## SOME NEW RESIDUACITY CRITERIA

Richard H. Hudson and Kenneth S. Williams

Let $e$ and $k$ be integers $\geq 2$ with $e$ odd and $k$ even. Set $2 l=\mathrm{L} . \mathrm{C} . \mathrm{M} .(e, k)$ and let $p$ be a prime with $p \equiv 1(\bmod 2 l)$ having $g$ as a primitive root. It is shown that the index of $e$ (with respect to $g$ ) modulo $k$ can be computed in terms of the cyclotomic numbers of order $l$. By applying this result with $e=3, k=4 ; e=5, k=4 ; e=3, k=8$; new criteria are obtained for 3 and 5 to be fourth powers $(\bmod p)$ and for 3 to be an eighth power $(\bmod p)$.

1. Introduction. Let $e$ and $k$ be integers greater than or equal to 2 with $e$ odd and $k$ even. Let $p$ be a prime congruent to 1 modulo $2 l$, where $2 l=$ L.C.M. $(e, k)$. Let $g$ be a fixed primitive root $(\bmod p)$. If $a$ is an integer not divisible by $p$, the index of $a$ with respect to $g$ is denoted by ind ( $a$ ) and is the least nonnegative integer $b$ such that $a \equiv g^{b}(\bmod p)$. For $0 \leqq h, k \leqq l-1$, the cyclotomic number $(h, k)_{l}$ of order $l$ is the number of integers $n$ $(1 \leqq n \leqq p-2)$ such that ind $(n) \equiv h(\bmod l)$, ind $(n+1) \equiv k(\bmod l)$.

Using an idea due to Muskat [4: 257-258], we prove the following congruence for the index of $e$ modulo $k$.

Theorem 1.

$$
\begin{aligned}
\text { ind }(e) \equiv & 2 \sum_{\imath=1}^{k / 2-1} i^{(e-1) / 2} \sum_{j=1}^{2 l} \sum_{r=0}^{2 l \mid k-1} \sum_{s=0}^{l l e-1}\left(i+r \frac{k}{2}, j+s e\right)_{\imath} \\
& +\frac{(p-1)(e-1)^{2}}{8 e}(\bmod k)
\end{aligned}
$$

Applying Theorem 1 with $e=3, k=4$, we obtain the following criterion for 3 to be a fourth power $(\bmod p)$.

THEOREM 2. Let $p \equiv 1(\bmod 12)$ be a prime, so that there are integers $x$ and $y$ satisfying

$$
\begin{equation*}
p=x^{2}+3 y^{2}, \quad x \equiv 1(\bmod 3) \tag{1.1}
\end{equation*}
$$

Then 3 is a fourth power $(\bmod p)$ if and only if $x \equiv 1(\bmod 4)$.
This criterion should be compared with the classical result: 3 is a fourth power $(\bmod p)$ if and only if

$$
\begin{cases}b \equiv 0(\bmod 3), & \text { if } \quad p \equiv 1(\bmod 24) \\ a \equiv 0(\bmod 3), & \text { if } \quad p \equiv 13(\bmod 24)\end{cases}
$$

where

$$
p=a^{2}+b^{2}, \quad a \equiv 1(\bmod 4), \quad b \equiv 0(\bmod 2),
$$

see for example [2: p. 24].
Next taking $e=5, k=4$, in Theorem 1 we obtain the following new criterion for 5 to be a fourth power $(\bmod p)$.

Theorem 3. Let $p \equiv 1(\bmod 20)$ be a prime, so that there are integers $x, u, v$, and $w$ satisfying
(1.2) $\quad 16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2}, \quad x w=v^{2}-4 u v-u^{2}$,
and

$$
\begin{equation*}
x \equiv 1(\bmod 5) \tag{1.3}
\end{equation*}
$$

Then 5 is a fourth power $(\bmod p)$ if and only if

$$
\begin{cases}x \equiv 4(\bmod 8), & \text { if } x \equiv 0(\bmod 2) \\ x \equiv \pm 3 w(\bmod 8), & \text { if } x \equiv 1(\bmod 2)\end{cases}
$$

This criterion should be compared with the well-known result (see for example [2: p. 24]):

5 is a fourth power $(\bmod p)$ if and only if
$b \equiv 0(\bmod 5), \quad$ where $\quad p=a^{2}+b^{2}, \quad a \equiv 1(\bmod 4), \quad b \equiv 0(\bmod 2)$.
Finally, applying Theorem 1 with $e=3, k=8$, we obtain the following new criterion for 3 to be an eighth power $(\bmod p)$.

