundamental unit ε_m of Q(\sqrt{m}) is -1. Then (1.6) $T^2 - mU^2 = -1$,

where (T, U) denotes the least positive solution of (1.6), so that

T + U \sqrt{m} = ϵ_m or ϵ_m^3 . We can thus apply the preceeding with N = -1 , n = m, a = T, b = U, c = 1 and η = T + U \sqrt{m} . In this case the conductor f of the extension L/k has been determined [1]. We have

(1.7)
$$f = \begin{cases} 1, \text{ if } m \equiv 1 \pmod{8}, \\ 2, \text{ if } m \equiv 5 \pmod{8}, \\ 4, \text{ if } m \equiv 2 \pmod{8}, \end{cases}$$

The main result of this paper gives the value of χ on the ambiguous classes of C $_f$ in this case (see Theorem 1 in §3).

In §4 we give explicit examples of the results of §3.

2. <u>Representation of powers of primes and Artin character</u>. The ideal class group of conductor f of the ring of integers of k is isomorphic to the class group C_f of primitive binary quadratic forms

$$f = aX^{2} + bXY + cY^{2} = [a,b,c]$$

of discriminant $b^2 - 4ac = nNf^2$, if $nN \equiv 1 \pmod{4}$, $4nNf^2$ if $nN \neq 1 \pmod{4}$, which are taken to be positive when nN < 0. We refer to [2], [6] for the theory of binary quadratic forms. Thus we can consider the Artin reciprocity map $\sigma : C_f \rightarrow G(L/k)$ as a character χ of order 4 on the group C_f . The character χ is defined by

$$\chi : C_{f} \rightarrow C_{f}/H \simeq G(L/k) \simeq \{1, i, -1, -i\}$$

where H = ker σ = ker χ . The Artin reciprocity map of K/k induces a homomorphism $C_f \rightarrow G(K/k)$, whose kernel H₁ contains H , and as [H₁ : H] = 2 we have

$$\chi^{-1}(1, -1) = H_1$$

Clearly ${\rm H}^{}_1$ contains the principal genus ${\rm C}^2_f$, and so can be defi-

341

ned as the kernel of a generic character. Any class B of C_f represents primes q, prime to 2nN, and these primes satisfy $(\frac{nN}{q}) = +1$. The class B belongs to H₁ if, and only if, such q are completely decomposed in K/k, that is, if

(2.1)
$$(\frac{n}{q}) = (\frac{N}{q}) = 1$$
.

Thus H_1 is the subgroup of C_f giving the value +1 to the generic character e_n on C_f defined by

(2.2)
$$e_n(B) = (\frac{n}{a})$$
,

where B contains the form [a, b, c], (a, 2n) = 1.

We let r_{2^k} denote the 2^k -rank of the group C_f . The r_{2^k} ambiguous classes are distributed amongst $2^{r_2-r_4}$ of the 2^{r_2} genera, 2^{r_4} in each (see for example [5 : p. 316]). As the group of ambiguous classes is a subgroup of H_1 we have $r_4 > 1$. Moreover $r_4 = 1$ if, and only if, the genera of the ambiguous classes are the genera for which $e_n = 1$.

A prime q such that $(\frac{nN}{q}) = +1$ is represented by two inverse classes Q and Q⁻¹ or by one self-inverse (= ambiguous) class Q of forms of C_f. If the class Q is in H₁, that is, if $(\frac{n}{q}) = (\frac{N}{q}) = +1$, then \sqrt{n} can be interpreted as an integer modulo q and the value of $(\frac{n}{q})$ is independent of the choice of \sqrt{n} modulo q. Further Q is in H if, and only if, $(\frac{n}{q}) = +1$ so that

(2.3) $(\frac{n}{q}) = \chi(Q)$.

