On the class number of $Q(\sqrt{-p})$ modulo 16 , for $p \equiv 1(\bmod 8)$ a prime

by

Kenneth S. Williams* (Ottawa, Ontario)

1. Introduction. Throughout this paper p denotes a prime congruent to 1 modulo 8 , and we set $p=8 l+1$. For such primes, the class number $h(-p)$ of the imaginary quadratic field $Q(\sqrt{-p})$ satisfies

$$
\begin{equation*}
h(-p) \equiv 0(\bmod 4) \tag{1.1}
\end{equation*}
$$

see for example [1], p. 413, and the class number $h(p)$ of the real quadratic field $Q(\sqrt{p})$ satisfies

$$
\begin{equation*}
\iota(p) \equiv 1(\bmod 2), \tag{1.2}
\end{equation*}
$$

see for example [2], p. 100. The fundamental unit $\varepsilon_{p}(>1)$ of the real quadratic field $Q(\sqrt{p})$ has norm -1 and can be written in the form

$$
\begin{equation*}
\varepsilon_{p}=T+U \sqrt{p} \tag{1.3}
\end{equation*}
$$

where T and U are positive integers such that

$$
\begin{equation*}
T \equiv 0(\bmod 4), \quad U \equiv 1(\bmod 4) \tag{1.4}
\end{equation*}
$$

Recently Lehmer ([8], p. 48), Cohn and Cooke ([3], p. 368) and Kaplan. ($[6]$, p. 240) have proved that

$$
\begin{equation*}
h(-p) \equiv T(\bmod 8) \tag{1.5}
\end{equation*}
$$

It is our purpose to determine $h(-p)$ modulo 16.
We prove
Theorem. If $p \equiv 1(\bmod 8)$ is a prime, then

$$
\left\{\begin{array}{lll}
h(-p) \equiv T+(p-1)(\bmod 16), & \text { if } & h(-p) \equiv 0(\bmod 8) \tag{1.6}\\
h(-p) \equiv T+(p-1)+4(h(p)-1)(\bmod 16), & \text { if } & h(-p) \equiv 4(\bmod 8)
\end{array}\right.
$$

* Research supported under Natural Sciences and Enginecring Research Council of Canada Grant No. A-7233.

We set $Q=\exp (2 \pi i / p)$. The cyclotomic polynomial $F(z)$ of index p in the complex variable z is given by

$$
\begin{equation*}
F^{\prime}(z)=\frac{z^{p}-1}{z-1}=\prod_{j=1}^{p-1}\left(z-\varrho^{j}\right)=z^{p-1}+\ldots+z+1 \tag{1.7}
\end{equation*}
$$

We have

$$
\begin{equation*}
F(z)=F_{+}(z) F_{-}(z), \tag{1.8}
\end{equation*}
$$

where $F_{+}(z)$ and $F_{-}(z)$ are polynomials of degree $\frac{1}{2}(p-1)$ given by

$$
\begin{equation*}
\boldsymbol{F}_{+}(z)=\prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=+1}}^{p-1}\left(z-e^{j}\right), \quad F_{-}(z)=\prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=-1}}^{p-1}\left(z-e^{j}\right) . \tag{1.9}
\end{equation*}
$$

The method used to prove the theorem is completely elementary. We sketch the ideas involved. In §§ 2-4 Dirichlet's class number formulae for $h(p)$ and $h(-p)$ are used to evaluate $F_{ \pm}(1)$ (Lemma 1), $F_{ \pm}(-1)$ (Lemma 2) and $F_{ \pm}(i)$ Lemma 3). From these evaluations certain linear congruences and equations are obtained (Corollaries 1, 2, 3) for the coefficients a_{n} and b_{n} of the polynomials $Y(z)=F_{-}(z)+F_{+}(z)$ and $Z(z)$ $=\frac{1}{\sqrt{p}}\left(F_{-}(z)-F_{+}(z)\right)$. In $\S 5$ these congruences and equations are combined to give further congruences (Lemma 4) which are required in §6. In $\S 6$ the quantities $Y(\omega), Z(\omega), Y^{\prime}(\omega), Z^{\prime}(\omega)(\omega=1+i / \sqrt{2})$, are given in terms of the a_{n} and b_{n}, and certain equations derived (Lemmas 5 and 6). Finally in § 7 using Dirichlet's class number formulae for $h(-p)$ and $h(-2 p)$ and an identity of Liouville, $h(-p)$ is expressed in terms of $Y(\pm \omega)$, $Z(\pm \omega), Y^{\prime}(\pm \omega), Z^{\prime}(\pm \omega)$, and the theorem follows by appealing to Lemmas 5 and 6.
2. Evaluation of $F_{+}(1)$ and $F_{-}(1)$. Using Dirichlet's class number formula for $h(p)$, we prove

Lemma 1. If $p \equiv 1(\bmod 8)$ is prime, then

$$
F_{+}(1)=-\sqrt{p}(T-U \sqrt{p})^{h(p)}, \quad F_{-}(1)=\sqrt{p}(T+U / \bar{p})^{h(p)}
$$

Proof. By Dirichlet's class number formula for $h(p)$ (see for example [7], p. 227), we have

$$
\begin{equation*}
\varepsilon_{p}^{2 h(p)}=\prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=-1}}^{p-1} \sin \frac{\pi j}{p} / \prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=+1}}^{p-1} \sin \frac{\pi j}{p} . \tag{2.1}
\end{equation*}
$$

It is well-known (see for example [11], p. 173) that

$$
\begin{equation*}
2^{p-1} \prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=-1}}^{p-1} \sin \frac{\pi}{p} \prod_{\substack{j=1 \\\left(\frac{j}{p}\right)=+1}}^{1} \sin \frac{\pi j}{p}=\prod_{j=1}^{p-1} 2 \sin \frac{\pi j}{p}=p . \tag{2.2}
\end{equation*}
$$

Multiplying (2.1) and (2.2) together we obtain

$$
\begin{equation*}
p \varepsilon_{p}^{2 h(p)}=2^{p-1}\left\{\prod_{j=1}^{p-1} \sin \frac{\pi j}{p}\right\} \tag{2.3}
\end{equation*}
$$

where, here and throughout the rest of the paper, we use a prime (') to indicate that the product or summation variable is restricted to quadratic non-residues $(\bmod p)$. Since $\varepsilon_{p}>1$ and each $\sin (\pi j / p)>0 \quad(j=1, \ldots$ $\ldots, p-1$) we have

$$
\begin{equation*}
1 / \overline{\varepsilon_{p}^{h(p)}}=2^{(p-1) / 2} \prod_{j=1}^{p-1} \sin \frac{\pi j}{p}=\prod_{j=1}^{p-1} 2 \sin \frac{\pi j}{p} \tag{2.4}
\end{equation*}
$$

Now, for $j=1, \ldots, p-1$, we have

$$
2 \sin \frac{\pi j}{p}=i \varrho^{-j / 2}\left(1-\varrho^{j}\right)
$$

so, as

$$
\sum_{j=1}^{p-1} j=p(p-1) / 4
$$

(2.4) gives $F_{\ldots}(1)=\sqrt{p} \varepsilon_{p}^{h(p)}=\sqrt{p}(T+U \sqrt{p})^{h(p)}$ as required.

