AN ARTIN CHARACTER AND REPRESENTATIONS OF PRIMES BY BINARY QUADRATIC FORMS

Pierre KAPLAN and Kenneth S. WILLIAMS*

We show how the decomposition of primes in certain dihedral extensions L of the rationals enables us to obtain results concerning representations of powers of primes by binary quadratic forms and treat here in detail the case of $L=Q\left(\sqrt{\varepsilon_{m}}, \sqrt{-\varepsilon_{m}}\right)$, where m is a square free positive integer such that the norm of the fundamental unit ε_{m} of $Q(\sqrt{m})$ is -1 . Other cases will be treated in subsequent papers.

1. Introduction. Let N, n be squarefree rational integers, whose greatest common divisor is 1 or 2 and such that there exist rational integers a, b and c with

$$
\begin{equation*}
c^{2} N=a^{2}-n b^{2},(a, b)=(b, c)=(c, a)=1 . \tag{1.1}
\end{equation*}
$$

We define

$$
\begin{equation*}
n=a+b \sqrt{n}, \quad n^{\prime}=a-b \sqrt{n} \tag{1.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(\sqrt{n} \pm \sqrt{n}^{\prime}\right)^{2}=2 a \pm 2 c \sqrt{N} \tag{1.3}
\end{equation*}
$$

[^0]We set

$$
\begin{equation*}
\rho=2 a+2 c \sqrt{N}, \quad \rho^{\prime}=2 a-2 c \sqrt{N}, \tag{1.4}
\end{equation*}
$$

and consider the subfield structure of the dihedral extension $L=Q\left(\sqrt{\eta}, \sqrt{\eta}^{\prime}\right)=Q(\sqrt{\rho}, \sqrt{\rho})$.

We define

$$
\begin{equation*}
K=Q(\sqrt{n}, \sqrt{N}), k=Q(\sqrt{n N}) \tag{1.5}
\end{equation*}
$$

The extension L / k is cyclic of degree 4. We remark that $K=k(\sqrt{n})=k(\sqrt{N})$ and that $L=K(\sqrt{n})=K(\sqrt{\rho})$. Noting that n and N (respectively η and ρ) have no common odd prime divisors in k (respectively K) , appealing to Hilbert [4 : Satz 4] , we obtain LEMMA 1. The conductor f of L / k is only divisible by ideals of k lying above 2 .

It is known ([3:Satz 7]) that f is a rational integer. The Artin reciprocity map of the extension L / k defines a character X of order 4 on a class group C_{f} of binary quadratic forms.

In $\S 2$ we show how knowing the value of x on ambiguous classes of C_{f} enables us to determine the representation of certain powers of primes by ambiguous classes of C_{f} (Propositions 1 and 2).

In §3 we consider a squarefree positive integer m for which the norm of the fundamental unit ε_{m} of $Q(\sqrt{m})$ is -1 . Then

$$
\begin{equation*}
T^{2}-m U^{2}=-1 \tag{1.6}
\end{equation*}
$$

where (T, U) denotes the least positive solution of (1.6), so that
$T+U \sqrt{m}=\varepsilon_{m}$ or ε_{m}^{3}. We can thus apply the preceeding with $N=-1, n=m, a=T, b=U, c=1$ and $n=T+U \sqrt{m}$. In this case the conductor f of the extension L / k has been determined [l]. We have

$$
f=\left\{\begin{array}{l}
1, \text { if } m \equiv 1(\bmod 8), \tag{1.7}\\
2, \text { if } m \equiv 5(\bmod 8), \\
4, \text { if } m \equiv 2(\bmod 8),
\end{array}\right.
$$

The main result of this paper gives the value of χ on the ambiguous classes of C_{f} in this case (see Theorem 1 in $\S 3$).

In $\S 4$ we give explicit examples of the results of $\S 3$.
2. Representation of powers of primes and Artin character. The ideal class group of conductor f of the ring of integers of k is isomorphic to the class group C_{f} of primitive binary quadratic forms

$$
f=a X^{2}+b X Y+c Y^{2}=[a, b, c]
$$

of discriminant $b^{2}-4 a c=n N f^{2}$, if $n N \equiv 1(\bmod 4), 4 n N f^{2}$ if $\mathrm{nN} \not \equiv 1(\bmod 4)$, which are taken to be positive when $\mathrm{nN}<0$. We refer to [2], [6] for the theory of binary quadratic forms. Thus we can consider the Artin reciprocity map $\sigma: C_{f} \rightarrow G(L / k)$ as a character X of order 4 on the group C_{f}. The character X is defined by