Suppose now that the class Q is in the genus of the ambiguous class A. Then Q is in H_1 and there exists a class B_1 such that $Q = AB_1^2$, so that $\left(\frac{\eta}{\rho}\right) = \chi(A) \left\{ \chi(B_1) \right\}^2$ (2.4)We note that for any class B , $\{\chi(B)\}^2 = +1$ or -1 according as B is in H₁ or not, so that $\{\chi(B)\}^2 = e_n(B)$, and (2.4) becomes $(\frac{\eta}{\alpha}) = \chi(A)e_n(B_1)$. (2.5)Further if the ambiguous class A is in the principal genus, and B_1 is a squareroot of A , then we have $\chi(A) = e_n(B_1) \quad .$ (2.6)The order of a class B in the group C_f is ord (B) = $2^{\nu}\ell$, ℓ odd. (2.7)Then the class B^{ℓ} of order 2^{ν} can be viewed as an element of the 2-class group of C_f . We note that B and $B^{\mathcal{L}}$ are in the same genus. We begin by proving LEMMA 2. If $r_8 = 0$ and if a class B is in a genus of an ambiguous class A , then the class B^{ℓ} is an ambiguous class of the genus of B. PROOF. As the classes B and B^{ℓ} are in the same genus, there exists a class B_1 such that $B^{\ell} = AB_1^2$. As $r_8 = 0$, B_1 is of order 1, 2, or 4, so that B_1^2 , and therefore B^{ℓ} , are ambiguous.

We first consider the case $r_{g} = 0$.

<u>PROPOSITION 1.</u> Let n and N be squarefree coprime rational integers satisfying (1.1). Let n, n' be defined as in (1.2) and let f denote the conductor of $Q(\sqrt{n}, \sqrt{n}')/Q(\sqrt{nN})$.

Suppose further that the 8-rank r_8 of the group C_f if zero.

Let q be a prime represented by a class Q in a genus of ambiguous classes of C_f . Then the class Q^{ℓ} , where ℓ is defined in (2.7), is an ambiguous class such that

$$\chi(Q^{\ell}) = (\frac{\eta}{q})$$

<u>PROOF</u>. We apply (2.5) to the prime q and the ambiguous class Q^{ℓ} obtaining -(q-1)

$$(\frac{\eta}{q}) = \chi(Q^{\ell})e_{\eta}(Q^{-\frac{\ell}{2}}) = \chi(Q^{\ell}) ,$$
as $e_{\eta}(Q^{-\frac{\ell}{2}}) = \{e_{\eta}(Q)\}^{-\frac{\ell}{2}} = \{+1\}^{-\frac{\ell}{2}} = 1 .$

We remark that ${\tt Q}^{\tt L}={\tt Q}^{\tt h'}$, where $\tt h'$ is the largest odd divisor of the order $\tt h$ of $\tt C_f$.

Now we consider the case $r_4 = 1$. In this case there are two ambiguous classes in the principal genus, the principal class I and another one J ; and in each genus included in H_1 there are two ambiguous classes A and AJ. Using (2.6) one finds that

$$r_{g} = 1 \iff \chi(J) = +1$$

The 2-class group of C_f is of the type $C(2^T) \times C(2)^{r_2-1}$, so that the order of C_f , denoted by h, is given by

,

$$h = 2 h'$$

where h' is odd. We now set

The integer s is odd if and only if $r_8 = 0$. If a class B is a fourth power its order divides s. If a class B is a square but not a fourth power its order divides 2s but not s, so that B^S is ambiguous and in the principal genus, and therefore $B^S = J$. For any class B the odd number ℓ defined in (2.7) is a divisor of s. If $r_8 = 0$ the ambiguous class B^{ℓ} is equal to B^S . This proves

LEMMA 3. If $r_4 = 1$, and if B is in the principal genus, then B^S = I or J according as B is a fourth power or not.

We will also need the following lemma.

<u>LEMMA 4.</u> If $r_4 = r_8 = 1$ and A, B are two classes in the same genus, the class A being ambiguous, then $B^S = I$ or J according as AB is a fourth power or not.

<u>PROOF</u>. By Lemma 2, $(AB)^{S} = I$ or J according as AB is a fourth power or not. As s is even, $A^{S} = I$ and the result follows.