Finally, as $h(p)=1(\bmod 2)$ and the norm of ε_{p} is -1 , we have

$$
F_{+}(1)=\frac{F(1)}{F_{-}(1)}=\frac{p}{\sqrt{p(T+U \sqrt{p})^{h(p)}}}=-\sqrt{p}(T-U \sqrt{p})^{h(p)}
$$

This completes the proof of Lemma 1.
It is clear from (1.9) that $F_{+}(z)$ and $F_{-}(z)$ are polynomials in z of degree $\frac{1}{2}(p-1)$ with coefficients in the ring of integers of $Q(\sqrt{p})$ (see for example [10], p. 215). Hence we can write

$$
\begin{equation*}
F_{+}(z)=\frac{1}{2}(Y(z)-Z(z) \sqrt{p}), \quad F_{-}(z)=\frac{1}{2}(Y(z)+Z(z) \sqrt{p}) \tag{2.5}
\end{equation*}
$$

where $Y(z)$ and $Z(z)$ are polynomials of degree at most $\frac{1}{2}(p-1)$ with rational integral coefficients. From (2.5) we have

$$
\begin{equation*}
Y(z)=F_{-}(z)+F_{+}(z), \quad Z(z)=\frac{1}{\sqrt{p}}\left(F_{-}^{\prime}(z)-F_{+}(z)\right) . \tag{2.6}
\end{equation*}
$$

It is easily verified from (1.9) that for $z \neq 0$

$$
z^{(p-1) / 2} F_{ \pm}\left(\frac{1}{z}\right)=F_{ \pm}(z)
$$

so that by (2.6) we have

$$
z^{(p-1) / 2} Y\left(\frac{1}{z}\right)=Y(z), \quad z^{(p-1) / 2} Z\left(\frac{1}{z}\right)=Z(z)
$$

Hence the cocfficient of $z^{n}(n=0,1,2, \ldots,(p-5) / 4)$ in $Y(z)(\operatorname{resp} . Z(z))$ is the same as that of $z^{(p-1) / 2-n}$ in $Y(z)$ (resp. $Z(z)$). Moreover, by (2.6) and Lemma $1, Y(1)$ and $Z(1)$ are both even, so the middle cocfficients of $Y(z)$ and $Z(z)$ are both even. Hence we can set

$$
\begin{align*}
& Y(z)=\sum_{n=0}^{2 l} a_{n}\left(z^{n}+z^{4 l-n}\right) \\
& Z(z)=\sum_{n=0}^{2 l} b_{n}\left(z^{n}+z^{4 l-n}\right), \tag{2.7}
\end{align*}
$$

where the a_{n} and b_{n} are integers. It is known (see for example [12], pp. 210-212) that

$$
\begin{aligned}
& a_{0}=2, a_{1}=1, a_{2}=\frac{1}{4}(p+3), \ldots, \\
& b_{0}=0, b_{1}=1, b_{2}=1, \ldots
\end{aligned}
$$

Appealing to Lemma 1 we obtain
Corollary 1. If $p=8 l+1$ is a prime, then
$\sum_{n=0}^{2 l} a_{n} \equiv 1-4 l(\bmod 16), \quad \sum_{n=0}^{2 l} b_{n} \equiv T(\bmod 16), \quad$ if $\quad h(-p)=0(\bmod 8)$,
and

$$
\begin{aligned}
\sum_{n=0}^{2 l} a_{n} \equiv 9-4 l(\bmod 16), \quad \sum_{n=0}^{2 l} b_{n} \equiv h(p) T(\bmod 16) \\
\text { if } \quad h(-p) \equiv \mathbf{4}(\bmod 8)
\end{aligned}
$$

Proof. If $h(-p) \equiv=0(\bmod 8)$, by (1.5) we have $T \equiv 0(\bmod 8)$. Then, as $T^{2}-p U^{2}=-1$ and $U \equiv 1(\bmod 4)$, we have

$$
\begin{equation*}
U \equiv 4 l+1(\bmod 16) . \tag{2.8}
\end{equation*}
$$

Hence, working modulo 16, we have

$$
\begin{array}{rlrl}
\sum_{n=0}^{2 l} a_{n} & =\frac{1}{2} Y(1) & & (\text { by }(2.7)) \\
& =\frac{1}{2}\left(F_{-}(1)+F_{+}(1)\right) & & (\text { by }(2.6)) \\
& =\frac{\sqrt{p}}{2}\left\{(T+U \sqrt{p})^{h(p)} \cdots(T-U \sqrt{p})^{h(p)}\right\} & & (\text { by Lemma } 1) \\
& \equiv U^{h(p)} p^{(h(p)+1) / 2} \quad(\operatorname{as} h(p)=1(\bmod 2), T \equiv 0(\bmod 4)) \\
& =(4 l+1)^{h(p)}(8 l+1)^{(h(p)+1) / 2} & \tag{2.8}\\
& \equiv(4 l+1)(8 l+1)^{h(p)} & \\
& \equiv(4 l+1)(8 l+1) & \\
& \equiv 1-4 l, &
\end{array}
$$

and

$$
\begin{aligned}
\sum_{n=0}^{2 l} b_{n} & =\frac{1}{2} Z(1) & & (\text { by }(2.7)) \\
& =\frac{1}{2 \sqrt{p}}\left(F_{-}(1)-F_{+}(1)\right) & & (\text { by }(2.6)) \\
& =\frac{1}{2}\left((T+U \sqrt{p})^{h(p)}+(T-U \sqrt{p})^{h(p)}\right) & & (\text { by Lemma } 1) \\
& \equiv h(p) T U^{h(p)-1} p^{(h(p)-1) / 2} & & (\text { as } T \equiv 0(\bmod 4)) \\
& \equiv h(p) T(4 l+1)^{h(p)-1}(8 l+1)^{(h(p)-1) / 2} & & (\text { by }(2.8)) \\
& \equiv h(p) T(8 l+1)^{h(p)-1} & & (\text { as } h(p) \equiv 1(\bmod 2)) \\
& \equiv h(p) T & & (\text { as } h(p) \equiv 1(\bmod 2)) \\
& \equiv T & & (\text { as } T \equiv 0(\bmod 8))
\end{aligned}
$$

