THE CLASS NUMBER OF $Q(\sqrt{p})$ MODULO 4, FOR $p \equiv 5$ (MOD 8) A PRIME

Kenneth S. Williams

Abstract

Let $p \equiv 5(\bmod 8)$ be a prime. Let $h(p)$ denote the class number of the real quadratic field $Q(\sqrt{p})$. It is well-known that $h(p) \equiv 1(\bmod 2)$. In this paper the residue of $h(p)$ modulo 4 is determined.

Let $p \equiv 5(\bmod 8)$ be a prime. Let $h=h(p)$ denote the class number of the real quadratic field $Q(\sqrt{p})$. It is well-known (see for example [2; §3] that

$$
\begin{equation*}
h=h(p) \equiv 1 \quad(\bmod 2) \tag{1}
\end{equation*}
$$

In this paper we determine $h(p)$ modulo 4.
The fundamental unit $\varepsilon_{p}(>1)$ of $Q(\sqrt{p})$ can be written

$$
\begin{equation*}
\varepsilon_{p}=\frac{1}{2}(t+u \sqrt{p}), \tag{2}
\end{equation*}
$$

where t and u are positive integers satisfying

$$
\begin{equation*}
t \equiv u \quad(\bmod 2) \tag{3}
\end{equation*}
$$

The norm of ε_{p} is -1 so

$$
\begin{equation*}
t^{2}-p u^{2}=-4 \tag{4}
\end{equation*}
$$

If $t \equiv u \equiv 1(\bmod 2)$ then we have (using (4))

$$
\left(\frac{-1}{u}\right)=\left(\frac{-4}{u}\right)=\left(\frac{t^{2}-p u^{2}}{u}\right)=\left(\frac{t^{2}}{u}\right)=+1
$$

so

$$
\begin{equation*}
u \equiv 1 \quad(\bmod 4) \tag{5}
\end{equation*}
$$

If $t \equiv u \equiv 0(\bmod 2)$, we define positive integers t_{1} and u_{1} by $t=2 t_{1}$, $u=2 u_{1}$. Then, from (4), we have

$$
t_{1}^{2}=p u_{1}^{2}-1 \equiv 5 u_{1}^{2}-1 \equiv 7,4 \text { or } 3(\bmod 8)
$$

according as

$$
u_{1}^{2} \equiv 0, \quad 1 \text { or } 4(\bmod 8)
$$

Clearly we must have $t_{1}^{2} \equiv 4(\bmod 8)$, so that

$$
\begin{equation*}
t_{1} \equiv 2 \quad(\bmod 4), \quad u_{1} \equiv 1 \quad(\bmod 2) \tag{6}
\end{equation*}
$$

Further, we have

$$
\left(\frac{-1}{u_{1}}\right)=\left(\frac{t_{1}^{2}-p u_{1}^{2}}{u_{1}}\right)=\left(\frac{t_{1}^{2}}{u_{1}}\right)=+1
$$

so

$$
\begin{equation*}
u_{1} \equiv 1 \quad(\bmod 4) \tag{7}
\end{equation*}
$$

Next we define unique integers a and b by

$$
\begin{equation*}
p=a^{2}+b^{2}, \quad a \equiv-1(\bmod 4), \quad b \equiv-\left(\frac{p-1}{2}\right)!a(\bmod p) \tag{8}
\end{equation*}
$$

and we note that (as $p \equiv 5(\bmod 8), a$ odd)

$$
\begin{equation*}
b \equiv 2 \quad(\bmod 4) \tag{9}
\end{equation*}
$$

We prove
Theorem 1. (a) If $t \equiv u \equiv 1(\bmod 2)$ then

$$
h(p) \equiv \frac{1}{2}(-2 t+u+b+1) \quad(\bmod 4) .
$$

(b) If $t \equiv u \equiv 0(\bmod 2)$ then

$$
h(p) \equiv \frac{1}{2}\left(t_{1}+u_{1}+b+1\right) \quad(\bmod 4)
$$

The proof depends upon a number of lemmas.
Lemma 1.

$$
\left(\frac{p-1}{2}\right)!\equiv(-1)^{(h+1) / 2} \frac{t}{2} \quad(\bmod p)
$$