We now prove with the notation of Proposition 1

PROPOSITION 2. Suppose $r_4 = 1$ and let J denote the non-unit ambiguous class in the principal genus of C_f . Then (a) $r_8 = 1 \iff \chi(J) = 1$. Let q be a prime represented by a class in the genus of the ambiguous classes A and AJ. Then (b) the class QA is a fourth power if, and only if, $(\frac{n}{q}) = \chi(A)$, (c) if $r_8 = 0$ then $Q^S = A$ or AJ according as $(\frac{n}{q}) = \chi(A)$ or $-\chi(A)$,

(d) if $r_8 = 1$ then $Q^S = I$ or J according as $(\frac{\eta}{q}) = \chi(A)$ or $-\chi(A)$.

<u>PROOF.</u> (a) (b). We apply (2.6) to J and (2.5) to q and A, noting that, as $r_4 = 1$, the genera of the ambiguous classes consist of all genera satisfying $e_n = 1$.

(c) As $r_8 = 0$, by (a) $\chi(J) = -1$ so that $\chi(AJ) = -\chi(A)$. But in this case, $Q^S = Q^{\mathcal{L}}$ is ambiguous, by Lemma 1, and so equal to A or AJ. By Theorem 1, $(\frac{n}{q}) = \chi(Q^S)$, so that $Q^S = A$ or AJ according as $(\frac{n}{q}) = \chi(A)$ or $-\chi(A)$ respectively.

(d) As $r_8 = 1$, by Lemma 3, $Q^S = I$ or J according as QA is a fourth power or not. The result now follows from (b).

If Q is in the principal genus we can take A = I and we have

<u>COROLLARY</u>. Suppose $r_4 = 1$. If Q is in the principal genus, then Q is a fourth power, if and only if $(\frac{n}{q}) = 1$; and q^S is represented by I or J according as $(\frac{n}{q}) = +1$ or -1.

3. Determination of Artin chararacter. From now on we denote by m a squarefree positive integer for which the norm of the fundamental unit ε_m of $Q(\sqrt{m})$ is -1 and we suppose that we are in the case N = -1, n = m, a = T, b = U, c = 1, where m, T, U satisfy (1.6). We remark that m = $p_1 \dots p_r$, where r > 1 and the p_i are distinct primes with $p_1 = 2$ or $p_1 \equiv 1 \pmod{4}$ and $p_2 \equiv \dots \equiv p_r \equiv 1 \pmod{4}$. Moreover all prime factors of U are congruent to 1 modulo 4 and

(3.1)
$$\begin{cases} T \equiv 0 \pmod{4} , \text{ if } m \equiv 1 \pmod{8} , \\ T \equiv 1 \pmod{2} , \text{ if } m \equiv 2 \pmod{8} , \\ T \equiv 2 \pmod{4} , \text{ if } m \equiv 5 \pmod{8} . \end{cases}$$

Before stating Theorem 1, we recall the form of the ambiguous classes of $\rm C_{f}$.

If $m \equiv 1 \pmod{8}$, we have f = 1, and an ambiguous class A contains either a couple [d, 0, e] and [e, 0, d] of ambiguous forms, or a couple [2d, 2d, $\frac{1}{2}$ (d+e)] and [2e, 2e, $\frac{1}{2}$ (d+e)] of ambiguous forms, with de = m, d > 0, e > 0.

If $m \equiv 5 \pmod{8}$, we have f = 2, and an ambiguous class A contains exactly one ambiguous form [d, 0, 4e], where de = m, d > 0, e > 0.

If $m = 2 \pmod{8}$, we have f = 4, and an ambiguous class A contains exactly one ambiguous form, either [d, 0, 32e] or [4d, 4d, d+8e] where 2de = m, d > 0, e > 0.

We prove

<u>THEOREM 1.</u> If m is a squarefree integer such that $N(\epsilon_m) = -1$, the value of the Artin character χ of L/k on the ambiguous class A is given as follows :

If $m \equiv 1 \pmod{8}$

 $\chi(A) = \begin{cases} \left(\frac{2}{d}\right), & \text{if } A \text{ contains the form } [d,0,e] \\ \left(\frac{2}{d}\right)(-1)^{T/4}, & \text{if } A \text{ contains the form } [2d,2d,\frac{d+e}{2}] \end{cases}$ $\underline{If} \ m \equiv 5 \pmod{8}$ $\chi(A) = \left(\frac{2}{d}\right), & \text{if } A \text{ contains the form } [d, 0, 4e] .$ If $m \equiv 2 \pmod{8}$

 $\chi(A) = \begin{cases} \left(\frac{2}{d}\right) &, \text{ if } A \text{ contains the form } [d, 0, 32e], \\ \\ \left(-\left(\frac{2}{d}\right)\right) &, \text{ if } A \text{ contains the form } [4d, 4d, d+8e]. \end{cases}$

<u>PROOF</u>. If the ambiguous class A contains a form of the type [d, 0, e'] , we say that the class A is odd ; otherwise we say that it is even.