$$
x: C_{f} \rightarrow C_{f} / H \simeq G(L / k) \simeq\{1, i,-1,-i\},
$$

where $H=\operatorname{ker} \sigma=$ ker X. The Artin reciprocity map of K / k induces a homomorphism $C_{f} \rightarrow G(K / k)$, whose kernel H_{1} contains H, and as $\left[H_{1}: H\right]=2$ we have

$$
x^{-1}(1,-1)=H_{1}
$$

Clearly H_{1} contains the principal genus C_{f}^{2}, and so can be defi-
ned as the kernel of a generic character. Any class B of C_{f} represents primes q, prime to 2 nN , and these primes satisfy $\left(\frac{\mathrm{nN}}{\mathrm{q}}\right)=+1$. The class B belongs to H_{1} if, and only if, such q are completely decomposed in K / k, that is, if

$$
\begin{equation*}
\left(\frac{n}{q}\right)=\left(\frac{N}{q}\right)=1 . \tag{2.1}
\end{equation*}
$$

Thus H_{1} is the subgroup of C_{f} giving the value +1 to the genevic character e_{n} on C_{f} defined by

$$
\begin{equation*}
e_{n}(B)=\left(\frac{n}{a}\right), \tag{2.2}
\end{equation*}
$$

where B contains the form $[a, b, c],(a, 2 n)=1$.
We let $r_{2} k$ denote the 2^{k}-rank of the group C_{f}. The $2^{r_{2}}$ ambiguous classes are distributed amongst $2^{r_{2}-r_{4}}$ of the $2^{r_{2}}$ genera, $2^{r_{4}}$ in each (see for example [5:p. 316]). As the group of ambiguous classes is a subgroup of H_{1} we have $r_{4}>1$. Moreover $r_{4}=1 \mathrm{if}$, and only if, the genera of the ambiguous classes are the genera for which $e_{n}=1$.

A prime q such that $\left(\frac{n N}{q}\right)=+1$ is represented by two inverse classes Q and Q^{-1} or by one self-inverse (= ambiguous) class Q of forms of C_{f}. If the class Q is in H_{1}, that is, if $\left(\frac{n}{q}\right)=\left(\frac{N}{q}\right)=+1$, then \sqrt{n} can be interpreted as an integer modulo q and the value of $\left(\frac{\eta}{q}\right)$ is independent of the choice of \sqrt{n} modulo q. Further Q is in H if, and only if, $\left(\frac{\pi}{q}\right)=+1$ so that

$$
\begin{equation*}
\left(\frac{n}{q}\right)=x(Q) \tag{2.3}
\end{equation*}
$$

Suppose now that the class Q is in the genus of the ambiguous class A. Then Q is in H_{1} and there exists a class B_{1} such that $Q=A B_{1}^{2}$, so that

$$
\begin{equation*}
\left(\frac{\eta}{q}\right)=\chi(A)\left\{\chi\left(B_{1}\right)\right\}^{2} . \tag{2.4}
\end{equation*}
$$

We note that for any class $B,\{\chi(B)\}^{2}=+1$ or -1 according as B is in H_{1} or not, so that $\{x(B)\}^{2}=e_{n}(B)$, and (2.4) becomes

$$
\begin{equation*}
\left(\frac{\eta}{q}\right)=\chi(A) e_{n}\left(B_{1}\right) \tag{2.5}
\end{equation*}
$$

Further if the ambiguous class A is in the principal genus, and B_{1} is a squareroot of A, then we have

$$
\begin{equation*}
x(A)=e_{n}\left(B_{1}\right) \tag{2.6}
\end{equation*}
$$

The order of a class B in the group C_{f} is

$$
\begin{equation*}
\text { ord }(B)=2 v_{\ell}, \ell \text { odd } \tag{2.7}
\end{equation*}
$$

Then the class B^{ℓ} of order 2^{ν} can be viewed as an element of the 2-class group of C_{f}. We note that B and B^{ℓ} are in the same genus. We begin by proving

LEMMA 2. If $r_{8}=0$ and if a class B is in a genus of an ambiguous class A, then the class B^{ℓ} is an ambiguous class of the genus of B.

PROOF. As the classes B and B^{ℓ} are in the same genus, there exists a class B_{1} such that $B^{l}=A B_{1}^{2}$. As $r_{8}=0, B_{1}$ is of order 1,2 , or 4 , so that B_{1}^{2}, and therefore B^{ℓ}, are ambiguous.

We first consider the case $r_{8}=0$.

PROPOSITION 1. Let n and N be squarefree coprime rational integers satisfying (1.1). Let η, η^{\prime} be defined as in (1.2) and let f denote the conductor of $Q(\sqrt{n}, \sqrt{n}) / Q(\sqrt{n N})$.

