ON THE EVALUATION OF $(\varepsilon_{q_1q_2}/p)$

KENNETH S. WILLIAMS

Let *m* be a positive squarefree integer. We denote the class number of $Q(\sqrt{-m})$ by h(-m) and the fundamental unit of $Q(\sqrt{m})$ by ε_m . We consider only those *m* for which the norm of ε_m (written $N(\varepsilon_m)$) is -1, so that the only possible primes dividing *m* are the prime 2 or primes congruent to 1 modulo 4. Now, if *p* is an odd prime such that (m/p) = +1, we can interpret ε_m as an integer modulo *p*, and ask for the value of the Legendre symbol (ε_m/p) . Because of the ambiguity in the choice of \sqrt{m} taken modulo *p*, we must ensure that (ε_m/p) is well-defined. Since

$$\left(\frac{-1}{p}\right) = \left(\frac{N(\varepsilon_m)}{p}\right) = \left(\frac{\varepsilon_m \varepsilon'_m}{p}\right) = \left(\frac{\varepsilon_m}{p}\right) \left(\frac{\varepsilon'_m}{p}\right),$$

where the prime (') indicates conjugation $(\sqrt{m} \rightarrow -\sqrt{m})$, this will be the case if (-1/p) = +1, that is, if $p \equiv 1 \pmod{4}$. Thus it is assumed throughout that

$$\left(\frac{-1}{p}\right) = \left(\frac{m}{p}\right) = +1.$$

Suppose *m* has the prime decomposition $m = q_1 \dots q_s$, and let a denote the number of ambiguous classes of forms of discriminant -4m in the principal genus. Then, from genus theory, we know that

$$b = \begin{cases} 2^{s} a, & \text{if } m \text{ odd,} \\ 2^{s-1} a, & \text{if } m \text{ even,} \end{cases}$$

is an integer dividing h(-m), and we define a positive integer l by

$$l = h(-m)/b.$$

We restrict our attention to primes (congruent to 1 modulo 4) represented by forms in genera containing ambiguous classes, so that p^t is represented by an ambiguous form. For such primes p, when m is a prime or twice a prime, the evaluation of (ε_m/p) is known, except in one case. In these cases, the generic characters are given by (for k > 0)

Copyright § 1980 Rocky Mountain Mathematics Consortium

Received by the Editors on February 14, 1978, and in revised form on October 16, 1978.

$$\chi_1(k) = \left(\frac{-2}{k}\right), \qquad m = 2,$$

$$\chi_1(k) = \left(\frac{-1}{k}\right), \quad \chi_2(k) = \left(\frac{k}{q}\right), \qquad m = q(\text{prime}) \equiv 1 \pmod{4},$$

$$\chi_1(k) = \left(\frac{-2}{k}\right), \quad \chi_2(k) = \left(\frac{k}{q}\right), \qquad m = 2q, \quad q(\text{prime}) \equiv 1 \pmod{4},$$

and the ambiguous forms of discriminant -4m are given by

$$I = (1, 0, 2), \qquad m = 2, I = (1, 0, q), A = (2, 2, \frac{1}{2}(q + 1)), \qquad m = q, \\ I = (1, 0, 2q), A = (2, 0, q), \qquad m = 2q,$$

where (r, s, t) denotes the form $rx^2 + sxy + ty^2$.

We remark that $N(\varepsilon_m) = -1$ when m = 2; when m = q (prime) $\equiv 1$ (mod 4) (Dirichlet [6: p. 225]); and when m = 2q, q (prime) $\equiv 5 \pmod{8}$ (Dirichlet [6: p. 226]). m = 2q, q (prime) $\equiv 1 \pmod{8}$ is the only case which requires the assumption that the norm of the fundamental unit be -1. In this case, the assumption $h = h(-2q) \equiv 4 \pmod{8}$ has also to be made, as Lehmer's results [11: Theorems 2 and 3] require that h/4 be odd. What happens when $h \equiv 0 \pmod{8}$ remains open. Both possibilities occur as $N(\varepsilon_{2.41}) = N(\varepsilon_{2.113}) = -1$, h(-82) = 4, h(-226) = 8. Writing h for h(-m) the results in the known cases can be summarized as follows:

	т	Assumptions	Evaluation of $\begin{pmatrix} \varepsilon_m \\ p \end{pmatrix}$	Refer- ences
= /	2	$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = 1$	$(-1)^{y/2}$, if $p = x^2 + 2y^2$	[1]
$q \equiv$	1(mod 8)	$\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = 1$	+ 1, if $p^{h/4} = x^2 + qy^2$ - 1, if $2p^{h/4} = x^2 + qy^2$	[14] [5]
$q \equiv$	5(mod 8)	$\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = 1$	$(-1)^{y}$, if $p^{h/2} = x^2 + qy^2$	[11] [13]
$q \equiv$	2 <i>q</i> 1(mod 8)	$\binom{-1}{p} = \binom{2}{p} = \binom{q}{p} = 1$ $N(\varepsilon_{2q}) = -1$ $h \equiv 4 \pmod{8}$	$(-1)^{y/2}$, if $p^{h/4} = x^2 + 2qy^2$ $(-1)^{x/2}$, if $p^{h/4} = 2x^2 + qy^2$	[11]
$q \equiv$	2 <i>q</i> 5(mod 8)	$\binom{-1}{p} = \binom{2q}{p} = 1$	$(-1)^{y/2}$, if $p^{h/2} = x^2 + 2qy^2$ $(-1)^{x/2+1}$, if $p^{h/2} = 2x^2 + qy^2$	[11] [13]

It is the purpose of this paper to discuss the remaining cases when m has exactly two prime factors, that is, $m = q_1q_2$, where q_1 and q_2 are distinct primes congruent to 1 (mod 4).

In the unique factorization domain Z[i] of Gaussian integers, we have $q_1 = \pi_1 \overline{\pi}_1, q_2 = \pi_2 \overline{\pi}_2$, where π_1 and π_2 are primes, which we can take to be primary, that is, to satisfy $\pi_1 \equiv \pi_2 \equiv 1 \pmod{(1 + i)^3}$. Now either $\varepsilon_{q_1q_2}$ or $\varepsilon_{q_1q_2}^{-3}$ is of the form $T + U \sqrt{q_1q_2}$, where T and U are positive integers with T even and U odd. Since $N(T + U\sqrt{q_1q_2}) = -1$, we have, for $j = 1, 2, \pi_j | (T + i)(T - i)$, that is, $\pi_j | T \pm i$, as π_j is prime. Replacing π_j by its complex conjugate $\overline{\pi}_j$, if necessary, we can assume

$$\pi_j | T + i \quad (j = 1, 2).$$

Writing $[/\pi_j]_2$ (resp. $[/\pi_j]_4$) for the quadratic (resp. biquadratic) residue symbol (mod π_j), and $(/p)_4$ for the rational biquadratic symbol (mod p) (p an odd prime), we have

THEOREM 1. If p, q_1 , q_2 are distinct primes congruent to 1 (mod 4), such that $(q_1q_2/p) = +1$, then

