Evaluation of Certain Jacobsthal Sums.

Philf A. Leonard (Tempe, Arizona)
Kenneth S. Willlams (Ottawa, Ontario) (*)

Sunto. - 1 numeri primi $q=3,5,7,11,13,17$ e 19 sono esattamente quei numeri primi dispari per cui l'anello $Z[\zeta], \zeta=\exp (2 \pi i / q)$ è un dominio a fattorizzazione unica. Per tali numeri primi la somma di Jacobsthal

$$
\varphi_{\varphi}(a)=\sum_{x=0}^{p-1}\left(\frac{x}{p}\right)\left(\frac{x^{a}+a}{p}\right)
$$

e la somma as8ociata

$$
\psi_{v}(a)=\sum_{x=0}^{p-1}\left(\frac{x^{x}+a}{p}\right)
$$

(dove (\cdot / p) è il simbolo di Legendre per un numero primo $p \equiv 1$ (mod q) ed a è un intero non divisibile per p) si esprimono in termini di opportuni fattori primi normalizzati di p in $Z[\zeta]$. I casi $q=3$ e 5 sono gid stati studiati da A. R. Rajwade.

1. - Introduction.

Recently Rajwade [3], [4] has evaluated the character sums

$$
\psi_{q}(a)=\sum_{x=0}^{p-1}\left(\frac{x^{q}+a}{p}\right)
$$

where $(\cdot \mid p)$ is the Legendre symbol, for a prime $p \equiv 1(\bmod q)$, a an integer not divisible by p, and $q=3,5$. In this paper we extend his results to evaluate these sums and the Jacobsthal sums

$$
\phi_{q}(a)=\sum_{x=0}^{p-1}\left(\frac{x}{p}\right)\left(\frac{x^{\alpha}+a}{p}\right)
$$

(*) The research of both authors was supported by the National Re. search Council of Canada under Grant A-7233.
for the primes $q=3,5,7,11,13,17$ and 19. These are precisely the odd primes q for which the ring $Z[\zeta]$, where $\zeta=\exp (2 \pi i / q)$, is a unique factorization domain [2], and $\psi_{q}(a), \varphi_{q}(a)$ are evaluated in terms of suitable normalized prime factors of p in $Z[\zeta]$.

Let p be a prime $\equiv 1(\bmod q)$, where q is one of the primes listed above. If π is any prime factor of p in $Z[\zeta]$, we order its conjugates by setting $\pi_{k}=\sigma_{k}(\pi), 1 \leqslant k \leqslant q-1$, where σ_{k} is the automorphism of $Q(\zeta)$ determined by $\sigma_{k}(\zeta)=\zeta^{k}$. If (\cdot / π) is the q-th power character defined (for integers $y \not \equiv 0(\bmod p))$ by $(y / \pi)_{q}=\zeta^{\lambda}$ if $y^{(p-1) / a} \equiv \zeta^{\lambda}(\bmod \pi)$, this ordering is such that $\left(y / \pi_{k}\right)_{q}=\left(y / \pi_{1}\right)_{q}^{k}$ for $1 \leqslant k \leqslant q-1$. Finally we define, for $1 \leqslant k \leqslant q-1, \bar{k}$ to be the unique integer such that $k \bar{k} \equiv 1(\bmod q), 1 \leqslant \bar{k} \leqslant q-1$. Our result is the following

Theorem. - Let q be one of $3,5,7,11,13,17,19$, let p be a prime $\equiv 1(\bmod q)$, and let a be an integer $\not \equiv 0(\bmod p)$. Then, if π is any prime factor of p in $Z[\zeta]$ with $\pi \equiv-1\left(\bmod (1-\zeta)^{2}\right)$, we have
and
2. - Preliminary results.

We first prove three lemmas. Lemmas 1 and 2 are needed for the proof of Lemma 3. Lemmas 1 and 3 are used in the proof of the Theorem. (We emphasize that throughout this paper q is restricted to be one of $3,5,7,11,13,17,19$ so that $Z[\zeta]$ is a U.F.D.)

Lemma 1. - If $\alpha \in Z[\zeta]$ is such that $\propto \neq 0(\bmod (1-\zeta))$, then α possesses an associate α^{\prime} such that $\alpha^{\prime} \equiv-1\left(\bmod (1-\zeta)^{2}\right)$.