Suppose further that the 8 -rank r_{8} of the group C_{f} if zero. Let q be a prime represented by a class Q in a genus of $\frac{\text { ambiguous classes of }}{C_{f}} \frac{\text { Then the class }}{Q^{\ell}}$, where ℓ is defined in (2.7), is an ambiguous class such that

$$
x\left(Q^{\ell}\right)=\left(\frac{\eta}{q}\right)
$$

PROOF. We apply (2.5) to the prime q and the ambiguous class Q^{ℓ} obtaining

$$
\left(\frac{\eta}{q}\right)=x\left(Q^{\ell}\right) e_{n}\left(Q^{\frac{-(\ell-1)}{2}}\right)=x\left(Q^{\ell}\right)
$$

as $e_{n}\left(Q^{\frac{-\ell-1}{2}}\right)=\left\{e_{n}(Q)\right\}^{\frac{-\ell-1}{2}}=\{+1\}^{\frac{-\ell-1}{2}}=1$.
We remark that $Q^{\ell}=Q^{h^{\prime}}$, where h^{\prime} is the largest odd divisor of the order h of C_{f}.

Now we consider the case $r_{4}=1$. In this case there are two ambiguous classes in the principal genus, the principal class I and another one J; and in each genus included in H_{1} there are two ambiguous classes A and $A J$. Using (2.6) one finds that

$$
r_{8}=1 \Leftrightarrow x(J)=+1
$$

The 2-class group of C_{f} is of the type $C\left(2^{\tau}\right) \times C(2)^{r_{2}-1}$, so that the order of C_{f}, denoted by h, is given by

$$
h=2^{\tau+r_{2}-1} h^{\prime}
$$

where h^{\prime} is odd. We now set

$$
\mathrm{s}=\mathrm{h} / 2^{\mathrm{r}_{2}+1}
$$

The integer s is odd if and only if $r_{8}=0$. If a class B is a fourth power its order divides s. If a class B is a square but not a fourth power its order divides $2 s$ but not s, so that B^{s} is ambiguous and in the principal genus, and therefore $B^{S}=J$. For any class B the odd number ℓ defined in (2.7) is a divisor of s. If $r_{8}=0$ the ambiguous class B^{ℓ} is equal to B^{s}. This proves

LEMMA 3. If $r_{4}=1$, and if B is in the principal genus, then $B^{S}=I$ or J according as B is a fourth power or not. We will also need the following lemma.

LEMMA 4. If $r_{4}=r_{8}=1$ and A, B are two classes in the same genus, the class A being ambiguous, then $B^{S}=I$ or J according as $A B$ is a fourth power or not.

PROOF. By Lemma 2, $(A B)^{S}=I$ or J according as $A B$ is a fourth power or not. $A s \quad s$ is even, $A^{S}=I$ and the result follows.

We now prove with the notation of Proposition 1

PROPOSITION 2. Suppose $r_{4}=1$ and let J denote the non-unit ambiguous class in the principal genus of C_{f}. Then

$$
\begin{equation*}
r_{8}=1 \Leftrightarrow x(J)=1 \tag{a}
\end{equation*}
$$

Let q be a prime represented by a class in the genus of the ambiguous classes A and $A J$. Then
(b) the class $Q A$ is a fourth power if, and only if, $\left(\frac{n}{q}\right)=x(A)$,
(c) if $r_{8}=0$ then $Q^{5}=A$ or $A J$ according as

$$
\left(\frac{\eta}{q}\right)=x(A) \text { or }-x(A)
$$

(d) if $r_{8}=1$ then $Q^{S}=I$ or J according as $\left(\frac{\eta}{q}\right)=x(A)$ or $-\chi(A)$.

PROOF. (a) (b). We apply (2.6) to J and (2.5) to q and A, noting that, as $r_{4}=1$, the genera of the ambiguous classes consist of all genera satisfying $e_{n}=1$.
(c) As $r_{8}=0$, by (a) $x(3)=-1$ so that $\chi(A J)=-x(A)$.

But in this case, $Q^{s}=Q^{\ell}$ is ambiguous, by Lemma 1 , and so equal to A or $A J$. By Theorem 1, $\left(\frac{n}{q}\right)=\chi\left(Q^{S}\right)$, so that $Q^{S}=A$ or $A J$ according as $\left(\frac{n}{q}\right)=\chi(A)$ or $-\chi(A)$ respectively.
(d) As $r_{8}=1$, by Lemma $3, Q^{s}=I$ or J according as QA is a fourth power or not. The result now follows from (b). If Q is in the principal genus we can take $A=I$ and we have