Theorem 4. Let $p \equiv 1(\bmod 24)$ be a prime so that there are integers $a, b, x$ and $y$ satisfying

$$
\begin{equation*}
p=a^{2}+b^{2}=x^{2}+3 y^{2} \tag{1.4}
\end{equation*}
$$

and
(1.5) $\quad a \equiv 1(\bmod 4), \quad b \equiv 0(\bmod 4), \quad x \equiv 1(\bmod 6), \quad y \equiv 0(\bmod 2)$.

Assume 3 is a fourth power $(\bmod p)$, so that

$$
b \equiv 0(\bmod 3), \quad x \equiv 1(\bmod 4)
$$

Then 3 is an eighth power $(\bmod p)$ if and only if

$$
a \equiv 1(\bmod 3), \quad y \equiv 0(\bmod 8)
$$

$o r$

$$
a \equiv-1(\bmod 3), \quad y \equiv 4(\bmod 8)
$$

This criterion should be compared to that of von Lienen [3: $p$. 114], namely, if 3 is a fourth power $(\bmod p)$ then 3 is an eighth power $(\bmod p)$ if and only if

$$
\begin{cases}a \equiv c(\bmod 3), & \text { if } \quad p \equiv 1(\bmod 48) \\ a \equiv-c(\bmod 3), & \text { if } \quad p \equiv 25(\bmod 48)\end{cases}
$$

where

$$
p=a^{2}+b^{2}=c^{2}+2 d^{2}
$$

and
$a \equiv 1(\bmod 4), \quad b \equiv 0(\bmod 4), \quad c \equiv 1(\bmod 4), \quad d \equiv 0(\bmod 2)$.
Combining these results, we see that if $(3 / p)_{4}=+1$ (equivalently $b \equiv 0(\bmod 3)$ or $x \equiv 1(\bmod 4))$, we have

$$
\begin{cases}y \equiv 0(\bmod 8) \Longleftrightarrow c \equiv 1(\bmod 3), & \text { if } p \equiv 1(\bmod 48) \\ y \equiv 0(\bmod 8) \Longleftrightarrow c \equiv-1(\bmod 3), & \text { if } p \equiv 25(\bmod 48)\end{cases}
$$

2. Proof of Theorem 1. The roots of the congruence

$$
\begin{equation*}
\frac{x^{e}-1}{x-1} \equiv 0(\bmod p) \tag{2.1}
\end{equation*}
$$

are

$$
x \equiv g^{j f}(\bmod p), \quad j=1,2, \cdots, e-1
$$

where $p-1=e f$, so that

$$
\begin{equation*}
x^{e-1}+x^{e-2}+\cdots+x+1 \equiv \prod_{j=1}^{e-1}\left(x-g^{j f}\right)(\bmod p) \tag{2.2}
\end{equation*}
$$

Taking $x=1$ in (2.2), we obtain

$$
\begin{equation*}
e \equiv \prod_{j=1}^{e-1}\left(1-g^{j f}\right)(\bmod p) \tag{2.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\text { ind }(e) \equiv \sum_{j=1}^{e-1} \operatorname{ind}\left(1-g^{j f}\right)(\bmod p-1) \tag{2.4}
\end{equation*}
$$