Proof. - For any $x \in Z[\zeta]$ we can define $\left(k_{1}, \ldots, k_{q-1}\right) \in Z^{q-1}$ uniquely by $x=k_{1} \zeta+\ldots+k_{\alpha-1} \zeta^{a-1}$. We define mappings $r_{i}: Z[\zeta] \rightarrow Z$ ($i=1,2$) by

$$
\begin{equation*}
r_{1}(x)=k_{1}+\ldots+k_{\alpha-1}, \quad r_{2}(x)=k_{1}+2 k_{2}+\ldots+(q-1) k_{\alpha-1} \tag{2.1}
\end{equation*}
$$

so that

$$
r_{1}(1) \equiv 1(\bmod q), \quad r_{2}(1) \equiv 0(\bmod q)
$$

It is easy to verify that

$$
\begin{array}{ll}
r_{i}\left(\varkappa_{1}+\varkappa_{2}\right)=r_{i}\left(\varkappa_{1}\right)+r_{i}\left(\varkappa_{2}\right), & \left(\varkappa_{1}, \varkappa_{2} \in Z[\zeta], i=1,2\right) \tag{2.2}\\
r_{i}(n x)=n r_{i}(x), & (x \in Z[\zeta], n \in Z, i=1,2)
\end{array}
$$

and that
(2.3) $\quad r_{1}(\zeta x) \equiv r_{1}(x)(\bmod q), \quad r_{2}(\zeta x) \equiv r_{1}(x)+r_{2}(x)(\bmod q)$.

From (2.3) it follows that for $l=0,1,2, \ldots$

$$
\begin{align*}
& r_{1}\left(\zeta^{l} x\right) \equiv r_{1}(x)(\bmod q) \tag{2.4}\\
& r_{2}\left(\zeta^{l} x\right) \equiv r_{1}(x)+r_{2}(x)(\bmod q)
\end{align*}
$$

From (2.2), (2.3), (2.4) it follows using the multinomial theorem (or by induction) that for $m=0,1,2, \ldots$

$$
\begin{align*}
& r_{1}\left((1+\zeta)^{m} x\right) \equiv 2^{m} r_{1}(x)(\bmod q) \\
& r_{1}\left(\left(1+\zeta+\zeta^{2}\right)^{m} x\right) \equiv 3^{m} r_{1}(x)(\bmod q) \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
& r_{2}\left((1+\zeta)^{m} \varkappa\right) \equiv m 2^{m-1} r_{1}(x)+2^{m} r_{2}(\varkappa)(\bmod q) \tag{2.6}\\
& r_{2}\left(\left(1+\zeta+\zeta^{2}\right)^{m} \varkappa\right) \equiv m 3^{m} r_{1}(x)+3^{m} r_{2}(x)(\bmod q)
\end{align*}
$$

Thus from (2.4), (2.5), (2.6) we obtain for $l, m=0,1,2, \ldots$

$$
\begin{align*}
& r_{1}\left(\zeta^{l}(1+\zeta)^{m} x\right) \equiv 2^{m} r_{1}(x)(\bmod q) \\
& r_{1}\left(\zeta^{l}\left(1+\zeta+\zeta^{2}\right)^{m} x\right) \equiv 3^{m} r_{1}(x)(\bmod q) \tag{2.7}
\end{align*}
$$

and

$$
\begin{align*}
& r_{2}\left(\zeta^{l}(1+\zeta)^{m} \varkappa\right) \equiv\left(m 2^{m-1}+l 2^{m}\right) r_{1}(x)+2^{m} r_{2}(x)(\bmod q), \\
& r_{2}\left(\zeta^{l}\left(1+\zeta+\zeta^{2}\right)^{m} \varkappa\right) \equiv\left(m 3^{m}+l 3^{m}\right) r_{1}(x)+3^{m} r_{2}(x)(\bmod q) \tag{2.8}
\end{align*}
$$

Now let $\alpha \in Z[\zeta]$ be such that $\alpha \not \equiv 0(\bmod (1-\zeta))$ so that $r_{1}(\alpha) \neq 0$ $(\bmod q)$. If $q=3,5,11,13$, or 19 , then 2 is a primitive root $(\bmod q)$, and we can choose non-negative integers l and m such that

$$
\begin{aligned}
& 2^{m} r_{1}(\alpha)+1 \equiv 0(\bmod q) \\
& (2 l+m) r_{1}(\alpha)+2 r_{2}(\alpha) \equiv 0(\bmod q)
\end{aligned}
$$

so that by (2.2), (2.7), (2.8) we have

$$
r_{1}\left(\zeta^{l}(1+\zeta)^{m} \alpha+1\right) \equiv r_{2}\left(\zeta^{l}(1+\zeta)^{m} \alpha+1\right) \equiv 0(\bmod q),
$$

so that $\alpha^{\prime}+1 \equiv 0\left(\bmod (1-\zeta)^{2}\right)$ where $\alpha^{\prime}=\zeta^{\prime}(1+\zeta)^{m} \alpha . \quad \alpha^{\prime}$ is an associate of α as $1+\zeta$ is a unit of $Z[\zeta]$.