COROLLARY. Suppose $r_{4}=1$. If Q is in the principal genus, then Q is a fourth power, if and only if $\left(\frac{\eta}{q}\right)=1$; and q^{s} is represented by I or J according as $\left(\frac{\eta}{q}\right)=+1$ or -1 .
3. Determination of Artin chararacter. From now on we denote by m a squarefree positive integer for which the norm of the fundamental unit ε_{m} of $Q(\sqrt{m})$ is -1 and we suppose that we are in the case $N=-1, n=m, a=T, b=U, c=1$, where m, T, U satisfy (1.6). We remark that $m=p_{1} \ldots p_{r}$, where $r>1$ and the p_{i} are distinct primes with $p_{1}=2$ or $p_{1} \equiv 1(\bmod 4)$ and $\mathrm{p}_{2} \equiv \ldots \equiv \mathrm{p}_{\mathrm{r}} \equiv 1(\bmod 4)$. Moreover all prime factors of U are congruent to 1 modulo 4 and

$$
\left\{\begin{array}{l}
T \equiv 0(\bmod 4), \text { if } m \equiv 1(\bmod 8), \tag{3.1}\\
T \equiv 1(\bmod 2), \text { if } m \equiv 2(\bmod 8), \\
T \equiv 2(\bmod 4), \text { if } m \equiv 5(\bmod 8) .
\end{array}\right.
$$

Before stating Theorem 1, we recall the form of the ambiguous classes of C_{f}.

If $m \equiv 1(\bmod 8)$, we have $f=1$, and an ambiguous class A contains either a couple [d, $0, e$] and $[e, 0, d]$ of ambiguous forms, or a couple [2d, 2d,1/2(d+e)] and [2e, 2e,1/2 (d+e)] of ambiguous forms, with $d e=m, d>0, e>0$.

If $m \equiv 5(\bmod 8)$, we have $f=2$, and an ambiguous class A contains exactly one ambiguous form [d, $0,4 \mathrm{e}]$, where $\mathrm{de}=\mathrm{m}$, $\mathrm{d}>0$, e>0.

If $m \equiv 2(\bmod 8)$, we have $f=4$, and an ambiguous class A contains exactly one ambiguous form, either [$\mathrm{d}, 0,32 \mathrm{e}$] or $[4 d, 4 d, d+8 e]$ where $2 d e=m, d>0, e>0$.

We prove

THEOREM 1. If m is a squarefree integer such that $N\left(\varepsilon_{m}\right)=-1$, the value of the Artin character X of L / k on the ambiguous class A is given as follows:

If $m \equiv 1(\bmod 8)$

$$
\text { If } m \equiv 2(\bmod 8)
$$

$$
\begin{aligned}
& x(A)= \begin{cases}\left(\frac{2}{d}\right), & \text { if } A \text { contains the form [d, } 0, \mathrm{e}] . \\
\left(\frac{2}{d}\right)(-1)^{T / 4}, & \text { if } \left.A \text { contains the form [2d,2d, } \frac{d+e}{2}\right]\end{cases} \\
& \text { If } m \equiv 5(\bmod 8) \\
& x(A)=\left(\frac{2}{d}\right) \text {, if } A \text { contains the form }[d, 0,4 e] .
\end{aligned}
$$

$$
x(A)=\left\{\begin{array}{l}
\left(\frac{2}{d}\right), \text { if } A \text { contains the form }[d, 0,32 e] \\
-\left(\frac{2}{d}\right), \text { if } A \text { contains the form }[4 d, 4 d, d+8 e]
\end{array}\right.
$$

PROOF. If the ambiguous class A contains a form of the type [d, $0, e^{1]}$, we say that the class A is odd ; otherwise we say that it is even.

Let A be an ambiguous class which is odd so that it contains the form [d, $\left.0, e^{\prime}\right]$. Clearly it suffices to show that $x\left(A_{p}\right)=\left(\frac{2}{p}\right)$ for a class A_{p} containing a form $\left[p, 0, \frac{m f^{2}}{p}\right]$, where p is an odd prime divisor of m. The class A_{p} corresponds to the ideal class of conductor f in k of the ideal P of k such that $p^{2}=p$. Therefore $x\left(A_{p}\right)=+1$ or -1 according as P is completely decomposed or not in the extension L / K. Now in $K, P=P_{1} P_{2}$, and from the relation $T^{2}+1=m U^{2}$ we see that we can choose P_{1} to divide $T-i$, and then P_{1} is prime to $2(T+i)$. As $L=K(\sqrt{p})$ we have, denoting by $[-]_{K}$ the quadratic residue symbol in K :

$$
\begin{align*}
& \chi\left(A_{p}\right)=\left[\frac{\rho}{P_{1}}\right]_{K}=\left[\frac{2(T+i)}{P_{1}}\right]_{K}=\left[\frac{4 i}{P_{1}}\right]_{K}=\left[\frac{i}{P_{1}}\right]_{K}=(-1)^{\frac{p-1}{4}}=\left(\frac{2}{p}\right), \tag{3.2}\\
& N\left(P_{1}\right)=p
\end{align*}
$$ as

Next we treat the two cases when A is even, that is, $m \equiv 1(\bmod 8), A$ contains $\left[2 d, 2 d, \frac{d+e}{2}\right]$, $m \equiv 2(\bmod 8), A$ contains $[4 d, 4 d, d+8 e]$.