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = \left[\frac{p}{\pi_1}\right]_4 \left[\frac{p}{\pi_2}\right]_4 \left(\frac{q_1q_2}{p}\right)_4,$$

where π_1 , π_2 are defined as above. (Compare Furuta [7: Theorem 3])

PROOF. As T is even, $(T + i)/\pi_1\pi_2$, and $(T - i)/\overline{\pi}_1\overline{\pi}_2$ are coprime Gaussian integers. Since their product is U^2 , by the unique factorization property, $(T + i)/\pi_1\pi_2$ must be an associate of a square, say,

$$T+i=u\pi_1\pi_2\alpha^2,$$

where u is a unit of Z[i], that is, $u = \pm 1$, $\pm i$. Reducing this equation modulo 2, we obtain $u \equiv i \pmod{2}$, so that $u = \pm i$. Replacing α by $i\alpha$, if necessary, we have

(1)
$$T + i = i\pi_1\pi_2\alpha^2.$$

As U > 0, $\alpha \bar{\alpha} > 0$, this gives $U = \alpha \bar{\alpha}$. Hence, from

$$2(T + i)(T + U\sqrt{q_1q_2}) = (T + i + U\sqrt{q_1q_2})^2,$$

we have

(2)
$$(1 + i)^2 \pi_1 \pi_2 (T + U \sqrt{q_1 q_2}) = (i \pi_1 \pi_2 \alpha + \bar{\alpha} \sqrt{q_1 q_2})^2.$$

Let π be a primary prime factor of p in Z[i], so that $p = \pi \overline{\pi}, \pi \equiv \overline{\pi} \equiv 1 \pmod{(1 + i)^3}$. Interpreting $\sqrt{q_1q_2}$ as an integer modulo p, we have from (2)

$$\begin{pmatrix} \underline{\varepsilon}_{q_1q_2} \\ p \end{pmatrix} = \left(\frac{T + U\sqrt{q_1q_2}}{p}\right) = \left[\frac{T + U\sqrt{q_1q_2}}{\pi}\right]_2$$

$$= \left[\frac{\pi_1\pi^2}{\pi}\right]_2 = \left[\frac{\pi_1}{\pi}\right]_2 \left[\frac{\pi_2}{\pi}\right]_2$$

$$= \left[\frac{\pi_1\pi^2}{\pi}\right]_2 \left[\frac{\pi_2\pi^2}{\pi^2}\right]_2$$
(by the law of quadratic reciprocity in $Z[i]$)
$$= \left[\frac{\pi}{\pi_1}\right]_2 \left[\frac{\pi}{\pi_2}\right]_2^2 \left[\frac{\pi}{\pi_1}\right]_4 \left[\frac{\pi}{\pi_1}\right]_4 \cdot \left[\frac{\pi}{\pi_2}\right]_4 \left[\frac{\pi}{\pi_2}\right]_4$$

$$= \left[\frac{\pi}{\pi_1}\right]_4 \left[\frac{\pi}{\pi_1}\right]_4 \cdot \left[\frac{\pi}{\pi_2}\right]_4 \left[\frac{\pi}{\pi_2}\right]_4 \cdot \left[\frac{\pi}{\pi_1}\right]_4 \left[\frac{\pi}{\pi_2}\right]_4 \left[\frac{\pi}{\pi_2}\right]_4$$

$$= \left[\frac{\pi\pi\pi}{\pi_1}\right]_4 \left[\frac{\pi\pi\pi}{\pi_2}\right]_4 \left[\frac{\pi\pi\pi\pi\pi}{\pi_2\pi^2}\right]_4 = \left[\frac{P}{\pi_1}\right]_4 \left[\frac{P}{\pi_2}\right]_4 \left[\frac{\pi}{q_1q_2}\right]_4$$

$$= \left[\frac{P}{\pi_1}\right]_4 \left[\frac{P}{\pi_2}\right]_4 \left[\frac{q_1q_2}{\pi}\right]_4$$
(by the law of biquadratic reciprocity in $Z[i]$)
$$= \left[\frac{P}{\pi_1}\right]_4 \left[\frac{P}{\pi_2}\right]_4 \left(\frac{q_1q_2}{p}\right)_4$$

COROLLARY 1. If p, q_1 , q_2 are distinct primes congruent to 1 modulo 4, such that $(q_1/p) = (q_2/p) = +1$, then

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = \left(-\frac{p}{q_1}\right)_4 \left(-\frac{q_1}{p}\right)_4 \left(-\frac{p}{q_2}\right)_4 \left(-\frac{q_2}{p}\right)_4.$$

(Furuta [7: Corollary, p. 143])

PROOF. As $(q_1/p) = (q_2/p) = 1$, we have $(q_1q_2/p)_4 = (q_1/p)_4(q_2/p)_4$, and by the law of quadratic reciprocity $(p/q_1) = (p/q_2) = 1$, so $[p/\pi_1]_4 = (p/q_1)_4$, $[p/\pi_2]_4 = (p/q_2)_4$. The result now follows immediately from Theorem 1.

COROLLARY 2. If p, q_1 , q_2 are distinct primes congruent to 1 modulo 4, such that $(q_1/p) = (q_2/p) = -1$, $(q_1/q_2) = -1$, then

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = -\left(\frac{pq_1}{q_2}\right)_4 \left(\frac{pq_2}{q_1}\right)_4 \left(\frac{q_1q_2}{p}\right)_4.$$

PROOF. As $(q_2/q_1) = -1$, we have $[q_2/\pi_1]_2 = -1$, that is,

$$[\pi_2/\pi_1]_2 \ [\overline{\pi}_2/\pi_1]_2 = -1.$$

Now, from $T + i = i\pi_1\pi_2\alpha^2$, we have

 $2 = \pi_1 \pi_2 \alpha^2 + \overline{\pi}_1 \overline{\pi}_2 \overline{\alpha}^2,$

so

 $2 \equiv \overline{\pi}_1 \overline{\pi}_2 \overline{\alpha}^2 \pmod{\pi_1},$

giving

$$[2/\pi_1]_2 = [\overline{\pi}_1/\pi_1]_2 [\overline{\pi}_2/\pi_1]_2 = [2/\pi_1]_2 [\overline{\pi}_2/\pi_1]_2$$

that is,

$$[\overline{\pi}_2/\pi_1]_2 = +1, [\pi_2/\pi_1]_2 = -1$$

Hence we have

$$\begin{aligned} [\pi_1/\pi_2]_4 \ [\pi_2/\pi_1]_4 \ &= \ [\pi_1/\pi_2]_4 [\overline{\pi}_2/\overline{\pi}_1]_4 \ &= \ [\pi_1/\pi_2]_4 [\overline{\pi}_2/\overline{\pi}_1]_4^3 \\ &= \ [\pi_1/\pi_2]_4 [\overline{\pi}_2/\overline{\pi}_1]_2 [\overline{\pi}_2/\overline{\pi}_1]_4 \\ &= \ - \ [\pi_1/\pi_2]_4 [\overline{\pi}_2/\overline{\pi}_1]_4, \end{aligned}$$

that is,

(3)
$$\left[\frac{\pi_1}{\pi_2}\right]_4 \left[\frac{\pi_2}{\pi_1}\right]_4 = -(-1)^{\frac{q_1-1}{4} \cdot \frac{q_2-1}{4}},$$

by the law of biquadratic reciprocity in Z[i]. Also, by the law of biquadratic reciprocity in Z[i], we have