This is a result of Chowla [3].
Lemma 2. (a) If $t \equiv u \equiv 1(\bmod 2)$ then

$$
t+2(-1)^{(h+1) / 2} i \equiv 0 \quad(\bmod a+b i)
$$

(b) If $t \equiv u \equiv 0(\bmod 2)$ then

$$
t_{1}+(-1)^{(h+1) / 2} i \equiv 0 \quad(\bmod a+b i)
$$

Proof. From (8) and Lemma 1 we obtain

$$
\begin{equation*}
a t+2 b(-1)^{(h+1) / 2} \equiv 0 \quad(\bmod p) \tag{10}
\end{equation*}
$$

Then (4) and (10) give

$$
\begin{aligned}
t\left(2 a(-1)^{(h+1) / 2}-b t\right) & =2\left(a t+2 b(-1)^{(h+1) / 2}\right)(-1)^{(h+1) / 2}-b p u^{2} \\
& \equiv 0 \quad(\bmod p)
\end{aligned}
$$

As $t \not \equiv 0(\bmod p)$, we deduce

$$
\begin{equation*}
2 a(-1)^{(h+1) / 2}-b t \equiv 0 \quad(\bmod p) \tag{11}
\end{equation*}
$$

Using (10) and (11) one easily verifies that $\left(t+2(-1)^{(h+1) / 2} i\right) /(a+b i)$ is a gaussian integer, which completes the proof of (a).

The proof of (b) is similar.
Lemma 3. (a) If $t \equiv u \equiv 1(\bmod 2)$ there are integers r and s of opposite parity such that

$$
\left\{\begin{array}{l}
t=a\left(r^{2}-s^{2}\right)-b(2 r s), \quad u=r^{2}+s^{2} \\
2(-1)^{(h+1) / 2}=a(2 r s)+b\left(r^{2}-s^{2}\right)
\end{array}\right.
$$

(b) If $t \equiv u \equiv 0(\bmod 2)$ there are integers r and s of opposite parity such that

$$
\left\{\begin{array}{l}
t_{1}=-a(2 r s)-b\left(r^{2}-s^{2}\right), \quad u_{1}=r^{2}+s^{2} \\
(-1)^{(h+1) / 2}=a\left(r^{2}-s^{2}\right)-b(2 r s)
\end{array}\right.
$$

Proof. (a) The gaussian integers $\left(t+2(-1)^{(h+1) / 2} i\right) /(a+b i)$ and $\left(t-2(-1)^{(h+1) / 2} i\right) /(a-b i)$ are coprime and their product is u^{2}. Hence there exist integers r and s such that

$$
\begin{equation*}
\frac{t+2(-1)^{(h+1) / 2} i}{a+b i}=\varepsilon(r+s i)^{2} \tag{12}
\end{equation*}
$$

where $\varepsilon= \pm 1, \pm i$. Multiplying both sides of (12) by $a+b i$ and considering the parities of the coefficients of i on both sides of the resulting equation, we see that $\varepsilon= \pm 1$. Replacing $r+s i$ by $-s+r i$, if necessary, we can suppose, without loss of generality, that $\varepsilon=+1$ so

$$
\begin{equation*}
t+2(-1)^{(h+1) / 2} i=(a+b i)(r+s i)^{2} \tag{13}
\end{equation*}
$$

Equating coefficients we obtain the required expressions for t and $2(-1)^{(h+1) / 2}$. Finally, we have

$$
\begin{aligned}
u^{2} & =\frac{t+2(-1)^{(h+1) / 2} i}{a+b i} \cdot \frac{t-2(-1)^{(h+1) / 2} i}{a-b i} \\
& =(r+s i)^{2}(r-s i)^{2} \\
& =\left(r^{2}+s^{2}\right)^{2}
\end{aligned}
$$

so, as $u>0, r^{2}+s^{2}>0$, we obtain

$$
u=r^{2}+s^{2}
$$

Since u is odd this shows that r and s are of opposite parity.
(b) The proof is similar. In this case we obtain

$$
\begin{equation*}
t_{1}+(-1)^{(h+1) / 2} i=i(a+b i)(r+s i)^{2} \tag{14}
\end{equation*}
$$

Lemma 4. (a) If $t \equiv u \equiv 1(\bmod 2)$ then

$$
u \equiv a+2\left(\frac{2}{t}\right) \quad(\bmod 8)
$$

(b) If $t \equiv u \equiv 0(\bmod 2)$ then

$$
u \equiv a+2 \quad(\bmod 8)
$$

Proof. (a) As $b \equiv 0(\bmod 2)$ and one of r and s is even, we have, by Lemma 3(a),

$$
\begin{equation*}
t \equiv a\left(r^{2}-s^{2}\right) \quad(\bmod 8) \tag{15}
\end{equation*}
$$