Let $m \equiv 1(\bmod 8)$ and suppose that the ambiguous class A is even, so that A contains the form $\left[2 d, 2 d, \frac{d+e}{2}\right]$, where $d e=m$. Since A is the product of the classes of $\left[2,2, \frac{1+m}{2}\right]$ and $[d, 0, e]$ in C_{1}, it suffices to prove

$$
x((2,1+\sqrt{-m}))=(-1)^{T / 4},
$$

as the ideal class of $(2,1+\sqrt{-m})$ corresponds to the class of the form $\left[2,2, \frac{1+m}{2}\right]$.

We begin by showing that if $x((2,1+\sqrt{-m}))=+1$ then $T \equiv 0(\bmod 8)$. In k we have $2=(2,1+\sqrt{-m})^{2}$ and in $Q(i)$ we have $2=(1+i)^{2}$ (as ideals). If $x((2,1+\sqrt{-m}))=1$ the ideal $(2,1+\sqrt{-m})$ is completely decomposed in L / k so that the ideal ($1+i$) is completely decomposed in $L / Q(i)$, and thus in the subextension $Q\left(\sqrt{\varepsilon_{m}}+\sqrt{\varepsilon_{m}}\right) / Q(i)$. Since $Q\left(\sqrt{\varepsilon_{m}}+\sqrt{\varepsilon_{m}^{1}}\right)=Q(\sqrt{2(T+i)})=Q(\sqrt{1-T i})$, by a result of Hilbert [3: Satz 8], the congruence

$$
1-T \mathbf{i} \equiv Z^{2}\left(\bmod (1+i)^{5}\right)
$$

is solvable in $\mathbb{Z}[i]$. Thus, there are rational integers a, b, x, y such that

$$
I=T i=(a+b i)^{2}+4(1+i)(x+y i),
$$

that is, with $X=x-y$,
(3.3) $\left\{\begin{array}{l}1=a^{2}-b^{2}+4 x, \\ -T=2 a b+4 x+8 y .\end{array}\right.$

Clearly a is odd and b is even. Thus, taking (3.3) modulo 8, we obtain, with $b=2 c$,

$$
X \equiv c(\bmod 2), \quad-T \equiv 4(c+X)(\bmod 8),
$$

so that

$$
T \equiv 0(\bmod 8)
$$

as required.

We next show that if $T \equiv 0(\bmod 8)$ then $x((2,1+\sqrt{-m}))=+1$. Interpreting \sqrt{m} as U modulo 8 , we see that, if $T \equiv 0(\bmod 8)$, then $T+U \sqrt{m} \equiv 1(\bmod 8)$, so that, as 2 decomposes as $2_{1}^{2} 2_{2}^{2}$ in K, both congruences $T+U \sqrt{m} \equiv x_{j}^{2}\left(\bmod 2_{j}^{5}\right)(j=1,2)$ have solutions in the ring of integers of K as indeed they are solvable in \mathbb{Z}. This completes the case when $m \equiv 1(\bmod 8)$.

Finally let $m \equiv 2(\bmod 8)$ and suppose that the ambiguous class A is even. As above it suffices to prove that X takes the value -1 on the class A_{0} of the form $[4,4,1+4 m]$.

Now inclusion induces a natural homomorphism of the ideal class group of conductor 4 of R onto the ideal class group of conductor 2 of R, whose kernel consists of the two ideal classes corresponding to I and A_{0}.

If $X\left(A_{0}\right)$ had the value 1 , then X would take the value 1 on the whole principal ideal class of conductor 2 of R, contradicting the fact that the conductor of the extension L / k is 4 .
4. Examples of applications of the results. In this section we keep the hypotheses made at the beginning of § 3 . Here the subgroup H_{1} is the subgroup of C_{f} whose classes B satisfy $e_{-1}(B)=+1$.

We denote by q a prime represented by a class Q of determinant $-m^{2}$, where f is given by (1.7), and q is such that the genus of Q contains ambiguous classes. Then (2.1) holds, that is, in the present case :

$$
\begin{equation*}
\left(\frac{-1}{q}\right)=\left(\frac{m}{q}\right)=1 . \tag{4.1}
\end{equation*}
$$

If, for $C_{f}, r_{4}=1$, then (4.1) ensures that the genus of Q contains ambiguous classes, and Proposition 2 (a) together with Theorem 1 gives the value of r_{8}. In some cases we are able to prove that $N\left(\varepsilon_{m}\right)=-1$.