Let A be an ambiguous class which is odd so that it contains the form [d, 0, e']. Clearly it suffices to show that $\chi(A_p) = (\frac{2}{p})$ for a class A_p containing a form $[p, 0, \frac{mf^2}{p}]$, where p is an odd prime divisor of m. The class A_p corresponds to the ideal class of conductor f in k of the ideal P of k such that $P^2 = p$. Therefore $\chi(A_p) = +1$ or -1 according as P is completely decomposed or not in the extension L/k. Now in K, $P = P_1P_2$, and from the relation $T^2+1 = mU^2$ we see that we can choose P_1 to divide T-i, and then P_1 is prime to 2(T+i). As $L = K(\sqrt{p})$ we have, denoting by $[-]_K$ the quadratic residue symbol in K:

(3.2)
$$\chi(A_p) = \left[\frac{\rho}{P_1}\right]_K = \left[\frac{2(T+i)}{P_1}\right]_K = \left[\frac{4i}{P_1}\right]_K = \left[\frac{i}{P_1}\right]_K = (-1)^{\frac{\rho-1}{4}} = \left(\frac{2}{p}\right)$$
,

as $N(P_1) = p$.

Next we treat the two cases when A is even, that is, $m \equiv 1 \pmod{8}$, A contains [2d, 2d, $\frac{d+e}{2}$], $m \equiv 2 \pmod{8}$, A contains [4d, 4d, d+8e].

Let $m \equiv 1 \pmod{8}$ and suppose that the ambiguous class A is even, so that A contains the form $[2d, 2d, \frac{d+e}{2}]$, where de = m . Since A is the product of the classes of $[2, 2, \frac{1+m}{2}]$ and [d, 0, e] in C_1 , it suffices to prove

$$\chi((2,1 + \sqrt{-m})) = (-1)^{T/4}$$

as the ideal class of $(2,1 + \sqrt{-m})$ corresponds to the class of the form $[2,2, \frac{1+m}{2}]$.

We begin by showing that if $\chi((2,1 + \sqrt{-m})) = +1$ then $T \equiv 0 \pmod{8}$. In k we have $2 = (2,1 + \sqrt{-m})^2$ and in Q(i) we have $2 = (1+i)^2$ (as ideals). If $\chi((2,1 + \sqrt{-m})) = 1$ the ideal $(2,1 + \sqrt{-m})$ is completely decomposed in L/k so that the ideal (1+i) is completely decomposed in L/Q(i), and thus in the subextension $Q(\sqrt{\epsilon_m} + \sqrt{\epsilon_m})/Q(i)$. Since $Q(\sqrt{\epsilon_m} + \sqrt{\epsilon_m}) = Q(\sqrt{2(1+i)}) = Q(\sqrt{1-1i})$, by a result of Hilbert [3: Satz 8], the congruence

$$1 - Ti \equiv Z^2 \pmod{(1+i)^5}$$

is solvable in $\mathbb{Z}[i]$. Thus, there are rational integers a, b, x, y such that

$$1 = Ti = (a+bi)^2 + 4(1+i)(x+yi),$$

that is, with X = x-y,

(3.3)
$$\begin{cases} 1 = a^2 - b^2 + 4X, \\ -T = 2ab + 4X + 8y \end{cases}$$

Clearly a is odd and b is even. Thus, taking (3.3) modulo 8, we obtain, with b = 2c,

$$X \equiv c \pmod{2}$$
, $-T \equiv 4(c+X) \pmod{8}$,

so that

$$T \equiv 0 \pmod{8}$$
,

as required.

