THE CLASS NUMBER OF $Q(\sqrt{p})$ MODULO 4, FOR $p \equiv 5$ (MOD 8) A PRIME

KENNETH S. WILLIAMS

Let $p \equiv 5 \pmod{8}$ be a prime. Let h(p) denote the class number of the real quadratic field $Q(\sqrt{p})$. It is well-known that $h(p) \equiv 1 \pmod{2}$. In this paper the residue of h(p) modulo 4 is determined.

Let $p \equiv 5 \pmod{8}$ be a prime. Let h = h(p) denote the class number of the real quadratic field $Q(\sqrt{p})$. It is well-known (see for example [2; § 3] that

$$(1) h = h(p) \equiv 1 \pmod{2}.$$

In this paper we determine h(p) modulo 4.

The fundamental unit ε_p (> 1) of $Q(\sqrt{p})$ can be written

(2)
$$\varepsilon_p = \frac{1}{2} (t + u\sqrt{p}),$$

where t and u are positive integers satisfying

$$(3) t \equiv u \pmod{2}.$$

The norm of ε_p is -1 so

$$(4) t^2 - pu^2 = -4.$$

If $t \equiv u \equiv 1 \pmod{2}$ then we have (using (4))

$$\left(rac{-1}{u}
ight)=\left(rac{-4}{u}
ight)=\left(rac{t^2-pu^2}{u}
ight)=\left(rac{t^2}{u}
ight)=+1$$
 ,

so

$$(5) u \equiv 1 \pmod{4}.$$

If $t \equiv u \equiv 0 \pmod{2}$, we define positive integers t_1 and u_1 by $t = 2t_1$, $u = 2u_1$. Then, from (4), we have

$$t_1^2 = pu_1^2 - 1 \equiv 5u_1^2 - 1 \equiv 7$$
, 4 or 3 (mod 8)

according as

$$u_1^2 \equiv 0$$
, 1 or 4 (mod 8).

Clearly we must have $t_1^2 \equiv 4 \pmod{8}$, so that

(6)
$$t_1 \equiv 2 \pmod{4}$$
, $u_1 \equiv 1 \pmod{2}$.

Further, we have

$$\left(rac{-1}{u_1}
ight) = \left(rac{t_1^2 - p u_1^2}{u_1}
ight) = \left(rac{t_1^2}{u_1}
ight) = +1$$
 ,

SO

$$(7) u_1 \equiv 1 \pmod{4}.$$

Next we define unique integers a and b by

(8)
$$p = a^2 + b^2$$
, $a \equiv -1 \pmod{4}$, $b \equiv -\left(\frac{p-1}{2}\right)! a \pmod{p}$,
and we note that (as $p \equiv 5 \pmod{8}$, a odd)

$$(9) b \equiv 2 \pmod{4}$$

We prove

THEOREM 1. (a) If $t \equiv u \equiv 1 \pmod{2}$ then $h(v) \equiv \frac{1}{2}(-2t + u + b + 1) \pmod{4}.$

$$h(p) \equiv \frac{1}{2}(-2t+u+b+1) \pmod{4}$$

(b) If $t \equiv u \equiv 0 \pmod{2}$ then

$$h(p) \equiv \frac{1}{2}(t_1 + u_1 + b + 1) \pmod{4}$$
.

The proof depends upon a number of lemmas.

LEMMA 1.

$$\left(\frac{p-1}{2}\right)! \equiv (-1)^{(h+1)/2} \frac{t}{2} \pmod{p}$$
.

This is a result of Chowla [3].

LEMMA 2. (a) If $t \equiv u \equiv 1 \pmod{2}$ then $t + 2(-1)^{(h+1)/2}i \equiv 0 \pmod{a+bi}$. (b) If $t \equiv u \equiv 0 \pmod{2}$ then $t_1 + (-1)^{(h+1)/2}i \equiv 0 \pmod{a+bi}$.

Proof. From (8) and Lemma 1 we obtain

(10)
$$at + 2b(-1)^{(h+1)/2} \equiv 0 \pmod{p}$$
.

Then (4) and (10) give

242

THE CLASS NUMBER OF $Q(\sqrt{p})$ MODULO 4, FOR $p=5 \pmod{8}$ A PRIME 243

$$t(2a(-1)^{(h+1)/2} - bt) = 2(at + 2b(-1)^{(h+1)/2})(-1)^{(h+1)/2} - bpu^2$$

 $\equiv 0 \pmod{p}$.

As $t \not\equiv 0 \pmod{p}$, we deduce

(11)
$$2a(-1)^{(h+1)/2} - bt \equiv 0 \pmod{p}$$
.