Example 1. $m=p_{1} p_{2} \ldots p_{r}, r=2$ or an odd number, all $p_{i} \equiv 1$ $(\bmod 8)$, all $\left(\frac{p_{i}}{p_{j}}\right)=-1, i \neq j ; f=1$. Here $r_{4}=1$ and $N\left(\varepsilon_{m}\right)=-1$, as the only ambiguous classes of discriminant $-4 m$ and $+m$ in the principal genera are the principal classes and, respectively, the class J of $\left[2,2, \frac{m+1}{2}\right]$ and the class of $[-1,0, m]$.

One has $r_{8}=1$ if and only if $(-1)^{T / 4}=1$, that is, $T \equiv 0$ $(\bmod 8)$.

Here one has $X(A)=1$ for all odd classes, and $x(A)=(-1)^{T / 4}$ for all even classes so that :
(a) If $r_{8}=0$, the class Q^{l} is the odd or the even ambiguous class of the genus of Q according as $\left(\frac{\varepsilon_{m}}{q}\right)=1$ or -1 .
(b) If $r_{8}=1, Q^{s}=I$ or J according as $\left(\frac{{ }^{m}}{q}\right)=1$ or -1 .

Example 2. $m=p_{1} p_{2}$, where $p_{1} \equiv p_{2} \equiv 5(\bmod 8)$ and $\left(\frac{p_{1}}{p_{2}}\right)=-1$; $f=1$.

Here $N\left(\varepsilon_{m}\right)=-1, r_{4}=1$ and J is the class of $\left[2 p_{1}, 2 p_{2}\right.$, $\left.\frac{p_{1} p_{2}}{2}\right]$. Also $s=\frac{h}{8}$.

We find first, as $x(J)=-(-1)^{T / 4}$, that $r_{8}=1$ if, and only if, $T \equiv 4(\bmod 8)$.
(a) If $r_{8}=0, X(I)=1, X(J)=-1$, and $X\left(\left[p_{1}, 0, p_{2}\right]\right)=-1$,
so that $x(\tilde{I})=1$, where \bar{I} is the class of $\left[2,2,\left(p_{1} p_{2}+1\right) / 2\right]$, and :
If $\left(\frac{-1}{q}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$, then $Q^{\ell}=\bar{I}$ or J according
as $\left(\frac{\varepsilon_{m}}{q}\right)=1$ or -1 .
If $\left(\frac{-1}{q}\right)=1,\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$, then $Q^{\ell}=\bar{I}$ or $\left\{\left[p_{1}, 0, p_{2}\right]\right\}$
according as $\left(\frac{\varepsilon_{\mathrm{m}}}{\mathrm{q}}\right)=1$ or -1 .
(b) If $r_{8}=1, x(\mathrm{I})=x(\mathrm{~J})=1$, and $x\left(\left[p_{1}, 0, p_{2}\right]\right)=x(\overline{\mathrm{I}})=-1$, so that :

If $\left(\frac{-1}{q}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1$, then $Q^{5}=I$ or J according as $\left(\frac{\varepsilon_{\mathrm{m}}}{\mathrm{q}}\right)=1$ or -1.

If $\left(\frac{-1}{q}\right)=1,\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1$, then $Q^{5}=J$ or I according as $\left(\frac{\varepsilon_{m}}{q}\right)=1$ or -1 .

We remark that this example is Case VI of Theorem 2 of [7], but with the case $r_{8}=1$ treated as well.

Example 3. All $p_{i} \equiv 1(\bmod 8)$ and $r_{8}=0 \quad\left(r_{2} \geqslant r_{4}>r_{8}=0\right) ;$ $f=1$.

For all ambiguous classes one has $e_{-1}=1$. Also for the odd ambiguous classes one has $X(A)=+1$, and for the even ambiguous classes $\bar{A}=A \bar{I}$ one has $X(\bar{A})=(-1)^{\top / 4}$. This means that for the classes K of order 4 whose square is odd, one has $e_{2}(K)=1$, and for the classes \bar{K} of order 4 whose square is even, then $e_{2}(\bar{k})=$ $(-1)^{\top / 4}$. If $(-1)^{\top / 4}$ were 1 , then all classes of order 1,2 or 4 would give value 1 to e_{-1}; but, as $r_{8}=0$, a class L has an odd power L^{n} of order 1,2 or 4 , and for any class L the character
$e_{-1}(L)=e_{-1}\left(L^{n}\right)$ would be 1 . This contradicts the fact that there always exists a class giving to the generic characters any set of values compatible with the product formula, so that $(-1)^{\top / 4}=-1$, and $X(A)=+1$ for odd classes, $X(\bar{A})=-1$ for even classes. Hence in this case we must have $\mathrm{T} \equiv 4$ (mod 8). Applying Proposition 1 one sees that the class Q^{ℓ} is odd or even according as $\left(\frac{\varepsilon_{m}}{q}\right)=+1$ or -1 .