We next show that if $T \equiv 0 \pmod{8}$ then $\chi((2,1 + \sqrt{-m})) = +1$. Interpreting \sqrt{m} as U modulo 8, we see that, if $T \equiv 0 \pmod{8}$, then $T+U\sqrt{m} \equiv 1 \pmod{8}$, so that, as 2 decomposes as $2_1^2 2_2^2$ in K, both congruences $T+U\sqrt{m} \equiv x_j^2 \pmod{2_j^5}$ ($j \equiv 1,2$) have solutions in the ring of integers of K as indeed they are solvable in **Z**. This completes the case when $m \equiv 1 \pmod{8}$.

Finally let $m = 2 \pmod{8}$ and suppose that the ambiguous class A is even. As above it suffices to prove that X takes the value -1 on the class A₀ of the form [4,4,1+4m].

Now inclusion induces a natural homomorphism of the ideal class group of conductor 4 of R onto the ideal class group of conductor 2 of R, whose kernel consists of the two ideal classes corresponding to I and A_0 .

If $\chi(A_0)$ had the value 1, then χ would take the value 1 on the whole principal ideal class of conductor 2 of R, contradicting the fact that the conductor of the extension L/k is 4.

4. Examples of applications of the results. In this section we keep the hypotheses made at the beginning of § 3. Here the subgroup H_1 is the subgroup of C_f whose classes B satisfy $e_{-1}(B) = +1$.

We denote by q a prime represented by a class Q of determinant $-mf^2$, where f is given by (1.7), and q is such that the genus of Q contains ambiguous classes. Then (2.1) holds, that is, in the present case :

(4.1) $(\frac{-1}{q}) = (\frac{m}{q}) = 1.$

If, for C_f , $r_4 = 1$, then (4.1) ensures that the genus of Q contains ambiguous classes, and Proposition 2 (a) together with Theorem 1 gives the value of r_8 . In some cases we are able to prove that $N(\varepsilon_m) = -1$.

<u>Example 1</u>. $m = p_1 p_2 \dots p_r$, r = 2 or an odd number, all $p_i \equiv 1$ (mod 8), all $(\frac{p_i}{p_j}) = -1$, $i \neq j$; f = 1. Here $r_4 = 1$ and $N(\varepsilon_m) = -1$, as the only ambiguous classes of discriminant -4m and +m in the principal genera are the principal classes and, respectively, the class J of $[2,2, \frac{m+1}{2}]$ and the class of [-1,0,m].

One has $r_8 = 1$ if and only if $(-1)^{T/4} = 1$, that is, T = 0 (mod 8).

Here one has $\chi(A) = 1$ for all odd classes, and $\chi(A) = (-1)^{T/4}$ for all even classes so that :

(a) If $r_8 = 0$, the class Q^{ℓ} is the odd or the even ambiguous class of the genus of Q according as $(\frac{\varepsilon_m}{q}) = 1$ or -1.

(b) If $r_8 = 1$, $Q^S = I$ or J according as $(\frac{\varepsilon_m}{q}) = 1$ or -1. Example 2. $m = p_1 p_2$, where $p_1 = p_2 = 5 \pmod{8}$ and $(\frac{p_1}{p_2}) = -1$; f = 1.

Here N(ϵ_m) = -1, r₄ = 1 and J is the class of [2p₁,2p₂, $\frac{p_1p_2}{2}$]. Also s = $\frac{h}{8}$.

We find first, as $\chi(J) = -(-1)^{T/4}$, that $r_8 = 1$ if, and only if, $T = 4 \pmod{8}$.

(a) If $r_{R} = 0, X(I) = 1, X(J) = -1$, and $X([p_{1}, 0, p_{2}]) = -1$,

so that $\chi(\bar{1}) = 1$, where $\bar{1}$ is the class of $[2,2,(p_1p_2+1)/2]$, and : $\underline{If} (\frac{-1}{q}) = (\frac{q}{p_1}) = (\frac{q}{p_2}) = -1$, then $Q^{\ell} = \bar{1}$ or J according as $(\frac{\varepsilon_m}{q}) = 1$ or -1. <u>If</u> $(\frac{-1}{q}) = 1$, $(\frac{q}{p_1}) = (\frac{q}{p_2}) = -1$, then $Q^{\ell} = \bar{1}$ or $\{[p_1,0,p_2]\}$ according as $(\frac{\varepsilon_m}{q}) = 1$ or -1. (b) If $r_8 = 1$, $\chi(I) = \chi(J) = 1$, and $\chi([p_1,0,p_2]) = \chi(\bar{1}) = -1$, so that :