Next

$$
\begin{aligned}
& \sum_{j=(e+1) / 2}^{e-1} \operatorname{ind}\left(1-g^{j j}\right) \\
& \quad=\sum_{j=1}^{(e-1) / 2} \operatorname{ind}\left(1-g^{(e-j) f}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{(e-1) / 2} \text { ind }\left(1-g^{-j f}\right) \\
& \equiv \sum_{j=1}^{(e-1) / 2} \text { ind }\left(1-g^{j f}\right)+\sum_{j=1}^{(e-1) / 2} \operatorname{ind}\left(-g^{-j f}\right)(\bmod p-1) \\
& \equiv \sum_{j=1}^{(e-1) / 2} \text { ind }\left(1-g^{j f}\right)+\sum_{j=1}^{(e-1) / 2}\left(\frac{p-1}{2}-j f\right)(\bmod p-1),
\end{aligned}
$$

so
(2.5) $\quad \operatorname{ind}(e) \equiv 2 \sum_{j=1}^{(e-1)^{2}} \operatorname{ind}\left(1-g^{j f}\right)+\frac{(p-1)(e-1)^{2}}{8 e}(\bmod p-1)$.

Next the roots of

$$
x^{f}-g^{j f} \equiv 0(\bmod p)
$$

are

$$
x \equiv g^{e i+j}(\bmod p) \quad(i=1,2, \cdots, f)
$$

so

$$
\begin{equation*}
x^{f}-g^{j f} \equiv \prod_{i=1}^{f}\left(x-g^{e i+j}\right)(\bmod p) \tag{2.6}
\end{equation*}
$$

Taking $x=1$ in (2.6), we obtain

$$
1-g^{j f} \equiv \prod_{i=1}^{f}\left(1-g^{e i+j}\right)(\bmod p)
$$

so

$$
\begin{equation*}
\operatorname{ind}\left(1-g^{j f}\right) \equiv \sum_{i=1}^{f} \operatorname{ind}\left(1-g^{e i+j}\right)(\bmod p-1) \tag{2.7}
\end{equation*}
$$

Further, working modulo $k / 2$, we have

$$
\begin{aligned}
& \sum_{i=1}^{f} \text { ind }\left(1-g^{e i+j}\right) \\
& \left.=\sum_{\operatorname{ind}(n)=j=2}^{p-1} \bmod e\right)(1-n) \\
& \left.\equiv \sum_{\operatorname{ind}(n)=j(\bmod \rho)}^{p-1} \operatorname{ind}(n-1)+\sum_{\substack{n=1}}^{p-1} \operatorname{ind}(n)=j(\bmod e)<1\right) \\
& \equiv \sum_{\substack{n d \\
\operatorname{ind}(n+1)=j(\bmod e)}}^{p-2} \operatorname{ind}(n)+\frac{p-1}{2} \sum_{\substack{n=1 \\
\operatorname{ind} x=j(\bmod e)}}^{p-1} 1 \\
& \equiv \sum_{\substack{i=0 \\
i n d \\
i=1}}^{\sum=(\bmod k(2)} \sum_{\substack{n=1 \\
\operatorname{ind}(n+1) \equiv j(\bmod e)}}^{p-2} i,
\end{aligned}
$$

that is

The result now follows from (2.5), (2.7) and (2.8).
3. Proof of Theorem 2. Taking $e=3, k=4$, so that $l=6$, in Theorem 1 , we obtain, for $p \equiv 1(\bmod 12)$,

$$
\begin{equation*}
\text { ind }(3) \equiv 2 \sum_{r=0}^{2} \sum_{s=0}^{1}(1+2 r, 1+3 s)_{6}+\frac{p-1}{6}(\bmod 4) \tag{3.1}
\end{equation*}
$$