Example 4. a) $m=p_{1} p_{2}, p_{1} \equiv 1, p_{2} \equiv 5(\bmod 8) ;\left(\frac{p_{1}}{p_{2}}\right)=-1$.
b) $m=p_{1} \ldots p_{r}$, all $p_{i} \equiv 5(\bmod 8), r$ odd, all $\left(\frac{p_{i}}{p_{j}}\right)=-1$, $i \neq j$.
c) $m=p_{1} p_{2} p_{3}$, all $p_{i} \equiv 5(\bmod 8),\left(\frac{p_{1}}{p_{2}}\right)=1$, $\left(\frac{p_{2}}{p_{3}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=-1$.
d) $m=p_{1} p_{2} p_{3}, p_{1} \equiv 5, p_{2} \equiv p_{3} \equiv 1(\bmod 8), 2$ or 3 of the $\left(\frac{p_{\mathbf{i}}}{p_{j}}\right)=-1$.

In all these cases $f=2$ and one sees that $r_{4}=1, r_{8}=0$, as the only ambiguous class $\neq I$ of determinant $-4 m$ in the principal genus is the class of $[4,0, \mathrm{~m}]$. One can then apply Proposition 1 . For example in case a) we have :

$$
\text { If }\left(\frac{-1}{q}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=1 \text {, then } Q^{\ell}=I \text { or } \bar{I} \text { according }
$$ as $\left(\frac{\varepsilon_{m}}{q}\right)=1$ or -1 .

$$
\text { If }\left(\frac{-1}{q}\right)=1,\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=-1 \text {, then } Q^{\ell}=A_{1} \text { or } A_{2} \text { accor- }
$$

ding as $\left(\frac{\varepsilon_{m}}{q}\right)=1$ or -1 , where A_{j} denotes the class of $\left[q_{j}, 0,4 \frac{m}{q_{j}}\right]$. (This is the result of [7], Theorem 2, IV).

Example 5. $m=p_{1} p_{2}, p_{1} \equiv 1, p_{2} \equiv 5(\bmod 8),\left(\frac{p_{1}}{p_{2}}\right)=1, f=2$.
Here $r_{2}=2, r_{4}=2$. We suppose $N\left(\varepsilon_{m}\right)=-1$ and $r_{8}=0$. A prime $q \equiv 1(\bmod 4)$ represented by a genus of ambiguous forms of discriminant $-4 m$ is represented by the principal genus ; it is thus represented by the principal genus of discriminant -16 m , and by Proposition 2

$$
Q^{\ell}=1 \text { or } A_{1} \text { if }\left(\frac{\varepsilon_{m}}{q}\right)=1, Q^{\ell}=\bar{I} \text { or } A_{2} \text { if }\left(\frac{\varepsilon_{m}}{q}\right)=-1
$$

(This is the result of [7], Theorem 2, III).
Example 6. $m=p_{1} p_{2} p_{3}, p_{1} \equiv 5, p_{2} \equiv p_{3} \equiv 1(\bmod 8),\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{3}}\right)=1$, $\left(\frac{p_{1}}{p_{2}}\right)=-1$. Here $f=2, r_{2}=2$. We suppose that $N\left(\varepsilon_{m}\right)=-1$ and $r_{8}=0$. If $\left(\frac{-1}{q}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=\left(\frac{q}{p_{3}}\right)=1$, then $Q^{\ell}=I$ or $A_{1} \bar{I}$ if $\left(\frac{\varepsilon_{m}}{\mathrm{p}}\right)=1$, and $Q^{\ell}=\overline{\mathrm{I}}$ or A_{1} if $\left(\frac{{ }^{\varepsilon} m}{q}\right)=-1$.

$$
\text { If }\left(\frac{-1}{q}\right)=\left(\frac{q}{p_{1}}\right)=1 \text { and }\left(\frac{q}{p_{2}}\right)=\left(\frac{q}{p_{3}}\right)=1 \text {, then } Q^{\ell}=A_{2} \text { or }
$$

A_{3} if $\left(\frac{\varepsilon_{m}}{q}\right)=1$ and $Q^{\ell}=A_{2} \bar{I}$ or $A_{3} \bar{I}$ if $\left(\frac{\varepsilon_{m}}{q}\right)=-1$.
Example 7. $m=p_{1} p_{2} p_{3}, p_{1} \equiv 5, p_{2} \equiv p_{3} \equiv 1(\bmod 8),\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=+1$, $\left(\frac{p_{1}}{p_{3}}\right)=-1 ; f=2$.