The case $h(-p)=4(\bmod 8)$ can be treated similarly. In this case we have $T \equiv 4(\bmod 8)$ and $U \equiv 4 l+9(\bmod 16)$.
3. Evaluation of $F_{+}(-1)$ and $F_{-}(-1)$. A simple argument proves Lemma 2. If $p=1(\bmod 8)$ is prime, then

$$
F_{+}(-1)=F_{-}(-1)==1
$$

Proof. From (1.9) we have

$$
F_{-}(1) F_{-}(-1)=\prod_{j=1}^{p-1}\left(-1+\varrho^{2 j}\right)=\prod_{j=1}^{p-1}\left(1-\varrho^{2 j}\right)
$$

As j runs throngh the quadratic non-residues modulo p, so docs $2 j$. Hence
we have

$$
\prod_{j=1}^{p-1}\left(1-\varrho^{2 j}\right)==\prod_{i=1}^{p-1}\left(1-\varrho^{j}\right)=F_{-}(1)
$$

giving

$$
F_{-}(-1)==1,
$$

as $F_{-}(1) \neq 0$. Finally we have

$$
F_{+}(-1)=\frac{F(-1)}{F_{-}(-1)}=1
$$

This completes the proof of Lemma 2.
Appealing to Lemma 2 we obtain
Corollary 2. If $p=8 l+1$ is prime, then

$$
\sum_{n=0}^{2 l}(-1)^{n} a_{n}=1, \quad \sum_{n=0}^{2 l}(-1)^{n} b_{n}=0
$$

Proof. We have

$$
\begin{aligned}
\sum_{n=0}^{2 l}(-1)^{n} a_{n} & =\frac{1}{2} Y(-1) \quad(\text { by }(2.7)) \\
& =\frac{1}{2}\left(F_{-}(-1)+F_{+}(-1)\right) \quad \\
& =1 \quad(\text { by }(2.6)) \\
& \quad(\text { by Lemma 2) }
\end{aligned}
$$

and

$$
\begin{align*}
\sum_{n=0}^{2 l}(-1)^{n} b_{n} & =\frac{1}{2} Z(-1) & & (\text { by }(2.7)) \tag{2.7}\\
& =\frac{1}{2 \sqrt{p}}\left(F_{-}(-1)-F_{+}(-1)\right) \quad & & (\text { by }(2.6)) \\
& =0 \quad & & \text { (by Lemma } 2)
\end{align*}
$$

4. Evaluation of $\boldsymbol{F}_{+}(i)$ and $\boldsymbol{F}_{-}(i)$. Using Dirichlet's class number formula for $h(-p)$, we prove

Lemma 3. If $p \equiv 1(\bmod 8)$ is prime, then

$$
F_{+}(i)=F_{-}(i)=(-1)^{h(-p) / 4} .
$$

Proof. As $p \equiv 1(\bmod 8)$, we have

$$
\begin{equation*}
F_{-}(i)-\prod_{j=1}^{p-1}\left(i-Q^{j}\right)=\prod_{j=1}^{p-1}\left(1+i \underline{Q}^{j}\right) \tag{4.1}
\end{equation*}
$$

so that

$$
\overline{F_{-}(i)}=\prod_{j=1}^{p-1}\left(1-i \varrho^{j}\right)=\prod_{j=1}^{p-1}\left(1-i \varrho^{-j}\right),
$$

that is

$$
\begin{equation*}
\overline{F_{-}(i)}=\prod_{j=1}^{p-1}\left(1-i \varrho^{j}\right) \tag{4.2}
\end{equation*}
$$

since, as j runs through the quadratic non-residues modulo p so does $-j$. Hence, multiplying (4.1) and (4.2) together, we obtain

$$
\left|F_{-}(i)\right|^{2}=F_{-}(i) \overline{F_{-}(i)}=\prod_{j=1}^{p-1}\left(1+\varrho^{2 j}\right)=\prod_{j=1}^{p-1}\left(1+\varrho^{j}\right)
$$

since as j runs through the quadratic non-residues modulo p so does $2 j$. Thus, appealing to Lemma 2, we obtain

$$
\left|F_{-}(i)\right|^{2}=\prod_{j=1}^{p-1}\left(-1-\varrho^{j}\right)=F_{-}(-1)=1
$$

that is

$$
\begin{equation*}
\left|F_{-}(i)\right|=1 \tag{4.3}
\end{equation*}
$$

An easy calculation shows that for $j=1,2, \ldots, p-1$ we have

$$
\begin{equation*}
1+i Q^{\prime}=2 \cos \left(\frac{\pi}{4}+\frac{\pi j}{p}\right) \exp \left\{\left(\frac{\pi}{4}+\frac{\pi j}{p}\right) i\right\} \tag{4.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
F_{-}(i)=2^{(p-1) / 2} \prod_{j=1}^{p-1} \prod^{\prime} \cos \left(\frac{\pi}{4}+\frac{\pi j}{p}\right) \exp \left\{\frac{3}{8}(p-1) \pi i\right\} \tag{4.5}
\end{equation*}
$$

Let M_{p} denote the number of integers j satisfying

$$
\frac{p}{4}<j<p, \quad\left(\frac{j}{p}\right)=-1
$$

As $\cos (\pi / 4+\pi j / p)>0$, for $0<j<p / 4$, and $\cos (\pi / 4+\pi j / p)<0$, for $p / 4$ $<j<p$, we have
(4.6) $\quad \arg \left(F_{-}(i)\right)= \begin{cases}0, & \text { if } M_{p} \equiv 0(\bmod 2), p \equiv 1(\bmod 16), \text { or } \\ & M_{p} \equiv 1(\bmod 2), p \equiv 9(\bmod 16), \\ \pi, & \text { if } M_{p} \equiv 0(\bmod 2), p \equiv 9(\bmod 16), \text { or } \\ & M_{p} \equiv 1(\bmod 2), p \equiv 1(\bmod 16) .\end{cases}$

Now a formula of Dirichlet ([4], p. 152) asserts that

$$
h(-p)=2 \sum_{0<j<p / 4}\left(\frac{j}{p}\right)
$$

so that we have

$$
\begin{equation*}
M_{p}=\frac{3}{8}(p-1)+\frac{h(-p)}{4} \tag{4.7}
\end{equation*}
$$