 $\frac{\text{If}}{(\frac{-1}{q})} = (\frac{q}{p_1}) = (\frac{q}{p_2}) = 1, \text{ then } Q^S = I \text{ or } J \text{ according as}$ $(\frac{\varepsilon_m}{q}) = 1 \text{ or } -1.$

 $\underline{If} \quad \left(\frac{-1}{q}\right) = 1, \ \left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = -1, \ \underline{then} \quad Q^S = J \quad \underline{or} \quad I \quad \underline{accor} - \underline{ding} \quad \underline{as} \quad \left(\frac{\varepsilon_m}{q}\right) = 1 \quad \underline{or} \quad -1.$

We remark that this example is Case VI of Theorem 2 of [7], but with the case $r_8 = 1$ treated as well.

<u>Example 3. All</u> $p_i = 1 \pmod{8}$ and $r_8 = 0 (r_2 \ge r_4 > r_8 = 0)$; f = 1.

For all ambiguous classes one has $e_{-1} = 1$. Also for the odd ambiguous classes one has $\chi(A) = +1$, and for the even ambiguous classes $\overline{A} = A\overline{I}$ one has $\chi(\overline{A}) = (-1)^{T/4}$. This means that for the classes K of order 4 whose square is odd, one has $e_2(K) = 1$, and for the classes \overline{K} of order 4 whose square is even, then $e_2(\overline{K}) =$ $(-1)^{T/4}$. If $(-1)^{T/4}$ were 1, then all classes of order 1, 2 or 4 would give value 1 to e_{-1} ; but, as $r_8 = 0$, a class L has an odd power Lⁿ of order 1, 2 or 4, and for any class L the character

14

$$\begin{split} \mathbf{e}_{-1}(\mathsf{L}) &= \mathbf{e}_{-1}(\mathsf{L}^n) & \text{would be 1. This contradicts the fact that there} \\ \text{always exists a class giving to the generic characters any set of values compatible with the product formula, so that <math>(-1)^{\mathsf{T}/4} = -1$$
, and $\chi(\mathsf{A}) &= +1 \text{ for odd classes}, \quad \chi(\bar{\mathsf{A}}) &= -1 \text{ for even classes. Hence in} \\ \text{this case we must have } \mathsf{T} &\equiv 4 \pmod{8}. \text{ Applying Proposition 1 one} \\ \text{sees that the class } \mathbb{Q}^{\pounds} \quad \underline{\text{is odd or even according as}} \quad (\frac{\varepsilon_m}{\mathsf{q}}) &= +1 \text{ or } -1. \\ \underline{\mathsf{Example 4}}. \text{ a) } \mathsf{m} &= \mathsf{p}_1\mathsf{p}_2, \ \mathsf{p}_1 &\equiv 1, \ \mathsf{p}_2 &\equiv 5 \pmod{8}; \ (\frac{\mathsf{p}_1}{\mathsf{p}_2}) &= -1. \\ \text{b) } \mathsf{m} &= \mathsf{p}_1\dots\mathsf{p}_r, \ \text{all } \mathsf{p}_1 &\equiv 5 \pmod{8}, \ \mathsf{r} \text{ odd, all } (\frac{\mathsf{p}_1}{\mathsf{p}_j}) &= -1, \\ &\quad \mathsf{i} &\neq \mathsf{j}. \\ \text{c) } \mathsf{m} &= \mathsf{p}_1\mathsf{p}_2\mathsf{p}_3, \ \text{all } \mathsf{p}_1 &\equiv 5 \pmod{8}, \ (\frac{\mathsf{p}_1}{\mathsf{p}_2}) &= 1, \\ &\quad (\frac{\mathsf{p}_2}{\mathsf{p}_3}) &= (\frac{\mathsf{p}_3}{\mathsf{p}_1}) &= -1. \end{split}$

d) $m = p_1 p_2 p_3$, $p_1 \equiv 5$, $p_2 \equiv p_3 \equiv 1 \pmod{8}$, 2 or 3 of the $(\frac{p_i}{p_i}) = -1$.