Here $r_{2}=3, r_{4}=2$. We suppose $N\left(\varepsilon_{m}\right)=-1$ and $r_{8}=0$.
If $\left(\frac{-1}{q}\right)=\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{2}}\right)=\left(\frac{q}{p_{3}}\right)$, then $Q^{\ell}=I$ or A_{2} is
$\left(\frac{\varepsilon_{\mathrm{m}}}{\mathrm{q}}\right)=1, \mathrm{Q}^{\ell}=\overline{\mathrm{I}}$ or \bar{A}_{2} if $\left(\frac{\varepsilon_{\mathrm{m}}}{\mathrm{q}}\right)=-1$.
If $\left(\frac{-1}{q}\right)=\left(\frac{q}{p_{2}}\right)=1,\left(\frac{q}{p_{1}}\right)=\left(\frac{q}{p_{3}}\right)=-1$, then $Q^{l}=A_{3}$ or
$A_{1} \bar{I}$ if $\left(\frac{\varepsilon_{m}}{q}\right)=1, Q^{\ell}=A_{1}$ or $A_{3} \bar{I}$ if $\left(\frac{\varepsilon_{\mathrm{m}}}{q}\right)=-1$.
Example 8. $m=2 p, p \equiv 1(\bmod 4) ; f=4$.
The ambiguous classes of discriminant $-64 m$ are I, A, \bar{I}, \bar{A} containing respectively $[1,0,32 p],[32,0, p],[4,4,8 p+1]$, [Ap, Ap, p+8].

If $p \equiv 5(\bmod 8)$, then I and \bar{A} are in the principal genus, so that $r_{4}=1$ and as $X(I)=X(\bar{I})=1, X(A)=X(\bar{A})=-1$ one finds by Proposition 2 that $r_{8}=0$ and :

If $\left(\frac{-1}{q}\right)=\left(\frac{2}{q}\right)=\left(\frac{p}{q}\right)=1$, then $Q^{\ell}=1$ or \bar{A} according as $\left(\frac{\varepsilon_{\mathrm{m}}}{q}\right)=1$ or -1.

If $\left(\frac{-1}{q}\right)=1,\left(\frac{2}{q}\right)=\left(\frac{p}{q}\right)=-1$, then $Q^{l}=\bar{I}$ or A according as $\left(\frac{\varepsilon_{m}}{q}\right)=1$ or -1 .

If $p \equiv 1(\bmod 8), I, A, \bar{I}$ and \bar{A} are in the principal genus, so that $r_{4}=2$, and $X(I)=X(A)=1, X(\bar{I})=X(\bar{A})=-1$ and using Proposition 1 :

If p is such that $N\left(\varepsilon_{m}\right)=-1$ and $r_{8}=0$, and q such that $\left(\frac{-1}{q}\right)=\left(\frac{2}{q}\right)=\left(\frac{p}{q}\right)=1$ then $Q^{\ell}=1$ or A if $\left(\frac{\varepsilon_{m}}{q}\right)=1$, and $Q^{\ell}=\bar{I}$ or \bar{A} if $\left(\frac{\varepsilon_{m}}{q}\right)=-1$.

REFERENCES

[1]
D.A. BUELL, P.A. LEONARD and K.S. WILLIAMS, Note on the quadratic character of a quadratic unit, submitted for publication
C.F. GAUSS, Disquisitiones Arithmeticae, transTated into English by Arthur A. Clarke, Yale University Press, 1966
[3] F. HALTER-KOCH, Arithmetische Theorie der Normalkörper von 2. Potenzgrad mit Dieder gruppe, J. Number Theory, 3 (1971) pp. 412-443
D. HILBERT, Über die Theorie des relativquadratischen Zahlkörpers, Math. Ann. 51 (1899), 1-127
[5] P. KAPLAN, Sur le 2-groupe des classes d'idēaux des corps quadratiques, J. Reine Angew. Math 283/284 (1976), 313-363
[6] P. KAPLAN, Cours d'Arithmétique, UER de Mathēmatiques, Université de Nancy I, (1973)
[7] K.S. WILLIAMS, On the evaluation of $\left(\varepsilon_{q_{1} q_{2}} / p\right)$, Rocky Moutain
J. Math. (to appear)

10, Allée Jacques Offenbach
54420 - Saulxures les Nancy
FRANCE

Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, CANADA KIS 5B6

[^0]: * Research supported by Natural Sciences and Engineering Research Council Canada Grant N ${ }^{\circ}$ A-7233