Defining $x$ and $y$, as in [6: p. 68], by

$$
x=6(0,3)_{6}-6(1,2)_{6}+1
$$

and

$$
y=(0,1)_{6}-(0,5)_{6}-(1,3)_{6}+(1,4)_{6},
$$

so that $x$ and $y$ satisfy (1.1), from the tables for the cyclotomic numbers of order 6, we obtain

$$
\sum_{r=0}^{2} \sum_{s=0}^{1}(1+2 r, 1+3 s)_{6}=\frac{1}{6}(p-x-3 y)
$$

Hence, from (3.1), we obtain

$$
\text { ind }(3) \equiv \frac{1}{3}(p-x)-y+\frac{p-1}{6}(\bmod 4)
$$

Now

$$
y \equiv \begin{cases}0(\bmod 4), & \text { if } \quad p \equiv 1(\bmod 24) \\ 2(\bmod 4), & \text { if } \quad p \equiv 13(\bmod 24)\end{cases}
$$

that is

$$
y \equiv \frac{1}{6}(p-1)(\bmod 4),
$$

giving

$$
\text { ind }(3) \equiv \frac{1}{3}(p-x) \equiv \frac{1}{3}(1-x)(\bmod 4),
$$

which completes the proof of Theorem 2.
4. Proof of Theorem 3. Taking $e=5, k=4$, so that $l=10$, in Theorem 1 , we obtain for $p \equiv 1(\bmod 20)$,

$$
\begin{equation*}
\text { ind }(5) \equiv 2 \sum_{j=1}^{2} \sum_{r=0}^{4} \sum_{s=0}^{1}(1+2 r, j+5 s)_{10}+\frac{2}{5}(p-1)(\bmod 4) \tag{4.1}
\end{equation*}
$$

Define $m$ by $2 \equiv g^{m}(\bmod p)$. Replacing $g$ by an appropriate power of $g$, we may suppose that $m \equiv 0$ or $1(\bmod 5)$. Next we define $x$, $u, v, w$ by

$$
\begin{aligned}
3 x & =-p+14+25(0,0)_{5} \\
u & =(0,2)_{5}-(0,3)_{5} \\
v & =(0,1)_{5}-(0,4)_{5} \\
w & =(1,3)_{5}-(1,2)_{5}
\end{aligned}
$$

so that $x, u, v, w$ is a solution of (1.2) satisfying (1.3) (see for example [5: p. 100]). From the tables of Whiteman [5: pp. 107-109] for the cyclotomic numbers of order 10, we obtain in the case $m \equiv 0(\bmod 5)$, that is, 2 is a fifth power $(\bmod p)$ or equivalently, $x \equiv 0(\bmod 2)[1: \mathrm{p} .13]:$

$$
\begin{aligned}
\sum_{j=1}^{2} \sum_{r=0}^{4} \sum_{s=0}^{1}(1 & +2 r, j+5 s)_{10} \\
& =\frac{1}{20}\{4 p+x-15 u+15 v-30 w\}
\end{aligned}
$$

so

$$
\text { ind } \begin{aligned}
(5) & \equiv \frac{1}{10}\{4 p+x-15 u+15 v-30 w\}(\bmod 4) \\
& \equiv \frac{1}{10}(x+4)-\frac{3}{2}(u-v)+w(\bmod 4)
\end{aligned}
$$

Emma Lehmer [1: p. 13] has shown in this case that

$$
x \equiv u \equiv v \equiv w \equiv 0(\bmod 4), \quad u \equiv v(\bmod 8)
$$

so that

$$
\operatorname{ind}(5) \equiv \frac{1}{10}(x+4) \equiv \frac{x}{2}+2(\bmod 4)
$$

completing the proof of Theorem 3 in this case.
When $m \equiv 1(\bmod 5), 2$ is not a fifth power $(\bmod p)$ and $x \equiv 1(\bmod 2)$. From the tables of Whiteman [5: pp. 107-109], in this case, we obtain

$$
\begin{aligned}
& \sum_{j=1}^{2} \sum_{r=0}^{4} \sum_{s=0}^{1}(1+2 r, j+5 s)_{10} \\
& \quad=\frac{1}{40}\{8 p-3 x+10 u+20 v-25 w\}
\end{aligned}
$$