(4)
$$\left[\frac{\overline{\pi}_1}{\pi_2}\right]_4 \left[\frac{\overline{\pi}_2}{\pi_1}\right]_4 = (-1)^{\frac{q_1-1}{4}} \cdot \frac{q_2-1}{4}.$$

Multiplying (3) and (4) together, we obtain

$$[q_1/\pi_2]_4[q_2/\pi_1]_4 = -1,$$

and Theorem 1 gives

$$\begin{aligned} (\varepsilon_{q_1q_2}/p) &= [p/\pi_1]_4 [p/\pi_2]_4 (q_1q_2/p)_4 \\ &= -[pq_1/\pi_2]_4 [pq_2/\pi_1]_4 (q_1q_2/p)_4, \\ &= -(pq_1/q_2)_4 (pq_2/q_1)_4 (q_1q_2/p)_4. \end{aligned}$$

as required.

We are now in a position to obtain the explicit evaluation of $(\varepsilon_{q_1q_2}/p)$, when p^i is represented by an ambiguous form of discriminant $-4q_1q_2$. This is done, following ideas of Lehmer [11: pp. 369-371], by using the representation of p^i to compute the residue symbols appearing in the expression for $(\varepsilon_{q_1q_2}/p)$ given in Theorem 1 or its corollaries. Many of the details are suppressed, as the calculations parallel those given by Lehmer. As in Lehmer's work, we require that l be odd, and an assumption to this effect is made wherever necessary. The results, which constitute Theorem 2, are given in the Table.

Case	$m=q_1q_2$	Assumptions	Evaluation of $\begin{pmatrix} \varepsilon_{m_{-}} \\ p \end{pmatrix}$
I	$q_1 \equiv q_2 \equiv 1 \pmod{8}$ $\binom{q_1}{q_2} = +1$	$\left(\frac{-1}{p}\right) = \begin{pmatrix} q_1 \\ p \end{pmatrix} = \begin{pmatrix} q_2 \\ p \end{pmatrix} = +1$ $N(\varepsilon_m) = -1$ $h \equiv 16 \pmod{32}$	+1, if $p^{h/16} = x^2 + q_1 q_2 y^2$ or $q_1 x^2 + q_2 y^2$ -1, if $2p^{h/16} = x^2 + q_1 q_2 y^2$ or $q_1 x^2 + q_2 y^2$
II	$q_1 \equiv q_2 \equiv 1 \pmod{8}$	$\left(\frac{-1}{p}\right) = \begin{pmatrix} q_1 \\ p \end{pmatrix} = \begin{pmatrix} q_2 \\ p \end{pmatrix} = +1$ $h \equiv 8 \pmod{16}$	+1, if $p^{h/8} = x^2 + q_1 q_2 y^2$ -1, if $2p^{h/8} = x^2 + q_1 q_2 y^2$
	$\binom{q_1}{q_2} = -1$	$\left(\frac{-1}{p}\right) = +1, \begin{pmatrix} q_1 \\ p \end{pmatrix} = \begin{pmatrix} q_2 \\ p \end{pmatrix} = -1$ $h \equiv 8 \pmod{16}$	+1, if $p^{h/8} = q_1 x^2 + q_2 y^2$ -1, if $2p^{h/8} = q_1 x_2 + q_2 y^2$
III	$q_1 \equiv 1, q_2 \equiv 5 \pmod{8}$ $\binom{q_1}{q_2} = +1$	$ \binom{-1}{p} = \binom{q_1}{p} = \binom{q_2}{p} = +1 $ $ N(\varepsilon_m) = -1 $ $ h \equiv 8 \pmod{16} $	$(-1)^{y}$, if $p^{h/8} = x^{2} + q_{1}q_{2}y^{2}$ or $q_{1}x^{2} + q_{2}y^{2}$
IV	$q_1 \equiv 1, q_2 \equiv 5 \pmod{8}$	$\begin{pmatrix} -1\\ p \end{pmatrix} = \begin{pmatrix} q_1\\ p \end{pmatrix} = \begin{pmatrix} q_2\\ p \end{pmatrix} = +1$	$(-1)^{y}$, if $p^{h/4} = x^{2} + q_{1}q_{2}y^{2}$
	$\begin{pmatrix} q_1 \\ \overline{q_2} \end{pmatrix} = -1$	$\left(\frac{-1}{p}\right) = +1, \ \begin{pmatrix} q_1\\p \end{pmatrix} = \begin{pmatrix} q_2\\p \end{pmatrix} = -1$	$(-1)^{y}$, if $p^{h/4} = q_1 x^2 + q_2 y^2$
v	$q_1 \equiv q_2 \equiv 5 \pmod{8}$	$ \binom{-1}{p} = \binom{q_1}{p} = \binom{q_2}{p} = +1 $ $N(\varepsilon_m) = -1 $	+1, if $p^{h/8} = x^2 + q_1 q_2 y^2$ -1, if $p^{h/8} = q_1 x^2 + q_2 y^2$
	$\binom{q_1}{q_2} = +1$	$ \binom{-1}{p} = +1, \ \binom{q_1}{p} = \binom{q_2}{p} = -1 $ $N(\varepsilon_m) = -1 $	$(-1)^{T/4}, \text{ if } 2p^{h/8} = x^2 + q_1 q_2 y^2 (-1)^{T/4+1}, \text{ if } 2p^{h/8} = q_1 x^2 + q_2 y^2$
VI	5 ($\left(\frac{-1}{p}\right) = \left(\frac{q_1}{p}\right) = \left(\frac{q_2}{p}\right) = +1$	+1 if $p^{h/8} = x^2 + q_1 q_2 y^2$
	$q_1 \equiv q_2 \equiv 5 \pmod{8}$	$h \equiv 8 \pmod{16}$	$-1, \text{ if } 2p^{h/8} = q_1 x^2 + q_2 y^2$
	$\binom{2}{q_2} = -1$	$\left(\frac{-1}{p}\right) = +1, \ \begin{pmatrix} q_1 \\ p \end{pmatrix} = \begin{pmatrix} q_2 \\ p \end{pmatrix} = -1$ $h = 8 \pmod{16}$	+1, if $2p^{h/8} = x^2 + q_1q_1y^2$ -1, if $\cdot^{h/8} = q_1x^2 + a_2y^2$
		<i>n</i> = 0 (mod 10)	11 122

N.B. T is defined by $\varepsilon_m^{\lambda} = T + U\sqrt{m}$, $\lambda = 1$ or 3

h is the classnumber of $Q(\sqrt{-m})$.

All representations are primitive.