Using (10) and (11) one easily verifies that $(t + 2(-1)^{(h+1)/2}i)/(a + bi)$ is a gaussian integer, which completes the proof of (a).

The proof of (b) is similar.

LEMMA 3. (a) If $t \equiv u \equiv 1 \pmod{2}$ there are integers r and s of opposite parity such that

$$egin{array}{lll} \{t=a(r^2-s^2)-b(2rs)\;,&u=r^2+s^2\;,\ 2(-1)^{(h+1)/2}=a(2rs)+b(r^2-s^2)\;. \end{array}$$

(b) If $t \equiv u \equiv 0 \pmod{2}$ there are integers r and s of opposite parity such that

$$egin{array}{lll} \{t_1=-a(2rs)-b(r^2-s^2)\;, & u_1=r^2+s^2\;,\ (-1)^{(h+1)/2}=a(r^2-s^2)-b(2rs)\;. \end{array}$$

Proof. (a) The gaussian integers $(t + 2(-1)^{(k+1)/2}i)/(a + bi)$ and $(t - 2(-1)^{(k+1)/2}i)/(a - bi)$ are coprime and their product is u^2 . Hence there exist integers r and s such that

(12)
$$\frac{t+2(-1)^{(h+1)/2}i}{a+bi} = \varepsilon(r+si)^2,$$

where $\varepsilon = \pm 1, \pm i$. Multiplying both sides of (12) by a + bi and considering the parities of the coefficients of *i* on both sides of the resulting equation, we see that $\varepsilon = \pm 1$. Replacing r + si by -s + ri, if necessary, we can suppose, without loss of generality, that $\varepsilon = +1$ so

(13)
$$t + 2(-1)^{(h+1)/2}i = (a + bi)(r + si)^2$$

Equating coefficients we obtain the required expressions for t and $2(-1)^{(k+1)/2}$. Finally, we have

$$egin{aligned} u^2 &= rac{t+2(-1)^{(h+1)/2}i}{a+bi} \cdot rac{t-2(-1)^{(h+1)/2}i}{a-bi} \ &= (r+si)^2(r-si)^2 \ &= (r^2+s^2)^2$$
 ,

so, as u > 0, $r^2 + s^2 > 0$, we obtain

$$u=r^2+s^2.$$

Since u is odd this shows that r and s are of opposite parity.(b) The proof is similar. In this case we obtain

(14)
$$t_1 + (-1)^{(h+1)/2}i = i(a + bi)(r + si)^2$$
.

LEMMA 4. (a) If $t \equiv u \equiv 1 \pmod{2}$ then

$$u \equiv a + 2\left(\frac{2}{t}\right) \pmod{8}$$

(b) If $t \equiv u \equiv 0 \pmod{2}$ then

$$u \equiv a + 2 \pmod{8}$$
.

Proof. (a) As $b \equiv 0 \pmod{2}$ and one of r and s is even, we have, by Lemma 3(a),

(15) $t \equiv a(r^2 - s^2) \pmod{8}$.

In particular, as $a \equiv -1 \pmod{4}$, (15) gives

$$t\equiv s^{\scriptscriptstyle 2}-r^{\scriptscriptstyle 2}\pmod{4}$$
 ,

so that

(16)
$$\begin{cases} t \equiv 1 \pmod{4} \iff r \text{ even, } s \text{ odd }, \\ t \equiv -1 \pmod{4} \iff r \text{ odd, } s \text{ even }. \end{cases}$$

Appealing to Lemma 3(a), (15) and (16), we obtain

$$u - a \equiv (r^2 + s^2) - t(r^2 - s^2) \pmod{8}$$

$$\equiv (1 - t)r^2 + (1 + t)s^2 \pmod{8}$$

$$\equiv \begin{cases} 1 + t \pmod{8} , & \text{if } r \text{ even, } s \text{ odd, } s \\ 1 - t \pmod{8} , & \text{if } s \text{ odd, } s \text{ even, } \end{cases}$$

$$\equiv 2\left(\frac{2}{t}\right) \pmod{8},$$

as required.

(b) As $b \equiv 0 \pmod{2}$ and one of r and s is even, we have by Lemma 3(b),

(17)
$$(-1)^{(k+1)/2} \equiv a(r^2 - s^2) \pmod{8}$$
.