so that

$$
4 \operatorname{ind}(5) \equiv 8 p-3 x+10 u+20 v-25(\bmod 16)
$$

which shows that $w \equiv 1(\bmod 2)$.
Since

$$
400(0,2)_{10}=4 p-36+17 x+50 u-25 w
$$

we have $(\operatorname{as} x \equiv w \equiv 1(\bmod 2))$

$$
10 u \equiv 3 x+5 w(\bmod 16),
$$

so that

$$
\operatorname{ind}(5) \equiv v+w(\bmod 4)
$$

As

$$
200(0,9)_{10}=2 p-18-4 x+25 u-25 v+25 w
$$

and

$$
200(1,2)_{10}=2 p+2+x+25 u+25 v-50 w
$$

we have

$$
\left\{\begin{array}{l}
u-v \equiv 4-w(\bmod 8) \\
u+v \equiv 4+2 w-x(\bmod 8)
\end{array}\right.
$$

so

$$
u \equiv \frac{1}{2}(w-x)(\bmod 4), \quad v \equiv \frac{1}{2}(3 w-x)(\bmod 4) .
$$

Hence we have

$$
\begin{equation*}
\text { ind }(5) \equiv \frac{1}{2}(5 w-x)(\bmod 4) \tag{4.2}
\end{equation*}
$$

Since all solutions of (1.2) satisfying (1.3) are given by (see for example [1: p. 13])

$$
(x, u, v, w), \quad(x, v,-u,-w), \quad(x,-u,-v, w), \quad(x,-v, u,-w)
$$

(4.2) gives

$$
\operatorname{ind}(5) \equiv 0(\bmod 4) \Longleftrightarrow x \equiv \pm 3 w(\bmod 8)
$$

and

$$
\text { ind }(5) \equiv 2(\bmod 4) \Longleftrightarrow x \equiv \pm w(\bmod 8),
$$

which completes the proof of Theorem 3.
5. Proof of Theorem 4. Taking $e=3, k=8$ so that $l=12$, in Theorem 1, we obtain, for $p \equiv 1(\bmod 24)$,

$$
\begin{equation*}
\text { ind }(3) \equiv 2 \sum_{i=1}^{3} i \sum_{r=0}^{2} \sum_{s=0}^{3}(i+4 r, 1+3 s)_{12}+\frac{1}{6}(p-1)(\bmod 8) \tag{5.1}
\end{equation*}
$$

Following Whiteman [6: p. 64], we define $m$ and $m^{\prime}$ by $2 \equiv g^{m}(\bmod p)$ and $3 \equiv g^{m^{\prime}}(\bmod p) \quad$ respectively. As $p \equiv 1(\bmod 8)$ we have $m \equiv 0(\bmod 2)$. Replacing $g$ by an appropriate power of $g$ we may suppose that $m \equiv 0$ or $2(\bmod 3)$, so that $m \equiv 0$ or $2(\bmod 6)$. Further, as we are assuming 3 is a fourth power $(\bmod p)$, we have $m^{\prime} \equiv 0(\bmod 4)$. Next we define $x$ and $y$ (as in [6: p. 68]) by

$$
\begin{aligned}
& x=6(0,3)_{6}-6(1,2)_{6}+1 \\
& y=(0,1)_{6}-(0,5)_{6}-(1,3)_{6}+(1,4)_{6},
\end{aligned}
$$

and $a$ and $b$ by equations (4.4) and (4.5) in [6] (a replaces Whiteman's $x, b$ replaces Whiteman's $2 y$ ). Then $x, y, a, b$ satisfy (1.4) and (1.5). Whiteman [6: pp. 69-73] gives the cyclotomic numbers of order 12 in terms of $x, y, a$ and $b$, as defined above. When $m \equiv 0(\bmod 6)$, we must use Tables 9 and 10 of [6] and, when $m \equiv 2(\bmod 6)$, we must use Tables 3 and 4 . By considering the cyclotomic numbers $(3,6)_{12}$ in Table 9; (2.4) $)_{12}$ in Table 10; $(1,2)_{12}$ in Table 3; $(2,8)_{12}$ in Table 4; it is easy to check that Whiteman's quantity $c= \pm 1$ (see [6: pp. 64-65]) satisfies

$$
\left\{\begin{array}{l}
c=+1 \Longleftrightarrow a \equiv 1(\bmod 3),  \tag{5.2}\\
c=-1 \Longleftrightarrow a \equiv 2(\bmod 3) .
\end{array}\right.
$$

We remark that $a \not \equiv 0(\bmod 3)$ as 3 is assumed to be a fourth power $(\bmod p)$.