In all these cases f = 2 and one sees that $r_4 = 1$, $r_8 = 0$, as the only ambiguous class $\pm I$ of determinant -4m in the principal genus is the class of [4,0,m]. One can then apply Proposition 1. For example in case a) we have :

If $(\frac{-1}{q}) = (\frac{q}{p_1}) = (\frac{q}{p_2}) = 1$, then $Q^{\ell} = I$ or \overline{I} according as $(\frac{\varepsilon_m}{q}) = 1$ or -1.

If $\left(\frac{-1}{q}\right) = 1$, $\left(\frac{q}{p_1}\right) = \left(\frac{q}{p_2}\right) = -1$, then $Q^{\ell} = A_1$ or A_2 according as $\left(\frac{\varepsilon_m}{q}\right) = 1$ or -1, where A_j denotes the class of $[q_j, 0, 4 \ \frac{m}{q_j}]$. (This is the result of [7], Theorem 2, IV).

<u>Example 5</u>. $m = p_1 p_2$, $p_1 \equiv 1$, $p_2 \equiv 5 \pmod{8}$, $(\frac{p_1}{p_2}) = 1$, f = 2.

Here $r_2 = 2$, $r_4 = 2$. We suppose $N(\epsilon_m) = -1$ and $r_8 = 0$. A prime $q \equiv 1 \pmod{4}$ represented by a genus of ambiguous forms of discriminant -4m is represented by the principal genus; it is thus represented by the principal genus of discriminant -16m, and by Proposition 2

$$Q^{\ell} = I$$
 or A_1 if $(\frac{\varepsilon_m}{q}) = 1$, $Q^{\ell} = \overline{I}$ or A_2 if $(\frac{\varepsilon_m}{q}) = -1$.

(This is the result of [7], Theorem 2, III).

$$\begin{array}{l} \underline{\text{Example 6}}{\text{Example 6}}, \quad \text{m = } p_1 p_2 p_3, \quad p_1 \equiv 5, \quad p_2 \equiv p_3 \equiv 1 \pmod{8}, \quad (\frac{p_1}{p_2}) = (\frac{p_1}{p_3}) = 1, \\ (\frac{p_1}{p_2}) = -1. \text{ Here } f = 2, \quad r_2 = 2. \text{ We suppose that } \mathbb{N}(\epsilon_m) = -1 \text{ and } \\ r_8 = 0. \\ \qquad \text{If } (\frac{-1}{q}) = (\frac{q}{p_1}) = (\frac{q}{p_2}) = (\frac{q}{p_3}) = 1, \text{ then } \mathbb{Q}^{\ell} = I \text{ or } \mathbb{A}_1 \overline{I} \text{ if } \\ (\frac{\epsilon_m}{p}) = 1, \text{ and } \mathbb{Q}^{\ell} = \overline{I} \text{ or } \mathbb{A}_1 \text{ if } (\frac{\epsilon_m}{q}) = -1. \\ \qquad \text{If } (\frac{-1}{q}) = (\frac{q}{p_1}) = 1 \text{ and } (\frac{q}{p_2}) = (\frac{q}{p_3}) = 1, \text{ then } \mathbb{Q}^{\ell} = \mathbb{A}_2 \text{ or } \\ \mathbb{A}_3 \text{ if } (\frac{\epsilon_m}{q}) = 1 \text{ and } \mathbb{Q}^{\ell} = \mathbb{A}_2 \overline{I} \text{ or } \mathbb{A}_3 \overline{I} \text{ if } (\frac{\epsilon_m}{q}) = -1. \\ \\ \hline \underline{\text{Example 7}}, \quad m = p_1 p_2 p_3, \quad p_1 \equiv 5, \quad p_2 \equiv p_3 \equiv 1 \pmod{8}, \quad (\frac{p_1}{p_2}) = (\frac{p_2}{p_3}) = +1, \\ (\frac{p_1}{p_3}) = -1; \quad f = 2. \\ \qquad \text{Here } r_2 = 3, \quad r_4 = 2. \text{ We suppose } \mathbb{N}(\epsilon_m) = -1 \text{ and } r_8 = 0. \\ \\ \ \text{If } (\frac{-1}{q}) = (\frac{q}{p_1}) = (\frac{q}{p_2}) = (\frac{q}{p_3}), \text{ then } \mathbb{Q}^{\ell} = I \text{ or } \mathbb{A}_2 \text{ is } \\ (\frac{\epsilon_m}{q}) = 1, \quad \mathbb{Q}^{\ell} = \overline{I} \text{ or } \overline{\mathbb{A}}_2 \text{ if } (\frac{\epsilon_m}{q}) = -1. \\ \\ \ \text{If } (\frac{-1}{q}) = (\frac{q}{p_2}) = 1, \quad (\frac{q}{p_1}) = (\frac{q}{p_3}) = -1, \text{ then } \mathbb{Q}^{\ell} = \mathbb{A}_3 \text{ or } \end{array}$$