In particular, as $a \equiv-1(\bmod 4)$, (15) gives

$$
t \equiv s^{2}-r^{2} \quad(\bmod 4)
$$

so that

$$
\left\{\begin{array}{l}
t \equiv 1(\bmod 4) \Longleftrightarrow r \text { even, } s \text { odd } \tag{16}\\
t \equiv-1(\bmod 4) \Longleftrightarrow r \text { odd, } s \text { even }
\end{array}\right.
$$

Appealing to Lemma 3(a), (15) and (16), we obtain

$$
\begin{aligned}
u-a & \equiv\left(r^{2}+s^{2}\right)-t\left(r^{2}-s^{2}\right) \quad(\bmod 8) \\
& \equiv(1-t) r^{2}+(1+t) s^{2} \quad(\bmod 8) \\
& \equiv\left\{\begin{array}{lll}
1+t & (\bmod 8), & \text { if } r \text { even, } s \text { odd } \\
1-t & (\bmod 8), & \text { if } s \text { odd, } s \text { even },
\end{array}\right. \\
& \equiv 2\left(\frac{2}{t}\right) \quad(\bmod 8),
\end{aligned}
$$

as required.
(b) As $b \equiv 0(\bmod 2)$ and one of r and s is even, we have by Lemma 3(b),

$$
\begin{equation*}
(-1)^{(h+1) / 2} \equiv a\left(r^{2}-s^{2}\right) \quad(\bmod 8) \tag{17}
\end{equation*}
$$

In particular, as $a \equiv-1(\bmod 4)$, (17) gives

$$
r^{2}-s^{2} \equiv(-1)^{(h-1) / 2} \quad(\bmod 4)
$$

so that

$$
\left\{\begin{array}{l}
h \equiv 1(\bmod 4) \Longleftrightarrow r \text { odd, } s \text { even }, \tag{18}\\
h \equiv 3(\bmod 4) \Longleftrightarrow r \text { even, } s \text { odd } .
\end{array}\right.
$$

Appealing to Lemma 3(b), (17) and (18) we obtain

$$
\begin{aligned}
u_{1}-a & \equiv\left(r^{2}+s^{2}\right)-(-1)^{(h+1) / 2}\left(r^{2}-s^{2}\right)(\bmod 8) \\
& \equiv\left(1+(-1)^{(h-1) / 2}\right) r^{2}+\left(1+(-1)^{(h+1) / 2}\right) s^{2} \quad(\bmod 8) \\
& \equiv 2 \quad(\bmod 8)
\end{aligned}
$$

as required.
We are now in a position to prove Theorem 1.
Proof of Theorem 1. (a) As $r+s$ is odd, we have, by Lemma 3(a),

$$
\begin{equation*}
2 r s=(r+s)^{2}-\left(r^{2}+s^{2}\right) \equiv 1-u \quad(\bmod 8) . \tag{19}
\end{equation*}
$$

Hence, by Lemma 3(a), (15) and (19), we have

$$
2(-1)^{(h+1) / 2} \equiv a(1-u)+a b t \quad(\bmod 8)
$$

so, recalling $a \equiv-1(\bmod 4), b \equiv 2(\bmod 4), t \equiv u \equiv 1(\bmod 2)$,

$$
\begin{aligned}
h & \equiv 2+(-1)^{(h+1) / 2} \quad(\bmod 4) \\
& \equiv 2+a\left(\frac{1-u}{2}\right)+a\left(\frac{b}{2}\right) t \quad(\bmod 4) \\
& \equiv 2+\left(\frac{u-1}{2}\right)-\frac{b}{2} t \quad(\bmod 4) \\
& \equiv 2+\left(\frac{u-1}{2}\right)+\left(\frac{b}{2}-t-1\right) \quad(\bmod 4) \\
& \equiv \frac{1}{2}(-2 t+u+b+1) \quad(\bmod 4),
\end{aligned}
$$

as required.
(b) As $r+s$ is odd, we have, by Lemma 3(b),

$$
\begin{equation*}
2 r s=(r+s)^{2}-\left(r^{2}+s^{2}\right) \equiv 1-u_{1} \quad(\bmod 8) \tag{20}
\end{equation*}
$$