Putting (4.6) and (4.7) together we obtain

$$
\arg \left(F_{-}(i)\right)=\left\{\begin{array}{lll}
0, & \text { if } & h(-p) \equiv 0(\bmod 8) \tag{4.8}\\
\pi, & \text { if } & h(-p) \equiv 4(\bmod 8)
\end{array}\right.
$$

that is

$$
e^{i \arg \left(f_{-}^{\prime}(i)\right)}=(-1)^{h(-p) / 4},
$$

and hence

$$
F_{-}(i)=\left|F_{-}(i)\right| e^{i \arg _{5}\left(F_{-}(i)\right)}=(-1)^{h(-p) / 4}
$$

and

$$
F_{+}^{\prime}(i)=\frac{F(i)}{F_{-}(i)}=(-1)^{h(-p) / 4}
$$

This completes the proof of Lemma 3.
From Lemma 3 we obtain
Corollary 3. If $p=8 l+1$ is a prime, then

$$
\sum_{n=0}^{l}(-1)^{n} a_{2 n}=(-1)^{h(-p) / 4}, \quad \sum_{n=0}^{l}(-1)^{n} b_{2 n}=0
$$

Proof. We have

$$
\begin{aligned}
\sum_{n=0}^{l}(-1)^{n} a_{2 n} & =\frac{1}{2} Y(i) & & (\text { by }(2.7)) \\
& =\frac{1}{2}\left(F_{-}(i)+F_{+}(i)\right) & & (\text { by }(2.6)) \\
& =(-1)^{n(-p) / 4} & & \text { (by Lemma 3) }
\end{aligned}
$$

and

$$
\begin{align*}
\sum_{n=0}^{l}(-1)^{n} b_{2 n} & =\frac{1}{2} Z(i) & & (\text { by }(2.7)) \tag{2.7}\\
& =\frac{1}{2 \sqrt{p}}\left(F_{-}(i)-F_{+}(i)\right) & & (\text { by }(2.6)) \tag{2.6}\\
& =0 & & \text { (by Lemma } 3) .
\end{align*}
$$

5. An important lemma. By adding and subtracting the results of Corollaries 1, 2 and 3 as appropriate, we obtain a number of congruences which we put together as Lemma 4. This lemma is essential to what follows in § 6 .

Lemma 4. If $p=8 l+1$ is a prime, then

$$
\begin{aligned}
\sum_{n=0}^{l} a_{2 n} & \equiv\left\{\begin{array}{lll}
-2 l+1(\bmod 8), & \text { if } & h(-p) \equiv 0(\bmod 8), \\
-2 l+5(\bmod 8), & \text { if } & h(-p) \equiv 4(\bmod 8),
\end{array}\right. \\
\sum_{n=0}^{l-1} a_{2 n+1} & \equiv\left\{\begin{array}{lll}
-2 l(\bmod 8), & \text { if } & h(-p) \equiv 0(\bmod 8), \\
-2 l+4(\bmod 8), & \text { if } & h(-p) \equiv 4(\bmod 8),
\end{array}\right. \\
\sum_{n=0}^{[l / 2]} a_{4 n} & \equiv\left\{\begin{array}{lll}
-l+1(\bmod 4), & \text { if } & h(-p) \equiv 0(\bmod 8), \\
-l+2(\bmod 4), & \text { if } & h(-p) \equiv 4(\bmod 8),
\end{array}\right. \\
\sum_{n=0}^{[l-1 / 2]} a_{4 n+2} & \equiv\left\{\begin{array}{lll}
-l(\bmod 4), & \text { if } & h(-p) \equiv 0(\bmod 8), \\
-l+3(\bmod 4), & \text { if } & h(-p) \equiv 4(\bmod 8),
\end{array}\right. \\
\sum_{n=0}^{l} b_{2 n} & \equiv \sum_{n=0}^{l-1} b_{2 n+1} \equiv\left\{\begin{array}{lll}
T / 2(\bmod 8), & \text { if } \quad h(-p) \equiv 0(\bmod 8), \\
h(p) T / 2(\bmod 8), & \text { if } & h(-p) \equiv 4(\bmod 8),
\end{array}\right. \\
\sum_{n=0}^{[l / 2]} b_{4 n} & \equiv \sum_{n=0}^{[l-1 / 2]} b_{4 n+2} \equiv\left\{\begin{array}{lll}
T / 4(\bmod 4), & \text { if } & h(-p) \equiv 0(\bmod 8), \\
h(p) T / 4(\bmod 4), & \text { if } & h(-p) \equiv 4(\bmod 8)
\end{array}\right.
\end{aligned}
$$

6. Evaluation of $\bar{Y}(\omega), Z(\omega), Y^{\prime}(\omega), Z^{\prime}(\omega)$. If $p=16 k+1$, so that l $=2 k$, we define

$$
\begin{equation*}
A_{1}=\sum_{m=0}^{k} a_{4 m}(-1)^{m} \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
B_{1}=\frac{1}{2} \sum_{m=0}^{k-1}\left(a_{4 m+1}-a_{4 m+3}\right)(-1)^{m} \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
C_{1}=\sum_{m=0}^{k} b_{4 m}(-1)^{m} \tag{6.3}
\end{equation*}
$$

and, if $p=16 k+9$, so that $l=2 k+1$, we define

$$
\begin{equation*}
A_{9}=\sum_{m=0}^{k} a_{4 m+2}(-1)^{m} \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
B_{9}=\frac{1}{2}\left\{\sum_{m=0}^{k} a_{4 m+1}(-1)^{m}+\sum_{m=0}^{k-1} a_{4 m+3}(-1)^{m}\right\} \tag{6.6}
\end{equation*}
$$

$$
\begin{equation*}
C_{9}=\sum_{m=0}^{k} b_{4 m+2}(-1)^{m} \tag{6.7}
\end{equation*}
$$

$$
\begin{equation*}
D_{9}=\frac{1}{2}\left\{\sum_{m=3}^{k} b_{4 m+1}(-1)^{m}+\sum_{m=0}^{k-1} b_{4 m+3}(-1)^{m}\right\} \tag{6.8}
\end{equation*}
$$

A_{1}, A_{9}, C_{1} and C_{9} are clearly integers. $B_{1}, B_{9}, D_{1}, D_{9}$ are integers by Lemma 4.

Setting $\omega=\exp (2 \pi i / 8)=(1+i) / \sqrt{2} \quad$ (so that $\omega^{2}=i, \quad \omega^{4}=-1$, $\omega^{8}=1, \omega+\omega^{3}=i \sqrt{2}, \omega-\omega^{3}=\sqrt{2}$), a straightforward calculation shows that, for $p \equiv 1(\bmod 16)$, we have

$$
\begin{equation*}
2 A_{1}+2 B_{1} \sqrt{2}=Y(\omega), \quad 2 C_{1}+2 D_{1} \sqrt{2}=Z(\omega) \tag{6.9}
\end{equation*}
$$

and, for $p \equiv 9(\bmod 16)$, we have

$$
\begin{equation*}
2 A_{9} i+2 B_{9} i \sqrt{2}=Y(\omega), \quad 2 C_{9} i+2 D_{9} i \sqrt{2}=Z(\omega) \tag{6.10}
\end{equation*}
$$