Let I, A, B, C denote the classes of the forms [1, 0, q_1q_2], [2, 2, $\frac{1}{2}(q_1q_2 + 1)$], $[q_1, 0, q_2]$, $[2q_1, 2q_1, \frac{1}{2}(q_1 + q_2)]$ respectively. These are precisely the ambiguous classes of forms of discriminant $-4q_1q_2$, so that the classes of forms of discriminant $-4q_1q_2$ fall into 4 genera. The generic characters are $\chi_1(k) = (-1/k)$, $\chi_2(k) = (k/q_1)$, $\chi_2(k) = (k/q_2)$ (k > 0). The six cases appearing in the table are treated below.

CASE I. $q_1 \equiv q_2 \equiv 1 \pmod{8}$, $(q_1/q_2) = +1$. In this case I, A, B, C are all in the principal genus, so that $h = h(-q_1q_2) \equiv 0 \pmod{16}$ (Brown [4: Theorem 1]). Thus, if p is a prime, such that $(-1/p) = (q_1/p) = (q_2/p)$ = 1, there are positive coprime integers x and y such that $p' = x^2 + q_1q_2y^2$, $2x^2 + 2xy + \frac{1}{2}(q_1q_2 + 1)y^2$, $q_1x^2 + q_2y^2$, or $2q_1x^2 + 2q_1xy + \frac{1}{2}(q_1 + q_2)y^2$; that is, there are positive coprime integers x and y such that

$$p^{l}$$
 or $2p^{l} = x^{2} + q_{1}q_{2}y^{2}$ or $q_{1}x^{2} + q_{2}y^{2}$,

where l = h/16. We now assume that $N(\varepsilon_{q_1q_2}) = -1$ and $h \equiv 16 \pmod{32}$ (so that *l* is odd). These are two independent assumptions since: $N(\varepsilon_{41\cdot 241})$ = -1 and $h(-41\cdot 241) = 112 \equiv 16 \pmod{32}$, whereas $N(\varepsilon_{17\cdot 89}) = +1$ and $h(-17\cdot 89) = 16$; also $N(\varepsilon_{17\cdot 281}) = -1$ and $h(-17\cdot 281) = 32$, whereas $N(\varepsilon_{17\cdot 137}) = +1$ and $h(-17\cdot 137) = 32$.

Taking $p' = x^2 + q_1q_2y^2$ modulo p, q_1 and q_2 , we obtain

$$(q_1/p)_4(q_2/p)_4 = (2/p)(x/p)(y/p),$$

$$(p/q_1)_4 = (x/q_1), (p/q_2)_4 = (x/q_2).$$

so that, by Corollary 1, we have

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = \left(\frac{2}{p}\right) \binom{x}{p} \binom{y}{p} \binom{x}{q_1} \binom{x}{q_2}.$$

Next we set

$$x = 2^{\alpha} x_1, x_1 \equiv 1 \pmod{2}, \alpha \ge 0,$$

$$y = 2^{\beta} y_1, y_1 \equiv 1 \pmod{2}, \beta \ge 0.$$

By the law of quadratic reciprocity, we have (as *l* is odd)

$$\begin{aligned} (x/p) &= (2/p)^{\alpha}(x_1/p) = (2/p)^{\alpha}(p/x_1) = (2/p)^{\alpha}(p^l/x_1) = (2/p)^{\alpha}(q_1/x_1)(q_2/x_1) \\ (y/p) &= (2/p)^{\beta}(y_1/p) = (2/p)^{\beta}(p/y_1) = (2/p)^{\beta}(p^l/y_1) = (2/p)^{\beta}, \\ (x/q_1) &= (2/q_1)^{\alpha}(x_1/q_1) = (x_1/q_1), (x/q_2) = (2/q_2)^{\alpha}(x_1/q_2) = (x_1/q_2), \\ \text{giving} \end{aligned}$$

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = \left(\frac{2}{p}\right)^{1+\alpha+\beta}.$$

If $p \equiv 1 \pmod{8}$, (2/p) = +1, so $(\varepsilon_{q_1q_2}/p) = +1$; if $p \equiv 5 \pmod{8}$, then $\alpha + \beta = 1$, and again $(\varepsilon_{q_1q_2}/p) = +1$.

Similarly, using $p' = q_1 x^2 + q_2 y^2$ in Corollary 1, we obtain

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = \left(\frac{q_1}{q_2}\right)_4 \left(\frac{q_2}{q_1}\right)_4.$$

But, as $N(\varepsilon_{q_1q_2}) = -1$, we have $(q_1/q_2)_4(q_2/q_1)_4 = +1$ (Brown [2: Lemma 4]), so that $(\varepsilon_{q_1q_2}/p) = +1$.

Using $2p' = x^2 + q_1q_2y^2$ in Corollary 1, we obtain, using the easily proved result $(2/p)(2/x)(2/y) = (-1)^{(q_1+q_2-2/8)}$,

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = (-1)^{(q_1+q_2-2)} \left(\frac{2}{q_1}\right)_4 \left(\frac{2}{q_2}\right)_4 = \left(\frac{e}{q_1}\right) \left(\frac{e}{q_2}\right),$$

where d, e are positive odd integers defined by $q_1q_2 = 2e^2 - d^2$. As $(q_1/q_2)_4(q_2/q_1)_4 = +1$ (since $N(\varepsilon_{q_1q_2}) = -1$) and $h(-q_1q_2) \equiv 16 \pmod{32}$, we have $(e/q_1)(e/q_2) = -1$ (Kaplan [9: Prop. C'_1]), so that $(\varepsilon_{q_1q_2}/p) = -1$. Using $2p^1 = q_1x^2 + q_2y^2$ in Corollary 1, we obtain in a similar manner

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = (-1)^{(q_1+q_2-2)} \left(\frac{2}{q_1}\right)_4 \left(\frac{2}{q_2}\right)_4 \left(\frac{q_1}{q_2}\right)_4 \left(\frac{q_2}{q_1}\right)_4 = \left(\frac{e}{q_1}\right) \left(\frac{e}{q_2}\right) = -1,$$

CASE II. $q_1 \equiv q_2 \equiv 1 \pmod{8}$, $(q_1/q_2) = -1$. In this case I, A are in the principal genus and B, C are in the non-principal genus for which $\chi_1 = +1$, so that $h = h(-q_1q_2) \equiv 0 \pmod{8}$ (Brown [4: Theorem 1]). Thus, if p is a prime such that $(-1/p) = (q_1/p) = (q_2/p) = 1$, there are positive coprime integers x and y such that

$$p^{l}$$
 or $2p^{l} = x^{2} + q_{1}q_{2}y^{2}$,

where l = h/8, and, if (-1/p) = 1, $(q_1/p) = (q_2/p) = -1$, such that

$$p'$$
 or $2p' = q_1 x^2 + q_2 y^2$.

As $(q_1/q_2) = -1$ we have $N(\varepsilon_{q_1q_2}) = -1$ (Dirichlet [6: p. 228]), and we assume that $h \equiv 8 \pmod{16}$ (so that *l* is odd). The example $q_1 = 17$, $q_2 = 73$, h = h(-1241) = 32, shows that this is a genuine assumption. Using $p^l = x^2 + q_1q_2y^2$ in Corollary 1 we obtain $(\varepsilon_{q_1q_2}/p) = +1$.