From Lemma 3(b), (17) and (20), we have

$$
t_{1} \equiv-a\left(1-u_{1}\right)-a b(-1)^{(h+1) / 2}(\bmod 8)
$$

so $($ as $a \equiv-1(\bmod 4))$

$$
\frac{t_{1}}{2} \equiv\left(\frac{1-u_{1}}{2}\right)+\left(\frac{b}{2}\right)(-1)^{(h+1) / 2} \quad(\bmod 4)
$$

As $b \equiv 2(\bmod 4)$, multiplying both sides by $b / 2 \equiv 1(\bmod 2)$, we obtain

$$
\frac{b}{2} \cdot \frac{t_{1}}{2} \equiv \frac{b}{2} \cdot\left(\frac{1-u_{1}}{2}\right)+(-1)^{\left(h_{+1}\right) / 2}(\bmod 4)
$$

giving

$$
\begin{aligned}
h & \equiv 2+(-1)^{(h+1) / 2} \quad(\bmod 4) \\
& \equiv 2+\frac{b}{2}\left(\frac{t_{1}+u_{1}-1}{2}\right) \quad(\bmod 4) \\
& \equiv 2+\left(\frac{t_{1}}{2}-1\right)+\left(\frac{u_{1}-1}{2}\right)+\frac{b}{2} \quad(\bmod 4) \\
& \equiv \frac{1}{2}\left(t_{1}+u_{1}+b+1\right) \quad(\bmod 4)
\end{aligned}
$$

as required.
Using Lemma 4 in conjunction with Theorem 1, we obtain
Corollary 1. (i) If $t \equiv 1$ or $3(\bmod 8)$ or $t_{1} \equiv 6(\bmod 8)$ then

$$
h(p) \equiv \frac{1}{2}(a+b+1) \quad(\bmod 4)
$$

(ii) If $t \equiv 5$ or $7(\bmod 8)$ or $t_{1} \equiv 2(\bmod 8)$ then

$$
h(p) \equiv \frac{1}{2}(a+b-3) \quad(\bmod 4)
$$

Reformulating Theorem 1, we obtain
Corollary 2. (a) If $t \equiv u \equiv 1(\bmod 2)$ then

$$
h(p) \equiv\left\{\begin{aligned}
&-t+\frac{1}{2}(u+3)(\bmod 4), \\
& \text { if } b \equiv 2(\bmod 8) \\
& t+\frac{1}{2}(u+3)(\bmod 4),
\end{aligned} \text { if } b \equiv 6(\bmod 8) .\right.
$$

(b) If $t \equiv u \equiv 0(\bmod 2)$ then

$$
h(p) \equiv\left\{\begin{array}{lll}
\frac{1}{2}\left(t_{1}+u_{1}+3\right) & (\bmod 4), & \text { if } b \equiv 2(\bmod 8) \\
\frac{1}{2}\left(t_{1}+u_{1}-1\right) & (\bmod 4), & \text { if } b \equiv 6(\bmod 8)
\end{array}\right.
$$

Now Gauss [5] has shown that $h(-p)$ (the class number of the imaginary quadratic field $Q(\sqrt{-p})$, see also [1: p. 828] satisfies.

Lemma 5. $h(-p) \equiv a+b+1(\bmod 8)$.
Putting together Corollary 1 and Lemma 5 we obtain
Corollary 3. (i) If $t \equiv 1$ or $3(\bmod 8)$ or $t_{1} \equiv 6(\bmod 8)$ then

$$
h(-p) \equiv 2 h(p) \quad(\bmod 8)
$$

(ii) If $t \equiv 5$ or $7(\bmod 8)$ or $t_{1} \equiv 2(\bmod 8)$ then

$$
h(-p) \equiv 2 h(p)+4 \quad(\bmod 8)
$$

The result corresponding to Corollary 3 for primes $p \equiv 3(\bmod 4)$ has been given by the author in [4].