$$A_1 \overline{I}$$
 if $(\frac{\varepsilon_m}{q}) = 1$, $Q^{\ell} = A_1$ or $A_3 \overline{I}$ if $(\frac{\varepsilon_m}{q}) = -1$.

Example 8. m = 2p, $p \equiv 1 \pmod{4}$; f = 4.

The ambiguous classes of discriminant -64m are I, A, Ī, Ā containing respectively [1, 0, 32p], [32, 0, p], [4, 4, 8p+1], [4p, 4p, p+8].

If $p \equiv 5 \pmod{8}$, then I and \overline{A} are in the principal genus, so that $r_4 = 1$ and as $X(I) = X(\overline{I}) = 1$, $X(A) = X(\overline{A}) = -1$ one finds by Proposition 2 that $r_8 = 0$ and :

If $\left(\frac{-1}{q}\right) = \left(\frac{2}{q}\right) = \left(\frac{p}{q}\right) = 1$, then $Q^{\ell} = I$ or \overline{A} according as $\left(\frac{\varepsilon_m}{q}\right) = 1$ or -1. If $\left(\frac{-1}{q}\right) = 1$, $\left(\frac{2}{q}\right) = \left(\frac{p}{q}\right) = -1$, then $Q^{\ell} = \overline{I}$ or A according as $\left(\frac{\varepsilon_m}{q}\right) = 1$ or -1.

If $p \equiv 1 \pmod{8}$, I, A, \overline{I} and \overline{A} are in the principal genus, so that $r_4 = 2$, and X(I) = X(A) = 1, $X(\overline{I}) = X(\overline{A}) = -1$ and using Proposition 1 :

If p is such that $N(\varepsilon_m) = -1$ and $r_8 = 0$, and q such that $(\frac{-1}{q}) = (\frac{2}{q}) = (\frac{p}{q}) = 1$ then $Q^{\ell} = I$ or A if $(\frac{\varepsilon_m}{q}) = 1$, and $Q^{\ell} = \overline{I}$ or \overline{A} if $(\frac{\varepsilon_m}{q}) = -1$.

REFERENCES

- D.A. BUELL, P.A. LEONARD and K.S. WILLIAMS, Note on the quadratic character of a quadratic unit, submitted for publication
- [2] C.F. GAUSS, Disquisitiones Arithmeticae, translated into English by Arthur A. Clarke, Yale University Press, 1966
- [3] F. HALTER-KOCH, Arithmetische Theorie der Normalkörper von 2. Potenzgrad mit Dieder gruppe, J. Number Theory, 3 (1971) pp. 412-443
- [4] D. HILBERT, Über die Theorie des relativquadratischen Zahlkörpers, Math. Ann. 51 (1899), 1-127
- [5] P. KAPLAN, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math 283/284 (1976), 313-363
- [6] P. KAPLAN, Cours d'Arithmétique, UER de Mathématiques, Université de Nancy I, (1973)
- [7] K.S. WILLIAMS, On the evaluation of $(\epsilon_{q_1q_2}/p)$, Rocky Moutain J. Math. (to appear)

10, Allée Jacques Offenbach	Department of Mathematics and Statistics
54420 - Saulxures les Nancy FRANCE	
	Carleton University
	Ottawa, Ontario, CANADA KIS 5B6

(Received August 5, 1980)