Using $2p^{l} = x^{2} + q_{1}q_{2}y^{2}$ in Corollary 1, we obtain

$$\binom{\varepsilon_{q_1q_2}}{p} = (-1)^{(q_1+q_2-2)/8} \binom{2}{q_1} \binom{2}{q_2}_4,$$

the right hand side of which is -1, as $h(-q_1q_2) \equiv 8 \pmod{16}$ (Kaplan [9: Prop. B'_2]).

566

Using $p^{l} = q_{1}x^{2} + q_{2}y^{2}$ in Corollary 2 we obtain $(\varepsilon_{q_{1}q_{2}}/p) = +1$. Finally, using $2p^{l} = q_{1}x^{2} + q_{2}y^{2}$ in Corollary 2, we obtain

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = (-1)^{(q_1+q_2-2)/8} \left(\frac{2}{q_1}\right)_4 \left(\frac{2}{q_2}\right)_4,$$

the right hand side of which is -1, as $h(-q_1q_2) \equiv 8 \pmod{16}$ (Kaplan [9: Prop. B'_2]).

CASE III. $q_1 \equiv 1$, $q_2 \equiv 5 \pmod{8}$, $(q_1/q_2) = +1$. In this case I, B are in the principal genus and A, C are in a non-principal genus for which $\chi_1 = -1$. We have $h = h(-q_1q_2) \equiv 0 \pmod{8}$ (Brown [4: Theorem 1]). Thus, if p is a prime for which $(-1/p) = (q_1/p) = (q_2/p) = +1$, there are positive coprime integers x and y such that

$$p^{l} = x^{2} + q_{1}q_{2}y^{2}$$
 or $q_{1}x^{2} + q_{2}y^{2}$,

where l = h/8. We now assume that $N(\varepsilon_{q_1q_2}) = -1$ and $h \equiv 8 \pmod{16}$ (so that *l* is odd).

These are two independent assumptions since: $N(\varepsilon_{17\cdot53}) = -1$ and $h(-17\cdot53) = 24 \equiv 8 \pmod{16}$, whereas $N(\varepsilon_{17\cdot229}) = +1$ and $h(-17\cdot229) = 40 \equiv 8 \pmod{16}$; also $N(\varepsilon_{1601\cdot5}) = -1$ and $h(-1601\cdot5) = 48 \equiv 0 \pmod{16}$, whereas $N(\varepsilon_{17\cdot13}) = +1$ and $h(-17\cdot13) = 16 \equiv 0 \pmod{16}$.

Using $p^{t} = x^{2} + q_{1}q_{2}y^{2}$ in Corollary 1, we obtain $(\varepsilon_{q_{1}q_{2}}/p) = (-1)^{y}$. Using $p^{t} = q_{1}x^{2} + q_{2}y^{2}$ in Corollary 1, we obtain

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = (-1)^y \left(\frac{q_1}{q_2}\right)_4 \left(\frac{q_2}{q_1}\right)_4.$$

As $N(\varepsilon_{q_1q_2}) = -1$, we have $(q_1/q_2)_4(q_2/q_1)_4 = +1$ (Brown [2: Lemma 4]), so that $(\varepsilon_{q_1q_2}/p) = (-1)^y$.

CASE IV. $q_1 \equiv 1$, $q_2 \equiv 5 \pmod{8}$, $(q_1/q_2) = -1$. In this case I, A, B, C are each in different genera, with I in the principal genus and B in the nonprincipal genus with $\chi_1 = +1$. We have $h = h(-q_1q_2) \equiv 4 \pmod{8}$ (Brown [4: Theorem 1]). Thus, if p is a prime such that $(-1/p) = (q_1/p) =$ $(q_2/p) = 1$, there exist positive coprime integers x and y such that $p^t = x^2 + q_1q_2y^2$, where l = h/4 is odd, and such that $p^t = q_1x^2 + q_2y^2$, if (-1/p) = 1, $(q_1/p) = (q_2/p) = -1$. As $(q_1/q_2) = -1$, a theorem of Dirichlet [6: p. 228] guarantees that $N(\varepsilon_{q_1q_2}) = -1$. Using $p^t = x^2 + q_1q_2y^2$ in Corollary 1, we obtain $(\varepsilon_{q_1q_2}/p) = (-1)^y$, and using $p^t = q_1x^2 + q_2y^2$ in Corollary 2, we also obtain $(\varepsilon_{q_1q_2}/p) = (-1)^y$.

CASE V. $q_1 \equiv q_2 \equiv 5 \pmod{8}$, $(q_1/q_2) = +1$. In this case I, B are in the principal genus and A, C are in the non-principal genus with $\chi_1 = +1$. We have $h = h(-q_1q_2) \equiv 0 \pmod{8}$ (Brown [4: Theorem 1]). Thus, if p is a prime such that $(-1/p) = (q_1/p) = (q_2/p) = 1$, there exist positive coprime integers x and y such that $p^l = x^2 + q_1q_2y^2$ or $q_1x^2 + q_2y^2$; and, if (-1/p) = 1, $(q_1/p) = (q_2/p) = -1$, such that $2p^l = x^2 + q_1q_2y^2$ or $q_1x^2 + q_2y^2$, where l = h/8. We assume that $N(\varepsilon_{q_1q_2}) = -1$, so that by a theorem of Brown [2: Lemma 4] we have $(q_1/q_2)_4 \cdot (q_2/q_1)_4 = 1$, and hence by a theorem of Kaplan [9: Prop. B'_4] we have $h \equiv 8 \pmod{16}$, so that lis odd. Using $p^l = x^2 + q_1q_2y^2$ in Corollary 1, we obtain $(\varepsilon_{q_1q_2}/p) = +1$, and using $p^l = q_1x^2 + q_2y^2$ in the same corollary we obtain $(\varepsilon_{q_1q_2}/p) = -(q_1/q_2)_4(q_2/q_1)_4 = -1$.

When $2p^{l} = x^{2} + q_{1}q_{2}y^{2}$ or $q_{1}x^{2} + q_{2}y^{2}$ the evaluation of $(\varepsilon_{q_{1}q_{2}}/p)$ appears to be more difficult. It was originally hoped to give a third corollary to Theorem 1 expressing $(\varepsilon_{q_{1}q_{2}}/p)$ in terms of $(2p/q_{1})_{4}(2p/q_{2})_{4}(q_{1}q_{2}/p)_{4}$ when p, q_{1}, q_{2} are distinct primes congruent to 1 modulo 4, and such that $(q_{1}/p) = (q_{2}/p) = -1$, $(q_{1}/q_{2}) = +1$, $q_{1} \equiv q_{2} \equiv 5 \pmod{8}$. No such representation was found, and so instead we apply Theorem 1 directly.