Our next lemma makes (6.9) and (6.10) more precise.
Lemma 5. Let $p \equiv 1(\bmod 8)$ be a prime. Then, for $p \equiv 1(\bmod 16)$, we have

$$
\begin{array}{r}
B_{1}=C_{1}=0, \quad A_{1}^{2}-2 p D_{1}^{2}=1, \quad Y(\omega)=2 A_{1}, \quad Z(\omega)=2 D_{1} \sqrt{2} \\
\text { if } \quad h(-p) \equiv 0(\bmod 8) \\
A_{1}=D_{1}=0, \quad 2 B_{1}^{2}-p C_{1}^{2}=1, \quad Y(\omega)=2 B_{1} \sqrt{2}, \quad Z(\omega)=2 C_{1} \\
\text { if } \quad h(-p) \equiv 4(\bmod 8)
\end{array}
$$

and for $p \equiv 9(\bmod 16)$, we have

$$
\begin{array}{r}
B_{9}=C_{9}=0, \quad A_{9}^{2}-2 p D_{9}^{2}=-1, \quad Y(\omega)=2 A_{9} i, \quad Z(\omega)=2 D_{9} i \sqrt{2} \\
\text { if } \quad h(-p) \equiv 0(\bmod 8) \\
A_{9}=D_{9}=0, \quad 2 B_{9}^{2}-p C_{9}^{2}=-1, \quad Y(\omega)=2 B_{9} i \sqrt{2}, \quad Z(\omega)=2 C_{9} i \\
\text { if } \quad h(-p)=4(\bmod 8) .
\end{array}
$$

Proof. From (1.7), (1.8) and (2.5) we have

$$
\begin{equation*}
Y(z)^{2}-p Z(z)^{2}=4 F_{+}(z) F_{-}(z)=4 \frac{\left(z^{p}-1\right)}{(z-1)} \tag{6.11}
\end{equation*}
$$

Taking $z=\omega$ in (6.11) we obtain

$$
\begin{equation*}
Y(\omega)^{2}-p Z(\omega)^{2}=4 \tag{6.12}
\end{equation*}
$$

Using (6.9), (6.10) in (6.12) we obtain, for $p=16 k+1$,

$$
\left\{\begin{array}{l}
A_{1}^{2}+2 B_{1}^{2}-p C_{1}^{2}-2 p D_{1}^{2}=1 \tag{6.13}\\
A_{1} B_{1}-p C_{1} D_{1}=0
\end{array}\right.
$$

and, for $p=16 k+9$,

$$
\left\{\begin{array}{l}
A_{9}^{2}+2 B_{9}^{2}-p C_{9}^{2}-2 p D_{9}^{2}=-1 \tag{6.14}\\
A_{9} B_{9}-p C_{9} D_{9}=0
\end{array}\right.
$$

Now, from (1.9), we have

$$
F_{-}(\omega) F_{-}(-\omega)=F_{-}(i)
$$

Hence, by (2.5), (6.9), (6.10) and Lemma 3, we have, for $p=16 k+1$,

$$
\left\{\begin{array}{l}
A_{1}^{2}-2 B_{1}^{2}+p C_{1}^{2}-2 p D_{1}^{2}=(-1)^{h(-p) / 4} \tag{6.15}\\
A_{1} C_{1}-2 B_{1} D_{1}=0
\end{array}\right.
$$

and, for $p=16 k+9$,

$$
\left\{\begin{array}{l}
A_{9}^{2}-2 B_{9}^{2}+p C_{9}^{2}-2 p D_{9}^{2}=-(-1)^{h(-p) / 4} \tag{6.16}\\
A_{9} C_{9}-2 B_{9} D_{9}=0
\end{array}\right.
$$

The result now follows from (6.13) and (6.15), if $p \equiv 1(\bmod 16)$, and from (6.14) and (6.16), if $p \equiv 9(\bmod 16)$. This completes the proof of Lemma 5.

Next, for $p=16 k+1$, we define

$$
\begin{equation*}
E_{1}=\frac{1}{2} \sum_{m=0}^{k-1}\left(a_{4 m+1}(4 m+1)+a_{4 m+3}(4 m+3-8 k)\right)(-1)^{m} \tag{6.17}
\end{equation*}
$$

$$
\begin{equation*}
F_{1}=\sum_{m=0}^{k-1} a_{4 m+2}(2 m-2 k+1)(-1)^{m} \tag{6.18}
\end{equation*}
$$

19) $\quad a_{1}=\frac{1}{2} \sum_{m=0}^{k-1}\left(a_{4 m+1}(4 m-8 k+1)+a_{4 m+3}(4 m+3)\right)(-1)^{m}$,

$$
\begin{equation*}
H_{1}=k \sum_{m=0}^{k} a_{4 m}(-1)^{m+1} \tag{6.20}
\end{equation*}
$$

The numbers obtained by replacing each a_{n} by b_{n} in (6.17)-(6.20) are denoted by $L_{1}, M_{1}, N_{1}, P_{1}$ respectively (eqns. (6.21)-(6.24)). Clearly F_{1}, H_{1}, M_{1} and P_{1} are integers. L_{1}, G_{1}, L_{1} and N_{1} are integers by Lemma 4. By (6.1), (6.3), (6.20), (6.24) and Lemma 5, we have

$$
\begin{equation*}
H_{1}=-k A_{1}, \quad P_{1}=-k C_{1} \tag{6.25}
\end{equation*}
$$

Moreover, from (6.2), (6.4), (6.17), (6.19), (6.21), (6.23) and Lemma 5 we have

$$
\left\{\begin{array}{l}
E_{1}-G_{1}=4 k \sum_{m=0}^{k-1}\left(a_{4 m+1}-a_{4 m+3}\right)(-1)^{m}=8 k B_{1} \tag{6.26}\\
L_{1}-N_{1}=4 k \sum_{m=0}^{k-1}\left(b_{4 m+1}-b_{4 m+3}\right)(-1)^{m}=8 k D_{1}
\end{array}\right.
$$

so that

$$
\begin{cases}E_{1}=G_{1}, P_{1}=0, & \text { if } \quad h(-p) \equiv 0(\bmod 8) \\ H_{1}=0, L_{1}=N_{1}, & \text { if } \quad h(-p) \equiv 4(\bmod 8)\end{cases}
$$

Also, working modulo 4, we have, from (6.18) and Lemma 4,

$$
\begin{aligned}
F_{1} & =\sum_{m=0}^{k-1} a_{4 m+2}(2 m+1)(-1)^{m}-2 k \sum_{m=0}^{k-1} a_{4 m+2}(-1)^{m} \\
& =\sum_{m=0}^{k-1} a_{4 m+2}+2 k \sum_{m=0}^{k-1} a_{4 m+2}
\end{aligned}
$$

that is
(6.27)(a) $\quad F_{1} \equiv\left\{\begin{array}{lll}2 k(\bmod 4), & \text { if } & h(-p) \equiv 0(\bmod 8), \\ 3(\bmod 4), & \text { if } & h(-p) \equiv 4(\bmod 8) .\end{array}\right.$

