Williams, K.S. 1979. Remark on an Assertion of Chowla.
 K. norske Vidensk. Selsk. Skr. 1, 3-4.

K.S. Williams, Carleton University, Ottawa, Ontario, Canada

In [1] Chowla asserts without proof that if $p \equiv 1(\bmod 4)$
is a prime satisfying $\left(\frac{6}{p}\right)=1$, then

$$
s=\sum_{n=0}^{p-1}\left(\frac{6 n^{4}+11 n^{3}+6 n^{2}+n}{p}\right)=2 e-1,
$$

where $p=a^{2}+b^{2}, a \equiv-\left(\frac{2}{p}\right)(\bmod 4), b \equiv 0(\bmod 2)$. We give a simple proof of the evaluation $s=2 Q-\left(\frac{6}{p}\right)$, for any prime $p \equiv 1(\bmod 4)$. Let p denote a complete residue system modulo p and define w by $w^{2} \equiv-1(\bmod p)$. The mapping $n \rightarrow \frac{1}{-w n-2}$ (taken modulo p) is a bijection from $P-|2 w|$ to $P-101$, which sends $6 n^{4}+11 n^{3}+6 n^{2}+n \rightarrow \frac{w n\left(n^{2}+1\right)}{(w n+2)^{4}}$. Hence we heve

$$
s=\sum_{n=1}^{p-1}\left(\frac{6 n^{4}+1 l n^{3}+6 n^{2}+n}{p}\right)=\sum_{\substack{n=0 \\ n \neq 2 w}}^{p-1}\left(\frac{\frac{w n\left(n^{2}+1\right)}{(w n+2)^{4}}}{p}\right)=\left(\frac{w}{p}\right) \sum_{\substack{n=0 \\ n \neq 2 w}}^{p-1}\left(\frac{n\left(n^{2}+1\right)}{p}\right)
$$

that is

$$
S=\left(\frac{2}{p}\right) \sum_{n=0}^{p-1}\left(\frac{n\left(n^{2}+1\right)}{p}\right)-\left(\frac{6}{p}\right)
$$

as $\left(\frac{w}{p}\right)=\left(\frac{2}{p}\right)$ (since $\left.2 w \equiv(1+w)^{2}(\operatorname{sod} p)\right)$. The sum $T=\sum_{n=0}^{p-1}\left(\frac{n\left(n^{2}+1\right)}{p}\right)$ is a Jacobsthal sum whose value is given by $T=2 a_{1}$, where $p=a_{1}^{2}+b_{1}^{2}$, $a_{1} \equiv-1(\bmod 4), b_{1} \equiv 0(\bmod 2)($ see $[2:(6.1),(6.2)]) . \quad$ clearly $a=\left(\frac{2}{p}\right) a_{1}$ and the result follows.

1. S. Chowla, on the class number of the function field $y^{2}=f(x)$ over GF.(p), Norske Vid. Selks. Forh., 39 (1966), 86-88.
2. A.L. Whiteman, Cyclotomy and Jacobsthal sums, Amer. J. Math., 54 (1952), 89-99.

Submitted to the Secretary General 15th October 1977 by Mr. S. Selberg. Printed January 1979.

DKNVS/Universitetsforlaget 1979.