If $2p^{l} = x^{2} + q_{1}q_{2}y^{2}$ we have

$$\begin{pmatrix} \frac{\varepsilon_{q_1q_2}}{p} \end{pmatrix} = \begin{bmatrix} \frac{p}{\pi_1} \end{bmatrix}_4 \begin{bmatrix} \frac{p}{\pi_2} \end{bmatrix}_4 \begin{pmatrix} \frac{q_1q_2}{p} \\ p \end{pmatrix}_4.$$

$$= \begin{bmatrix} \frac{2}{\pi_1} \end{bmatrix}_4^3 \begin{bmatrix} \frac{p^{l-1}}{\pi_1} \end{bmatrix}_4^3 \begin{bmatrix} \frac{2p^l}{\pi_1} \end{bmatrix}_4 \cdot \begin{bmatrix} \frac{2}{\pi_2} \end{bmatrix}_4^3 \begin{bmatrix} \frac{p^{l-1}}{\pi_2} \end{bmatrix}_4^3 \begin{bmatrix} \frac{2p^l}{\pi_2} \end{bmatrix}_4 \cdot \begin{pmatrix} q_1q_2 \\ p \end{pmatrix}_4$$

$$= \begin{bmatrix} \frac{2}{\pi_1} \end{bmatrix}_4 \begin{bmatrix} \frac{2}{\pi_1} \end{bmatrix}_2 \begin{bmatrix} p \\ \pi_1 \end{bmatrix}_2^{3(l-1)/2} \begin{bmatrix} x \\ \pi_1 \end{bmatrix}_2 \cdot \begin{bmatrix} 2 \\ \pi_2 \end{bmatrix}_4 \begin{bmatrix} \frac{2}{\pi_2} \end{bmatrix}_2 \begin{bmatrix} \frac{p}{\pi_2} \end{bmatrix}_2^{3(l-1)/2} \begin{bmatrix} x \\ \pi_2 \end{bmatrix}_2 \cdot \begin{pmatrix} q_1q_2 \\ p \end{pmatrix}_4$$

$$= \begin{bmatrix} \frac{2}{\pi_1} \end{bmatrix}_4 \begin{pmatrix} \frac{2}{q_1} \end{pmatrix}_1 \begin{pmatrix} p \\ q_1 \end{pmatrix}^{3(l-1)/2} \begin{pmatrix} x \\ q_1 \end{pmatrix} \cdot \begin{bmatrix} \frac{2}{\pi_2} \end{bmatrix}_4 \begin{pmatrix} \frac{2}{q_2} \end{pmatrix}_2 \begin{pmatrix} \frac{p}{\pi_2} \end{pmatrix}^{3(l-1)/2} \begin{pmatrix} x \\ \pi_2 \end{bmatrix}_2 \cdot \begin{pmatrix} q_1q_2 \\ p \end{pmatrix}_4$$

$$= \begin{bmatrix} \frac{2}{\pi_1} \end{bmatrix}_4 \begin{bmatrix} \frac{2}{\pi_2} \end{bmatrix}_4 \begin{pmatrix} x \\ q_1 \end{pmatrix} \begin{pmatrix} x \\ q_2 \end{pmatrix} \begin{pmatrix} 2 \\ p \end{pmatrix} \begin{pmatrix} x \\ q_2 \end{pmatrix} \begin{pmatrix} x \\ p \end{pmatrix} \begin{pmatrix} y \\ p \end{pmatrix},$$
as $\begin{pmatrix} \frac{2}{q_1} \end{pmatrix} = \begin{pmatrix} \frac{2}{q_2} \end{pmatrix} = \begin{pmatrix} p \\ q_1 \end{pmatrix} = \begin{pmatrix} p \\ q_2 \end{pmatrix} = -1, \begin{pmatrix} q_1q_2 \\ p \end{pmatrix}_4 = \begin{pmatrix} 2 \\ p \end{pmatrix} \begin{pmatrix} x \\ p \end{pmatrix} \begin{pmatrix} y \\ p \end{pmatrix}.$

Now, by Jacobi's form of the law of quadratic reciprocity, we have (as *l* is odd)

$$\begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} p \\ x \end{pmatrix} = \begin{pmatrix} 2 \\ x \end{pmatrix} \begin{pmatrix} 2p^l \\ \overline{x} \end{pmatrix} = \begin{pmatrix} 2 \\ \overline{x} \end{pmatrix} \begin{pmatrix} q_1 q_2 y^2 \\ \overline{x} \end{pmatrix} = \begin{pmatrix} 2 \\ \overline{x} \end{pmatrix} \begin{pmatrix} x \\ \overline{q_1} \end{pmatrix} \begin{pmatrix} x \\ \overline{q_2} \end{pmatrix},$$
$$\begin{pmatrix} y \\ p \end{pmatrix} = \begin{pmatrix} p \\ \overline{y} \end{pmatrix} = \begin{pmatrix} 2 \\ \overline{y} \end{pmatrix} \begin{pmatrix} 2p^l \\ \overline{y} \end{pmatrix} = \begin{pmatrix} 2 \\ y \end{pmatrix} \begin{pmatrix} x^2 \\ \overline{y} \end{pmatrix} = \begin{pmatrix} 2 \\ \overline{y} \end{pmatrix},$$

so

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = \left[\frac{2}{\pi_1}\right]_4 \left[\frac{2}{\pi_2}\right]_4 \left(\frac{2}{p}\right) \left(\frac{2}{x}\right) \left(\frac{2}{y}\right) = (-1)^{(q_1+q_2-2)/8} \left[\frac{2}{\pi_1\pi_2}\right]_4.$$

Setting $\alpha = g + hi$, where α is defined by (1), we have

$$\begin{pmatrix} \varepsilon_{q_1q_2} \\ p \end{pmatrix} = (-1)^{(q_1+q_2-2)/8} \begin{bmatrix} 2 \\ \pi_1\pi_2\alpha^2 \end{bmatrix}_4 \begin{bmatrix} 2 \\ \alpha \end{bmatrix}_2$$

= $(-1)^{(q_1+q_2-2)/8} \begin{bmatrix} 2 \\ 1 - Ti \end{bmatrix}_4 \begin{bmatrix} 2 \\ g + hi \end{bmatrix}_2 (by (1))$
= $(-1)^{(q_1+q_2-2)/8+T/4+h/2},$

by the supplements to the laws of quadratic and biquadratic reciprocity in Z[i], since $T \equiv 0 \pmod{4}$ in this case. As $\pi_j (j = 1, 2)$ is a primary prime factor of $q_j (j = 1, 2)$, we have $\pi_j = a_j + ib_j$, $a_j \equiv 1 \pmod{2}$, $b_j \equiv 0 \pmod{2}$, $a_j + b_j - 1 \equiv 0 \pmod{4}$, $a_j^2 + b_j^2 = q_j$. Since $q_j \equiv 5 \pmod{8}$, we have, for j = 1, 2,

$$\begin{cases} a_j \equiv 7 \pmod{8}, & b_j \equiv 2 \pmod{4}, & \text{if } q_j \equiv 5 \pmod{16}, \\ a_j \equiv 3 \pmod{8}, & b_j \equiv 2 \pmod{4}, & \text{if } q_j \equiv 13 \pmod{16}. \end{cases}$$

Set $a + ib = \pi_1 \pi_2$, so we have

$$a = a_1a_2 - b_1b_2, b = a_1b_2 + a_2b_1.$$

Clearly we have

$$a \equiv 5 \pmod{8}, \quad b \equiv 0 \pmod{4}, \quad \text{if } q_1 + q_2 \equiv 10 \pmod{16},$$