Similarly we have
(6.27)(b) $\quad M_{1} \equiv\left\{\begin{array}{lll}T / 4(\bmod 4), & \text { if } & h(-p) \equiv 0(\bmod 8), \\ (2 k+1) h(p) T / 4(\bmod 4), & \text { if } & h(-p) \equiv 4(\bmod 8) .\end{array}\right.$

Next we note that

$$
\begin{aligned}
B_{1}+E_{1} & =\sum_{m=0}^{k-1} a_{4 m+1}(2 m+1)(-1)^{m}+\sum_{m=0}^{k-1} a_{4 m+3}(2 m+1-4 k)(-1)^{m} \\
& \equiv \sum_{m=0}^{k-1} a_{4 m+1}+\sum_{m=0}^{k-1} a_{4 m+3}(\bmod 4) \\
& \equiv \sum_{m=0}^{2 k-1} a_{2 m+1}(\bmod 4)
\end{aligned}
$$

that is, by Lemma 4,

$$
B_{1}+E_{1} \equiv 0(\bmod 4)
$$

and so, in particular, we have by Lemma 5

$$
E_{1} \equiv 0(\bmod 4), \quad \text { if } \quad h(-p) \equiv 0(\bmod 8)
$$

Similarly we obtain

$$
D_{1}+L_{1} \equiv T / 2(\bmod 4),
$$

so

$$
L_{1} \equiv T / 2 \equiv 2(\bmod 4), \quad \text { if } \quad h(-p) \equiv 4(\bmod 8)
$$

Finally an easy calculation shows that

$$
\left\{\begin{array}{l}
2 E_{1}+4 F_{1} \omega+2 G_{1} \omega^{2}+8 H_{1} \omega^{3}=Y^{\prime}(\omega) \tag{6.28}\\
2 L_{1}+4 M_{1} \omega+2 N_{1} \omega^{2}+8 P_{1} \omega^{3}=Z^{\prime}(\omega)
\end{array}\right.
$$

For $p=16 k+9$, we define
(6.29) $\quad E_{9}=\frac{1}{2}\left\{\sum_{m=0}^{k} a_{4 m+1}(4 m+1)(-1)^{m}+\sum_{m=0}^{k-1} a_{4 m+3}(8 k+1-4 m)(-1)^{m}\right\}$,
(6.30) $\quad F_{9}=(2 k+1) \sum_{m=0}^{k} a_{4 m+2}(-1)^{m}$,
(6.31) $\quad G_{9}=\frac{1}{2}\left\{\sum_{m=0}^{k} a_{4 m+1}(8 k+3-4 m)(-1)^{m}+\sum_{m=0}^{k-1} a_{4 m+3}(4 m+3)(-1)^{m}\right\}$,
(6.32) $\quad H_{9}=\sum_{m=0}^{k} a_{4 m}(2 k-2 m+1)(-1)^{m}$.

The numbers obtained by replacing each a_{n} by b_{n} in (6.29)-(6.32) are denoted by $L_{9}, M_{9}, N_{9}, P_{9}$ respectively (eqns. (6.33)-(6.36)). Clearly \boldsymbol{F}_{9}, H_{9}, M_{9} and P_{9} are integers. E_{9}, G_{9}, L_{9} and N_{9} are integers by Lemma 4. By (6.5), (6.7), (6.30), (6.34) and Lemma 5, we have

$$
\begin{equation*}
F_{9}=(2 k+1) A_{9}, \quad M_{9}=(2 k+1) C_{9} . \tag{6.37}
\end{equation*}
$$

Moroover, from (6.5), (6.7), (6.29), (6.31), (6.33), (6.35) and Lemma 5, we have
(6.38)

$$
\left\{\begin{array}{l}
E_{9}+G_{9}=(4 k+2)\left\{\sum_{m=0}^{k} a_{4 m+1}(-1)^{m}+\sum_{m=0}^{k-1} a_{4 i n+3}(-1)^{m}\right\}=(8 k+4) B_{9} \\
L_{9}+N_{9}=(4 k+2)\left\{\sum_{m=0}^{k} b_{4 m+1}(-1)^{m}+\sum_{m=0}^{k-1} b_{4 m+3}(-1)^{m}\right\}=(8 k+4) D_{9}
\end{array}\right.
$$

so that

$$
\left\{\begin{array}{lll}
E_{9}=-G_{9}, \quad M_{9}=0, & \text { if } & h(-p) \equiv 0(\bmod 8), \\
F_{9}=0, \quad L_{9}=-N_{9}, & \text { if } \quad h(-p) \equiv 4(\bmod 8) .
\end{array}\right.
$$

Also, working modulo 4, we have, as before,
(6.39)(a) $\quad H_{9} \equiv\left\{\begin{array}{lll}2 k(\bmod 4), & \text { if } & h(-p) \equiv 0(\bmod 8), \\ 1(\bmod 4), & \text { if } & h(-p) \equiv 4(\bmod 8),\end{array}\right.$
$(6.39)(\mathrm{b}) \quad P_{9} \equiv\left\{\begin{array}{lll}T / 4(\bmod 4), & \text { if } \quad h(-p) \equiv 0(\bmod 8), \\ (2 k+1) h(p) T / 4(\bmod 4), & \text { if } \quad h(-p) \equiv 4(\bmod 8),\end{array}\right.$ and

$$
\begin{aligned}
B_{9}+E_{9} & \equiv 2(\bmod 4) \\
D_{9}+L_{9} & \equiv T / 2(\bmod 4),
\end{aligned}
$$

so that by Lemma 5 we have

$$
\begin{array}{lll}
E_{9} \equiv 2(\bmod 4), & \text { if } & h(-p) \equiv 0(\bmod 8), \\
L_{9} \equiv T / 2 \equiv 2(\bmod 4), & \text { if } \quad h(-p) \equiv 4(\bmod 8) .
\end{array}
$$

Finally an easy calculation shows that

$$
\left\{\begin{array}{l}
2 E_{9}+4 F_{9} \omega+2 G_{9} \omega^{2}+4 H_{9} \omega^{3}=Y^{\prime}(\omega) \tag{6.40}\\
2 L_{9}+4 M_{9} \omega+2 N_{9} \omega^{2}+4 P_{9} \omega^{3}=Z^{\prime}(\omega)
\end{array}\right.
$$

Differentiating (6.11) and setting $z=\omega$, we obtain

$$
\begin{equation*}
Y(\omega) Y^{\prime}(\omega)-p Z(\omega) Z^{\prime}(\omega)=-8 l\left(1+\omega+\omega^{2}+\omega^{3}\right) \tag{6.41}
\end{equation*}
$$