In particular, as $a \equiv -1 \pmod{4}$, (17) gives

$$r^2-s^2\equiv (-1)^{(h-1)/2} \pmod{4}$$
 ,

so that

(18)
$$\begin{cases} h \equiv 1 \pmod{4} \iff r \text{ odd, } s \text{ even,} \\ h \equiv 3 \pmod{4} \iff r \text{ even, } s \text{ odd.} \end{cases}$$

Appealing to Lemma 3(b), (17) and (18) we obtain

$$u_1 - a \equiv (r^2 + s^2) - (-1)^{(h+1)/2}(r^2 - s^2) \pmod{8}$$

$$\equiv (1 + (-1)^{(h-1)/2})r^2 + (1 + (-1)^{(h+1)/2})s^2 \pmod{8}$$

$$\equiv 2 \pmod{8},$$

as required.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. (a) As r + s is odd, we have, by Lemma 3(a),

(19)
$$2rs = (r+s)^2 - (r^2 + s^2) \equiv 1 - u \pmod{8}$$
.

Hence, by Lemma 3(a), (15) and (19), we have

$$2(-1)^{(h+1)/2} \equiv a(1-u) + abt \pmod{8}$$
,

so, recalling $a \equiv -1 \pmod{4}$, $b \equiv 2 \pmod{4}$, $t \equiv u \equiv 1 \pmod{2}$,

$$\begin{split} h &\equiv 2 + (-1)^{(h+1)/2} \pmod{4} \\ &\equiv 2 + a\left(\frac{1-u}{2}\right) + a\left(\frac{b}{2}\right)t \pmod{4} \\ &\equiv 2 + \left(\frac{u-1}{2}\right) - \frac{b}{2}t \pmod{4} \\ &\equiv 2 + \left(\frac{u-1}{2}\right) + \left(\frac{b}{2} - t - 1\right) \pmod{4} \\ &\equiv \frac{1}{2}(-2t + u + b + 1) \pmod{4} \text{,} \end{split}$$

as required.

(b) As r + s is odd, we have, by Lemma 3(b),

(20)
$$2rs = (r+s)^2 - (r^2 + s^2) \equiv 1 - u_1 \pmod{8}$$
.

From Lemma 3(b), (17) and (20), we have

$$t_{\scriptscriptstyle \rm I} \equiv -a(1-u_{\scriptscriptstyle \rm I})-ab(-1)^{_{(k+1)/2}} \pmod{8}$$
 ,

so (as $a \equiv -1 \pmod{4}$)

$$\frac{t_1}{2} \equiv \left(\frac{1-u_1}{2}\right) + \left(\frac{b}{2}\right)(-1)^{(h+1)/2} \pmod{4} .$$

As $b \equiv 2 \pmod{4}$, multiplying both sides by $b/2 \equiv 1 \pmod{2}$, we obtain

$$\frac{b}{2} \cdot \frac{t_1}{2} \equiv \frac{b}{2} \cdot \left(\frac{1-u_1}{2}\right) + (-1)^{(h+1)/2} \pmod{4}$$
,

giving

$$\begin{split} h &\equiv 2 + (-1)^{(k+1)/2} \pmod{4} \\ &\equiv 2 + \frac{b}{2} \Big(\frac{t_1 + u_1 - 1}{2} \Big) \pmod{4} \\ &\equiv 2 + \Big(\frac{t_1}{2} - 1 \Big) + \Big(\frac{u_1 - 1}{2} \Big) + \frac{b}{2} \pmod{4} \\ &\equiv \frac{1}{2} (t_1 + u_1 + b + 1) \pmod{4} , \end{split}$$

as required.

Using Lemma 4 in conjunction with Theorem 1, we obtain

COROLLARY 1. (i) If $t \equiv 1$ or 3 (mod 8) or $t_1 \equiv 6 \pmod{8}$ then

$$h(p) \equiv \frac{1}{2}(a + b + 1) \pmod{4}$$
.

(ii) If $t \equiv 5 \text{ or } 7 \pmod{8}$ or $t_1 \equiv 2 \pmod{8}$ then

$$h(p) \equiv \frac{1}{2}(a + b - 3) \pmod{4}$$
.

Reformulating Theorem 1, we obtain

COROLLARY 2. (a) If $t \equiv u \equiv 1 \pmod{2}$ then

(b) If $t \equiv u \equiv 0 \pmod{2}$ then

Now Gauss [5] has shown that h(-p) (the class number of the imaginary quadratic field $Q(\sqrt{-p})$, see also [1: p. 828] satisfies.

LEMMA 5. $h(-p) \equiv a + b + 1 \pmod{8}$.

Putting together Corollary 1 and Lemma 5 we obtain

COROLLARY 3. (i) If $t \equiv 1$ or 3 (mod 8) or $t_1 \equiv 6 \pmod{8}$ then $h(-p) \equiv 2h(p) \pmod{8}$. THE CLASS NUMBER OF $Q(\sqrt{p})$ MODULO 4, FOR $p=5 \pmod{8}$ A PRIME 247

(ii) If
$$t \equiv 5$$
 or 7 (mod 8) or $t_1 \equiv 2 \pmod{8}$ then

$$h(-p) \equiv 2h(p) + 4 \pmod{8}$$

The result corresponding to Corollary 3 for primes $p \equiv 3 \pmod{4}$ has been given by the author in [4].