 $a \equiv 1 \pmod{8}, \quad b \equiv 0 \pmod{4}, \quad \text{if } q_1 + q_2 \equiv 2 \pmod{16}.$

From $1 - Ti = \pi_1 \pi_2 \alpha^2 = (a + ib)(g + ih)^2$, we have

$$1 = a(g^2 - h^2) - b(2gh),$$

so that

$$g \equiv 1 \pmod{2}, \quad h \equiv 2 \pmod{4}, \quad \text{if } q_1 + q_2 \equiv 10 \pmod{16},$$

 $g \equiv 1 \pmod{2}, \quad h \equiv 0 \pmod{4}, \quad \text{if } q_1 + q_2 \equiv 2 \pmod{16},$

giving

 $h/2 \equiv (q_1 + q_2 - 2)/8 \pmod{2}$,

so that

$$(\varepsilon_{q_1q_2}/p) = (-1)^{T/4}.$$

Similarly one can prove that $(\varepsilon_{q_1q_2}/p) = (-1)^{T/4+1}$, when $2p^l = q_1x^2 + q_2y^2$, using $(q_1/q_2)_4(q_2/q_1)_4 = +1$.

CASE VI. $q_1 \equiv q_2 \equiv 5 \pmod{8}$, $(q_1/q_2) = -1$. In this case I and C are in the principal genus and A and B are in the non-principal genus with $\chi_1 = +1$. We have $h = h(-q_1q_2) \equiv 0 \pmod{8}$ (Brown [4: Theorem 1]). Thus, if p is a prime such that $(-1/p) = (q_1/p) = (q_2/p) = +1$, there are positive coprime integers x and y such that $p^l = x^2 + q_1q_2y^2$ or $2p^l =$ $q_1x^2 + q_2y^2$, and if (-1/p) = 1, $(q_1/p) = (q_2/p) = -1$, such that $p^l = q_1x^2 + q_2y^2$ or $2p^l = x^2 + q_1q_2y^2$, where l = h/8. As $(q_1/q_2) = -1$, by Dirichlet's theorem [6: p. 228], we have $N(\varepsilon_{q_1q_2}) = -1$, and we assume that $h \equiv 8 \pmod{16}$, so that l is odd. The example $q_1 = 5$, $q_2 = 37$, h = h(-185) = 16, shows that this is a genuine assumption.

Using $p^{l} = x^{2} + q_{1}q_{2}y^{2}$ in Corollary 1, we obtain $(\varepsilon_{q_{1}q_{2}}/p) = +1$, and using $2p^{l} = q_{1}x^{2} + q_{2}y^{2}$ in Corollary 1, we obtain

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = (-1)^{(q_1+q_2-2)/8} \left(\frac{2q_1}{q_2}\right)_4 \left(\frac{2q_2}{q_1}\right)_4$$

the right hand side of which is -1, as $h \equiv 8 \pmod{16}$ (Kaplan [9: Prop. B'_1). Using $2p^{t} = x^2 + q_1q_2y^2$ in Corollary 2, we obtain

$$\left(\frac{\varepsilon_{q_1q_2}}{p}\right) = (-1)^{(q_1+q_2+6)/8} \left(\frac{2q_1}{q_2}\right)_4 \left(\frac{2q_2}{q_1}\right)_4 = +1.$$

Finally using $p' = q_1 x^2 + q_2 y^2$ in Corollary 2, we obtain $(\varepsilon_{q_1q_2}/p) = -1$.

This completes the proof of Theorem 2. We remark that parts of II and VI of Theorem 2 have been proved without the restriction $h(-q_1q_2) \equiv 8 \pmod{16}$ using class field theory [5].

We conclude with a few examples to illustrate the theorem.

EXAMPLE 1. (Compare Kuroda [10: pp. 155–156]) Choose $q_1 = 5$, $q_2 = 13$, so that $(q_1/q_2) = -1$, and $h = h(-q_1q_2) = h(-65) = 8$. By part VI of Theorem 2, if p is a prime such that

$$\left(\frac{-1}{p}\right) = \left(\frac{5}{p}\right) = \left(\frac{13}{p}\right) = +1,$$

then

$$\left(\frac{\varepsilon_{65}}{p}\right) = \left(\frac{8+\sqrt{65}}{p}\right) = \begin{cases} +1, & \text{if } p = x^2 + 65y^2, \\ -1, & \text{if } 2p = 5x^2 + 13y^2; \end{cases}$$

and if p is such that

$$\left(\frac{-1}{p}\right) = +1, \left(\frac{5}{p}\right) = \left(\frac{13}{p}\right) = -1,$$

then

$$\left(\frac{\varepsilon_{65}}{p}\right) = \left(\frac{8+\sqrt{65}}{p}\right) = \begin{cases} +1, & \text{if } 2p = x^2 + 65y^2, \\ -1, & \text{if } p = 5x^2 + 13y^2. \end{cases}$$

Thus, for example, we have

$$\left(\frac{\varepsilon_{65}}{601}\right) = +1$$
, as $601 = 4^2 + 65 \cdot 3^2$,

$$\left(\frac{\varepsilon_{65}}{29}\right) = -1$$
, as $2 \cdot 29 = 5 \cdot 3^2 + 13 \cdot 1^2$,
 $\left(\frac{\varepsilon_{65}}{37}\right) = +1$, as $2 \cdot 37 = 3^2 + 65 \cdot 1^2$,
 $\left(\frac{\varepsilon_{65}}{193}\right) = -1$, as $193 = 5 \cdot 6^2 + 13 \cdot 1^2$.

These are easily verified directly:

$$\begin{pmatrix} \frac{\varepsilon_{65}}{601} \end{pmatrix} = \begin{pmatrix} 8 + \frac{234}{601} \end{pmatrix} = \begin{pmatrix} \frac{242}{601} \end{pmatrix} = \begin{pmatrix} \frac{2}{601} \end{pmatrix} = +1,$$

$$\begin{pmatrix} \frac{\varepsilon_{65}}{29} \end{pmatrix} = \begin{pmatrix} \frac{8 + 6}{29} \end{pmatrix} = \begin{pmatrix} \frac{14}{29} \end{pmatrix} = -1,$$

$$\begin{pmatrix} -\frac{\varepsilon_{65}}{37} \end{pmatrix} = \begin{pmatrix} \frac{8 + 18}{37} \end{pmatrix} = \begin{pmatrix} \frac{26}{37} \end{pmatrix} = +1,$$

$$\begin{pmatrix} \frac{\varepsilon_{65}}{193} \end{pmatrix} = \begin{pmatrix} \frac{8 + 114}{193} \end{pmatrix} = \begin{pmatrix} \frac{122}{193} \end{pmatrix} = -1.$$