Using (6.25), (6.26), (6.28), (6.37), (6.38), (6.40) and appealing to Lemma $\tilde{5}_{\text {: }}$ (6.41) gives

Lemma 6. Let $p=8 l+1$ be a prime. Then

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{1} E_{1}-2 p D_{1} M_{1}=-4 k, \quad \text { if } p \equiv 1(\bmod 16), h(-p) \equiv 0(\bmod 8) \\
A_{1} E_{1}-p D_{1} N_{1}=2 k\left(A_{1}^{2}-2\right),
\end{array}\right. \\
& \left\{\begin{array}{l}
2 B_{1} F_{1}-p C_{1} L_{1}=-4 k, \quad \text { if } \quad p \equiv 1(\bmod 16), h(-p) \equiv 4(\bmod 8), \\
B_{1} E_{1}-p C_{1} M_{1}=2 k p C_{1}^{2},
\end{array}\right. \\
& \left\{\begin{array}{l}
A_{9} E_{9}+2 p D_{9} P_{9}=-4 k-2, \text { if } p \equiv 9(\bmod 16), h(-p) \equiv 0(\bmod 8), \\
A_{9} H_{9}+p D_{9} L_{9}=(2 k+1)\left(A_{9}^{2}+2\right),
\end{array}\right. \\
& \left\{\begin{array}{l}
-2 B_{9} H_{9}+p C_{9} N_{9}=-4 k-2, \\
B_{9} E_{9}+p C_{9} P_{9}=(2 k+1)\left(p C_{9}^{2}-2\right), \quad \text { if } \quad p \equiv 9(\bmod 16),
\end{array}\right.
\end{aligned}
$$

7. Proof of theorem. For $p=8 l+1$ a prime, we define for j $=0,1, \ldots, 7$

$$
\begin{equation*}
S_{j}=\sum_{j p / 8<s<(j+1) p / 8}\left(\frac{s}{p}\right)=\sum_{s=j l+1}^{(j+1) l}\left(\frac{s}{p}\right) \tag{7.1}
\end{equation*}
$$

so

$$
\begin{equation*}
\sum_{j=0}^{7} S_{j}=\sum_{s=1}^{p-1}\left(\frac{s}{p}\right)=0 \tag{7.2}
\end{equation*}
$$

Setting $s=j l+t(t=1, \ldots, l)$ in (7.1) we have, as $(2 / p)=1$,

$$
S_{j}=\sum_{t=1}^{l}\left(\frac{j l+t}{p}\right)=\sum_{t=1}^{l}\left(\frac{8 j l+8 t}{p}\right)=\sum_{i=1}^{l}\left(\frac{j(p-1)+8 t}{p}\right)
$$

that is

$$
\begin{equation*}
S_{j}=\sum_{t=1}^{l}\left(\frac{8 t-j}{p}\right) \tag{7.3}
\end{equation*}
$$

Mapping $t \rightarrow l+1-t$ in the right-hand side of (7.3), we olotain (as ($-1 / p$) $=+1$)

$$
\begin{equation*}
S_{j}=S_{7-j} \quad(j=0,1, \ldots, 7) \tag{7.4}
\end{equation*}
$$

From [4], p. 152, and [5], p. 120, we have

$$
\begin{equation*}
h(-p)=2\left(S_{0}+S_{1}\right), \quad h(-2 p)=2\left(S_{0}-S_{3}\right), \quad S_{1}=S_{3} \tag{7.5}
\end{equation*}
$$

Putting (7.2), (7.4) and (7.5) together, we obtain

$$
\left\{\begin{array}{l}
S_{0}=S_{7}=\frac{1}{4}(h(-p)+h(-2 p)) \tag{7.6}\\
S_{1}=S_{3}=S_{4}=S_{6}=\frac{1}{4}(h(-p)-h(-2 p)) \\
S_{2}=S_{5}=\frac{1}{4}(-3 h(-p)+h(-2 p))
\end{array}\right.
$$

Next, for any complex number z, we defino

$$
\begin{equation*}
K(z)=\sum_{s=1}^{p-1}\left(\frac{s}{p}\right) z^{p-1-s} \tag{7.7}
\end{equation*}
$$

Taking $z=\omega_{r}(r=0,1, \ldots, 7)$ in (7.7), and using (7.3), we obtain

$$
\begin{equation*}
\Pi\left(\omega^{r}\right)=\sum_{j=0}^{\bar{T}} \omega^{r j} S_{j} \tag{7.8}
\end{equation*}
$$

Ohoosing $r=-1,5$ in (7.8), and appealing to (7.6), we get

$$
\left\{\begin{array}{c}
K(\omega)=h(-p)\left(\omega-\omega^{2}\right)+\frac{h(-2 p)}{2}\left(1-\omega+\omega^{2}-\omega^{3}\right), \tag{7.9}\\
K(-\omega)=h(-p)\left(-\omega-\omega^{2}\right)+\frac{h(-2 p)}{2}\left(1+\omega+\omega^{2}+\omega^{3}\right),
\end{array}\right.
$$

from which we obtain

$$
\begin{equation*}
4 h(-p)=K(\omega)\left(1+\omega+\omega^{2}-\omega^{3}\right)+K(-\omega)\left(1-\omega+\omega^{2}+\omega^{3}\right) \tag{7.10}
\end{equation*}
$$

Now Liouville ([9], p. 415) has shown that

$$
\begin{equation*}
\frac{2}{1-z} \Pi(z)=Y(z) Z^{\prime}(z)-Y^{\prime}(z) Z(z) \tag{7.11}
\end{equation*}
$$

Taking $z= \pm \omega$ in (7.11) we obtain

$$
\left\{\begin{align*}
2 K(\omega) & =(1-\omega)\left\{Y(\omega) Z^{\prime}(\omega)-Y^{\prime}(\omega) Z(\omega)\right\} \tag{7.12}\\
2 K(-\omega) & =(1+\omega)\left\{Y(-\omega) Z^{\prime}(-\omega)-Y^{\prime}(-\omega) Z(-\omega)\right\}
\end{align*}\right.
$$

Substituting (7.12) into (7.10) we obtain

$$
\begin{align*}
4 h(-p)=\omega^{3}\left\{Y^{\prime}(\omega) Z(\omega)-Y(\omega) Z^{\prime}(\omega)\right. & +Y(-\omega) Z^{\prime}(-\omega)- \tag{7.13}\\
& \left.-Y^{\prime}(-\omega) Z(-\omega)\right\}
\end{align*}
$$