Finally we show that there does not exist a result analogous to Theorem 1 for primes $p \equiv 1(\bmod 8)$. It is easily checked that the above arguments fail to yield such a result in this case, as we do not know the exact power of 2 dividing b in the representation $p=a^{2}+b^{2}, a$ odd, b even. We prove

THEOREM 2. Let $p \equiv 1(\bmod 8)$ be a prime. We define unique integers a and b by

$$
p=a^{2}+b^{2}, \quad a \equiv-1(\bmod 4), b \equiv-\left(\frac{p-1}{2}\right)!a(\bmod p)
$$

so that

$$
b \equiv 0 \quad(\bmod 4)
$$

The fundamental unit (>1) of the real quadratic field $Q(\sqrt{p})$ is of the form

$$
\varepsilon_{p}=t_{1}+u_{1} \sqrt{p}
$$

where t_{1} and u_{1} are positive integers such that

$$
t_{1}^{2}-p u_{1}^{2}=-1, \quad t_{1} \equiv 0(\bmod 4), u_{1} \equiv 1(\bmod 4)
$$

Analogous to Lemma 4(b) we have

$$
\begin{equation*}
u_{1} \equiv a+2 \quad(\bmod 8) \tag{21}
\end{equation*}
$$

Then there do NOT exist integers $l_{1}, l_{2}, l_{3}, l_{4}$ independent of p, such that

$$
\begin{equation*}
h(p) \equiv \frac{1}{2}\left(l_{1} a+l_{2} b+l_{3} t_{1}+l_{4}\right) \quad(\bmod 4) . \tag{22}
\end{equation*}
$$

(Note: We remark that it is unnecessary to include multiples of either p or u_{1} inside the parentheses on the right hand side of (22) since $p \equiv 1(\bmod 8)$ and u_{1} satisfies (21).)

Proof. Suppose that a congruence of the form holds. Taking $p=97$, so that $t_{1}=5604, u_{1}=569, a=-9, b=+4, h=1$; and $p=$ 257 , so that $t_{1}=16, u_{1}=1, a=-1, b=+16, h=3$; we must have

$$
\left\{\begin{array}{l}
-9 l_{1}+4 l_{2}+5604 l_{3}+l_{4} \equiv 2(\bmod 8), \tag{23}\\
-l_{1}+16 l_{2}+16 l_{3}+l_{4} \equiv 6(\bmod 8)
\end{array}\right.
$$

Subtracting the two congruences in (23) we obtain

$$
8 l_{1}+12 l_{2}-5588 l_{3} \equiv 4 \quad(\bmod 8),
$$

that is

$$
4 l_{2}+4 l_{3} \equiv 4 \quad(\bmod 8)
$$

or

$$
\begin{equation*}
l_{2}+l_{3} \equiv 1 \quad(\bmod 2) \tag{24}
\end{equation*}
$$

Next taking $p=41$, so that $t_{1}=32, u_{1}=5, a=-5, b=+4, h=1$; and $p=73$, so that $t_{1}=1068, u_{1}=125, a=3, b=-8, h=1$; we obtain

$$
\begin{cases}-5 l_{1}+4 l_{2}+32 l_{3}+l_{4} \equiv 2 & (\bmod 8), \tag{25}\\ 3 l_{1}+8 l_{2}+1068 l_{3}+l_{4} \equiv 2 & (\bmod 8)\end{cases}
$$

Subtracting the congruences in (25) we get

$$
8 l_{1}-12 l_{2}+1036 l_{3} \equiv 0 \quad(\bmod 8)
$$

that is

$$
4 l_{2}+4 l_{3} \equiv 0 \quad(\bmod 8)
$$

or

$$
\begin{equation*}
l_{2}+l_{3} \equiv 0 \quad(\bmod 2) \tag{26}
\end{equation*}
$$

(24) and (26) provide the required contradiction.

References

1. Philippe Barkan, Une propriété de congruence de la longueur de la période d'un développement en fraction continue, C. R. Acad. Sci. Paris Sér. A, 281 (1975), 825-828.
2. Ezra Brown, Class numbers of real quadratic number fields, Trans. Amer. Math. Soc., 190 (1974), 99-107.
3. S. Chowla, On the class number of real quadratic fields, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 878.
4. Kenneth S. Williams, The class number of $Q(\sqrt{-p})$ modulo 4 , for $p \equiv 3(\bmod 4) a$ prime, Pacific J. Math., 83 (1979), 565-570.
5. Carl Friedrich Gauss, Werke, Zweiter Band, Koniglichen Gesellschaft der Wissenschafter, Göttingen (1876), 516-518.

Received May 1, 1979. Research supported by Grant No. A-7233 of the Natural Sciences and Engineering Research Council of Canada.

[^0]
[^0]: Carleton University
 Ottawa, Ontario, Canada