EXAMPLE 2. Choose $q_1 = 5$, $q_2 = 29$, so that $(q_1/q_2) = +1$, $N(\varepsilon_{q_1q_2}) = N(\varepsilon_{145}) = N(12 + \sqrt{145}) = -1$, $h = h(-q_1q_2) = h(-145) = 8$. By part V of Theorem 2, we have

$$\left(\frac{-1}{p}\right) = \left(\frac{5}{p}\right) = \left(\frac{29}{p}\right) = +1,$$

then

$$\left(\frac{\varepsilon_{145}}{p}\right) = \left(\frac{12 + \sqrt{145}}{p}\right) = \begin{cases} +1, & \text{if } p = x^2 + 145y^2, \\ -1, & \text{if } p = 5x^2 + 29y^2; \end{cases}$$

and if p is such that

$$\left(\frac{-1}{p}\right) = +1, \ \left(\frac{5}{p}\right) = \left(\frac{29}{p}\right) = -1,$$

then

$$\left(\frac{\varepsilon_{145}}{p}\right) = \left(\frac{12 + \sqrt{145}}{p}\right) = \begin{cases} +1, & \text{if } 2p = 5x^2 + 29y^2, \\ -1, & \text{if } 2p = x^2 + 145y^2. \end{cases}$$

EXAMPLE 3. Choose $q_1 = 17$, $q_2 = 5$, so that $(q_1/q_2) = -1$, and $h = (-q_1q_2) = h(-85) = 4$. By part IV of Theorem 2, we have that if p is a prime such that

$$\left(\frac{-1}{p}\right) = \left(\frac{85}{p}\right) = +1,$$

then

K. S. WILLIAMS

$$\left(\frac{\varepsilon_{85}}{p}\right) = \left(\frac{\frac{1}{2}(9+\sqrt{85})}{p}\right) = \begin{cases} (-1)^{y}, \text{ if } \left(\frac{17}{p}\right) = \left(\frac{5}{p}\right) = 1, \quad p = x^{2} + 85y^{2}, \\ (-1)^{y}, \text{ if } \left(\frac{17}{p}\right) = \left(\frac{5}{p}\right) = -1, \quad p = 17x^{2} + 5y^{2}. \end{cases}$$

Thus, for example, we have

$$\left(\frac{\varepsilon_{85}}{349}\right) = \left(\frac{\frac{1}{2}(9+145)}{349}\right) = \left(\frac{77}{349}\right) = +1, \quad 349 = 3^2 + 85 \cdot 2^2,$$

$$\left(\frac{\varepsilon_{85}}{89}\right) = \left(\frac{\frac{1}{2}(9+21)}{89}\right) = \left(\frac{15}{89}\right) = -1, \quad 89 = 2^2 + 85 \cdot 1^2,$$

$$\left(\frac{\varepsilon_{85}}{37}\right) = \left(\frac{\frac{1}{2}(9+23)}{37}\right) = \left(\frac{16}{37}\right) = +1, \quad 37 = 17 \cdot 1^2 + 5 \cdot 2^2,$$

$$\left(\frac{\varepsilon_{85}}{73}\right) = \left(\frac{\frac{1}{2}(9+31)}{73}\right) = \left(\frac{20}{73}\right) = -1, \quad 73 = 17 \cdot 2^2 + 5 \cdot 1^2.$$

EXAMPLE 4. Choose $q_1 = 17$, $q_2 = 53$, so that $(q_1/q_2) = +1$, $h = h(-q_1q_2) = h(-901) = 24$, $N(\varepsilon_{q_1q_2}) = N(\varepsilon_{901}) = -1$. By part III of Theorem 2, we have that if p is a prime such that

$$\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = \left(\frac{53}{p}\right) = +1,$$

then

$$\left(\frac{\varepsilon_{901}}{p}\right) = \left(\frac{30 + \sqrt{901}}{p}\right) = (-1)^{y},$$

where

$$p^3 = x^2 + 901y^2$$
 or $p^3 = 17x^2 + 53y^2$.

Thus, for example, we have

$$\left(\frac{\varepsilon_{901}}{89}\right) = \left(\frac{30+79}{89}\right) = \left(\frac{5}{89}\right) = +1, \qquad 89^3 = 587^2 + 901 \cdot 20^2, \\ \left(\frac{\varepsilon_{901}}{13}\right) = \left(\frac{30+2}{13}\right) = \left(\frac{2}{13}\right) = -1, \qquad 13^3 = 36^2 + 901 \cdot 1^2, \\ \left(\frac{\varepsilon_{901}}{149}\right) = \left(\frac{30+93}{149}\right) = \left(\frac{123}{149}\right) = +1, \qquad 149^3 = 17 \cdot 269^2 + 53 \cdot 198^2, \\ \left(\frac{\varepsilon_{901}}{1753}\right) = \left(\frac{30+253}{1753}\right) = \left(\frac{283}{1753}\right) = -1, \qquad 1753^3 = 17 \cdot 15410^2 + 53 \cdot 5047^2.$$

ACKNOWLEDGMENT

The author acknowledges with thanks the help of Dr. Duncan A.Buell (Bowling

Green State University) and Dr. Philip A. Leonard (Arizona State University) in the preparation of this paper.

REFERENCES

1. Pierre Barrucand and Harvey Cohn, Note on primes of type $x^2 + 32y^2$, class number, and residuacity, J. reine angew. Math., **238** (1969), 67–70.

2. Ezra Brown, *Binary quadratic forms of determinant-pq*, J. Number Theory, 4 (1972), 408–410.

3. ——, The power of 2 dividing the class-number of a binary quadratic discriminant, J. Number Theory, **5** (1973), 413–419.

4. —, Class numbers of complex quadratic fields, J. Number Theory, 6 (1974), 185–191.

5. Duncan A. Buell, Philip A. Leonard and Kenneth S. Williams, *Note on the quadratic character of a quadratic unit*, Pacific J. Math. (to appear).

6. P.G.L. Dirichlet, *Einige neue Sätze über unbestimmte Gleichungen*, Ges. Werke, republished by Chelsea, 1969, pp. 221-236.

7. Yoshiomi Furuta, Norms of units of quadratic fields, J. Math. Soc. Japan, 11 (1959), 139-145.

8. Helmut Hasse, Über die Klassenzahl des Körpers $P(\sqrt{-2p})$ mit einer Primzahl $p \neq 2$, J. Number Theory, 1 (1969), 231–234.

9. Pierre Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. reine angew. Math., 283/284 (1976), 313-363.

10. Sigekatu Kuroda, Über die Zerlegung rationaler Primzahlen in gewisesn nichtabelschen galoisschen Körpern, J. Math. Soc. Japan, 3 (1951), 148–156.

11. Emma Lehmer, On some special quartic reciprocity laws, Acta Arith., 21 (1972), 367–377.

12. Philip A. Leonard and Kenneth S. Williams, *The quadratic and quartic character* of certain quadratic units I, Pacific J. Math., 71 (1977), 101–106.

13. ——, The quadratic character of certain quadratic units II, Rocky Mountain J. Math., 9 (1979), 683–692.

14. Charles J. Parry, On a conjecture of Brandler, J. Number Theory, 8 (1976), 492–495.

CARLETON UNIVERSITY Ottawa, Ontario, Canada

Research supported by the National Research Council of Canada under grant A-7233.