Now suppose that $h(-p) \equiv 0(\bmod 8)$. By (6.25), (6.26), (6.28), (6.37), (6.38), (6.40), (7.13) and Lemma, 5, we have

$$
h(-p)= \begin{cases}4 A_{1} M_{1}-4 D_{1} E_{1}, & \text { if } \quad p \equiv 1(\bmod 16), \\ -4 A_{9} P_{9}-4 D_{9} E_{9}, & \text { if } \quad p \equiv 9(\bmod 16)\end{cases}
$$

Hence, as $E_{1} \equiv 0(\bmod 4), E_{9} \equiv 2(\bmod 4), D_{9} \equiv 1(\bmod 2)$, we have

$$
h(-p) \equiv \begin{cases}4 A_{1} M_{1}(\bmod 16), & \text { if } \quad p \equiv 1(\bmod 16) \\ -4 A_{9} P_{9}+8(\bmod 16), & \text { if } \quad p \equiv 9(\bmod 16)\end{cases}
$$

Appealing to (6.27)(b) and (6.39)(b), we obtain

$$
h(-p) \equiv \begin{cases}A_{1} T(\bmod 16), & \text { if } \quad p \equiv 1(\bmod 16), \\ -A_{9} T+8(\bmod 16), & \text { if } \quad p \equiv 9(\bmod 16) .\end{cases}
$$

As $T \equiv 0(\bmod 8)$ and $A_{1} \equiv A_{9} \equiv 1(\bmod 2)$, we have

$$
h(-p) \equiv \begin{cases}T(\bmod 16), & \text { if } \quad p \equiv 1(\bmod 16), \\ T+8(\bmod 16), & \text { if } \quad p \equiv 9(\bmod 16),\end{cases}
$$

that is

$$
h(-p) \equiv T+p-1(\bmod 16)
$$

as required.
Finally we suppose that $h(-p) \equiv 4(\bmod 8)$. As above we have

$$
h(-p)=\left\{\begin{array}{lll}
4 B_{1} L_{1}-4 C_{1} F_{1}, & \text { if } & p \equiv 1(\bmod 16) \\
4 B_{9} L_{9}+4 C_{9} H_{9}, & \text { if } & p:=9(\bmod 16)
\end{array}\right.
$$

Hence, as $B_{1} \equiv C_{1} \equiv 1(\bmod 2), \quad L_{1} \equiv 2(\bmod 4), \quad F_{1} \equiv 3(\bmod 4)$, $B_{9} \equiv 0(\bmod 2), \quad C_{9} \equiv 1(\bmod 2), \quad L_{9}=2(\bmod 4), \quad H_{9} \equiv 1(\bmod 4), \quad$ we have

$$
h(-p) \equiv\left\{\begin{array}{lll}
8+4 C_{1}(\bmod 16), & \text { if } & p \equiv=1(\bmod 16) \\
4 C_{9}(\bmod 16), & \text { if } & p \equiv 9(\bmod 16)
\end{array}\right.
$$

Now if $p \equiv 1(\bmod 16)$ we have from Lemma 6

$$
p C_{1} M_{1}=B_{1} E_{1}-2 k p C_{1}^{2}
$$

Multiplying by $M_{1} \equiv 1(\bmod 2)$, we get

$$
\begin{aligned}
C_{1} & \equiv B_{1} E_{1} M_{1}-2 k M_{1}(\bmod 4) \\
& \equiv-B_{1}^{2} M_{1}-2 k M_{1}(\bmod 4) \\
& \equiv-(1+2 k) M_{1}(\bmod 4) \\
& \equiv-h(p) T / 4(\bmod 4),
\end{aligned}
$$

so that

$$
h(-p) \equiv 8-h(p) T \equiv T+(p-1)+4(h(p)-1)(\bmod 16)
$$

On the other hand if $p \equiv 9(\bmod 16)$ we have from Lemma 6

$$
p C_{9} P_{9}=(2 k+1)\left(p C_{9}^{2}-2\right)-B_{9} E_{9} .
$$

Multiplying by $P_{9} \equiv 1(\bmod 2)$, we get

$$
\begin{aligned}
C_{9} & : \equiv-(2 k+1) P_{9}-B_{9} E_{9} P_{9}(\bmod 4) \\
& \equiv-(2 k+1) P_{9}-B_{9}\left(2-B_{9}\right) P_{9}(\bmod 4) \\
& \equiv-(2 k+1) P_{9}(\bmod 4) \\
& \equiv-h(p) T / 4(\bmod 4)
\end{aligned}
$$

so that

$$
h(-p) \equiv 8-h(p) T \equiv T+(p-1)+4(h(p)-1)(\bmod 16)
$$

as required.
This completes the proof of the theorem.
The author would like to acknowledge the help of Mr. Lee-Jeff Bell who did some numerical calculations in connection with the preparation of this paper. The author would also like to thank an unknown referee who pointed out that the author's original proof of Lemma 3 was incomplete.

The ideas of this paper have been extended to determine $h(-2 p)$ $(\bmod 16)$, where $p=1(\bmod 8)$ is prime.

References

[1] Ezra Brown, The power of 2 dividing the class-number of a binary quadratic discriminant, J. Number Theory 5 (1973), pp. 413-419.
[2] - Class numbers of real quadratic number fields, Trans. Amer. Math. Soc. 190 (1974), pp. 99-107.
[3] Harvey Cohn and George Cooke, Parametric form of an eight class field, Acta Arith. 30 (1976), pp. 367-377.
[4] P. G.L. Dirichlet, Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres, J. Reine Angew. Math. 21 (1840), pp. 134-155.
[5] Wells Johnsou and Kevin J. Mitchell, Symmetries for sums of the Legendre symbol, Pacific J. Math. 69 (1977), pp. 117-124.
[6] Pierre Kaplan, Unités de norme -1 de $Q(\sqrt{p})$ et corps de classes de degré 8 de $Q(\sqrt{-p})$ où p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), pp. 239-243.
[7] Edmund Landau, Elementary number theory, Chelsea Publishing Company, New York, N. Y., 1958.
[8] Emma Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), pp. 42-48.
[9] J. Liouville, Un point de la théorie des équations binômes, J. Math. Pures Appl. 2 (1857), pp. 413-423.
[10] G. B. Mathews, Theory of numbers, Chelsea Publishing Company, New York, N. Y., 1961.
[11] Trygve Nagell, Introduction to number theory, Almqvist \& Wiksell, Stockholm 1951.
[12] G. K. C. von Staudt, Ueber die Functionen Y und Z, welche der $\frac{4\left(x^{p}-1\right)}{x-1}=Y^{2} \mp$ $\mp p Z^{2}$ Genüge leisten, wo p eine Primzahl der Form $4 k \pm 1$ ist, J. Reine Angew. Math. 67 (1867), pp. 205-217.
depantment of mathematics and statistics
) ARLETON UNIVERSITY
Ottawa, Ontario, Canada KIS 5B6

Received on 27.12.1978
and in revised form on 20.3.1979
(1123)