Next we set

$$
\sum_{i}=\sum_{r=0}^{2} \sum_{s=0}^{3}(i+4 r, 1+3 s)_{12} \quad(i=1,2,3)
$$

so that

$$
\begin{equation*}
\text { ind }(3) \equiv 2\left(\sum_{1}+2 \sum_{2}+3 \sum_{3}\right)+\frac{1}{6}(p-1)(\bmod 8) . \tag{5.3}
\end{equation*}
$$

From Whiteman's tables, we obtain

$$
\begin{aligned}
& 12 \sum_{1}= \begin{cases}p-2 b-x-3 y, & \text { if } a \equiv 1(\bmod 3), \\
p+2 b-x-3 y, & \text { if } a \equiv-1(\bmod 3),\end{cases} \\
& 12 \sum_{2}= \begin{cases}p-2 a+x+3 y, & \text { if } a \equiv 1(\bmod 3), \\
p+2 a+x+3 y, & \text { if } a \equiv-1(\bmod 3),\end{cases}
\end{aligned}
$$

$$
12 \sum_{3}= \begin{cases}p+2 b-x-3 y, & \text { if } \quad a \equiv 1(\bmod 3) \\ p-2 b-x-3 y, & \text { if } \quad a \equiv-1(\bmod 3)\end{cases}
$$

From (5.3) and (5.4) we obtain
(5.5) ind (3)

$$
\equiv \begin{cases}1-\frac{1}{3}(2 a-2 b+x)-y+\frac{1}{6}(p-1)(\bmod 8), & \text { if } \quad a \equiv 1(\bmod 3), \\ 1+\frac{1}{3}(2 a-2 b-x)-y+\frac{1}{6}(p-1)(\bmod 8), & \text { if } \quad a \equiv-1(\bmod 3) .\end{cases}
$$

Also, from Whiteman's tables, we have in every case,

$$
p+1-8 a+6 x \equiv 0(\bmod 16)
$$

so
ind (3)

$$
\begin{aligned}
& \equiv\left\{\begin{array}{l}
1+2 a-2 b+\frac{p+1}{2}-4 a-y+\frac{1}{6}(p-1)(\bmod 8), \quad \text { if } \quad a \equiv 1(\bmod 3), \\
1-2 a+2 b+\frac{p+1}{2}-4 a-y+\frac{1}{6}(p-1)(\bmod 8), \quad \text { if } \quad a \equiv-1(\bmod 3),
\end{array}\right. \\
& \equiv \begin{cases}-y(\bmod 8), & \text { if } \quad a \equiv 1(\bmod 3), \\
4-y(\bmod 8), & \text { if } \quad a \equiv-1(\bmod 3),\end{cases}
\end{aligned}
$$

which completes the proof of Theorem 4.

## References

1. Emma Lehmer, The quintic character of 2 and 3, Duke Math. J., 18 (1951), 11-18.
2.     - Criteria for cubic and quartic residuacity, Mathematika, 5 (1958), 20-29.
3. H. von Lienen, Primzahlen als achte Potenzreste, J. Reine Angew. Math., 266 (1974), 107-117.
4 J. B. Muskat, On the solvability of $x^{e} \equiv e(\bmod p)$, Pacific J. Math., 14 (1964), 257-260.
4. A. L. Whiteman, The cyclotomic number of order ten, Proceedings of the Symposia in Applied Mathematics 10, pp. 95-111, Amer. Math. Soc., Providence, Rhode Island, 1960.
5. The cyclotomic numbers of order twelve, Acta Arith., 6 (1960), 53-76.

Received October 26, 1979. Research supported by the Natural Sciences and Engineering Research Council Canada Grant No. A-7233.

University of South Carolina
Columbia, SC 29208
AND
Carleton University
Ottawa, Ontario, Canada K1S 5B6