Finally we show that there does not exist a result analogous to Theorem 1 for primes $p \equiv 1 \pmod{8}$. It is easily checked that the above arguments fail to yield such a result in this case, as we do not know the exact power of 2 dividing b in the representation $p = a^2 + b^2$, a odd, b even. We prove

THEOREM 2. Let $p \equiv 1 \pmod{8}$ be a prime. We define unique integers a and b by

$$p=a^{\scriptscriptstyle 2}+b^{\scriptscriptstyle 2}$$
 , $a\equiv -1 \pmod{4}$, $b\equiv -\Bigl(rac{p-1}{2}\Bigr)! \ a \pmod{p}$,

so that

$$b\equiv 0 \pmod{4}.$$

The fundamental unit (>1) of the real quadratic field $Q(\sqrt{p})$ is of the form

$$\mathfrak{s}_p = t_1 + u_1 \sqrt{p}$$
 ,

where t_1 and u_1 are positive integers such that

$$t_1^2 - pu_1^2 = -1$$
, $t_1 \equiv 0 \pmod{4}$, $u_1 \equiv 1 \pmod{4}$.

Analogous to Lemma 4(b) we have

$$u_1 \equiv a + 2 \pmod{8}.$$

Then there do NOT exist integers l_1, l_2, l_3, l_4 independent of p, such that

(22)
$$h(p) \equiv \frac{1}{2}(l_1a + l_2b + l_3t_1 + l_4) \pmod{4}.$$

(Note: We remark that it is unnecessary to include multiples of either p or u_1 inside the parentheses on the right hand side of (22) since $p \equiv 1 \pmod{8}$ and u_1 satisfies (21).)

Proof. Suppose that a congruence of the form holds. Taking p = 97, so that $t_1 = 5604$, $u_1 = 569$, a = -9, b = +4, h = 1; and p = 257, so that $t_1 = 16$, $u_1 = 1$, a = -1, b = +16, h = 3; we must have

(23)
$$\begin{cases} -9l_1 + 4l_2 + 5604l_3 + l_4 \equiv 2 \pmod{8} , \\ -l_1 + 16l_2 + 16l_3 + l_4 \equiv 6 \pmod{8} . \end{cases}$$

Subtracting the two congruences in (23) we obtain

 $8l_1 + 12l_2 - 5588l_3 \equiv 4 \pmod{8}$,

that is

$$4l_2 + 4l_3 \equiv 4 \pmod{8},$$

or

(24)
$$l_2 + l_3 \equiv 1 \pmod{2}$$
.

Next taking p = 41, so that $t_1 = 32$, $u_1 = 5$, a = -5, b = +4, h = 1; and p = 73, so that $t_1 = 1068$, $u_1 = 125$, a = 3, b = -8, h = 1; we obtain

(25)
$$\begin{cases} -5l_1 + 4l_2 + 32l_3 + l_4 \equiv 2 \pmod{8}, \\ 3l_1 + 8l_2 + 1068l_3 + l_4 \equiv 2 \pmod{8}. \end{cases}$$

Subtracting the congruences in (25) we get

 $8l_1 - 12l_2 + 1036l_3 \equiv 0 \pmod{8}$

that is

 $4l_2 + 4l_3 \equiv 0 \pmod{8}$,

or

(26)
$$l_2 + l_3 \equiv 0 \pmod{2}$$
.

(24) and (26) provide the required contradiction.

References

1. Philippe Barkan, Une propriété de congruence de la longueur de la période d'un développement en fraction continue, C. R. Acad. Sci. Paris Sér. A, **281** (1975), 825-828.

2. Ezra Brown, Class numbers of real quadratic number fields, Trans. Amer. Math. Soc., 190 (1974), 99-107.

3. S. Chowla, On the class number of real quadratic fields, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 878.

4. Kenneth S. Williams, The class number of $Q(\sqrt{-p})$ modulo 4, for $p \equiv 3 \pmod{4}$ a prime, Pacific J. Math., 83 (1979), 565-570.

5. Carl Friedrich Gauss, Werke, Zweiter Band, Koniglichen Gesellschaft der Wissenschafter, Göttingen (1876), 516-518.

Received May 1, 1979. Research supported by Grant No. A-7233 of the Natural Sciences and Engineering Research Council of Canada.

Carleton University Ottawa, Ontario, Canada