If $q=7$ or 17 , then 3 is a primitive root $(\bmod q)$, and we can choose positive integers l and m such that

$$
\begin{aligned}
& 3^{m} r_{1}(\alpha)+1 \equiv 0(\bmod q) \\
& (l+m) r_{1}(\alpha)+r_{2}(\alpha) \equiv 0(\bmod q)
\end{aligned}
$$

so that by (2.2), (2.7), (2.8) we have

$$
r_{1}\left(\zeta^{1}\left(1+\zeta+\zeta^{2}\right)^{m} \alpha+1\right) \equiv r_{2}\left(\zeta^{l}\left(1+\zeta+\zeta^{2}\right)^{m} \alpha+1\right) \equiv 0(\bmod q)
$$

so that $\alpha^{\prime}+1 \equiv 0\left(\bmod (1-\zeta)^{2}\right)$ where $\alpha^{\prime}=\zeta^{\prime}\left(1+\zeta+\zeta^{2}\right)^{m} \alpha . \alpha^{\prime}$ is an associate of α as $1+\zeta+\zeta^{2}$ is a unit of $Z[\zeta]$.

This completes the proof of Lemma 1.
Lemma 2. - If $\alpha, \beta \in Z[\zeta]$ are such that
(a) $\alpha \bar{\alpha}=\beta \hat{\beta}$,
(b) $\alpha, \beta \neq 0(\bmod (1-\zeta))$,
(c) $\alpha \equiv \beta\left(\bmod (1-\zeta)^{2}\right)$,
(d) $\alpha \sim \beta$,
then

$$
\alpha=\beta
$$

Proof. - Any unit of $Z[\zeta]$ can be expressed in the form $\zeta^{i} r$, where $0 \leqslant i \leqslant q-1$ and r is a real number. Thus from (d) we have $\alpha=\zeta^{i} r \beta$. Using (a) we obtain $\alpha \bar{\alpha}=r^{2} \beta \bar{\beta}=r^{2} \alpha \bar{\alpha}$. Now (b) guarantees that $\alpha \neq 0$, so that $\alpha \bar{\alpha} \neq 0$, and we must have $r^{2}=1, r= \pm 1$, that is, $\alpha= \pm \zeta^{i} \beta, 0 \leqslant i \leqslant q-1$. From (b) and (c) we have

$$
\left(\pm \zeta^{i}-1\right) \beta \equiv 0\left(\bmod (1-\zeta)^{2}\right), \quad \beta \neq 0(\bmod (1-\zeta))
$$

so that $\pm \zeta^{i}-1 \equiv 0\left(\bmod (1-\zeta)^{2}\right)$. As $i=0,1, \ldots, q-1$ this can only hold with the positive sign and $i=0$, so that $\alpha=\beta$.

This completes the proof of Lemma 2.
Next let π be any prime of $Z[\zeta]$ dividing the rational prime $p \equiv 1(\bmod q)$, and let $(\cdot / \pi)_{q}$ denote the corresponding q-th power
character. We consider the Jacobi sums $J_{\pi}(k, l)$, where k, l are rational integers, defined by

$$
J_{\pi}(k, l)=\sum_{\substack{x, v=0 \\ x+v=1(\bmod p)}}^{p-1}\left(\frac{x}{\pi}\right)_{a}^{k}\left(\frac{y}{\pi}\right)_{a}^{l}=\sum_{x=0}^{p-1}\left(\frac{x}{\pi}\right)_{a}^{k}\left(\frac{x+1}{\pi}\right)_{a}^{l}
$$

If none of $k, l, k+l$ is divisible by q, then ([1], p. 94)

$$
J_{\pi}(k, l) \overline{J_{\pi}(k, l)}=p
$$

Moreover, an argument of Davenport-Hasse ([1], p. 153) shows that

$$
J_{\pi}(k, l) \equiv-1\left(\bmod (1-\zeta)^{2}\right)
$$

Lemma 3. - Let q be one of $3,5,7,11,13,17,19$, and let p be a prime $\equiv 1(\bmod q)$. Let π be any prime factor of p in $Z[\zeta]$ such that $\pi \equiv-1\left(\bmod (1-\zeta)^{2}\right)$. (The existence of such $a \pi$ is guaranteed by Lemma 1; indeed, there are infinitely many choices for π.) Set $\pi_{k}=\sigma_{k}(\pi), 1 \leqslant k \leqslant q-1$, so that $p=\pi_{1} \pi_{2} \ldots \pi_{\sigma_{-1}}$. Then for $1 \leqslant l \leqslant q-1$ we have

$$
J_{\pi}(l, l)=(-1)^{(a+1) / 2} \prod_{k=1}^{\ddagger(a-1)} \pi_{\overline{k l}}
$$

Proof. - As $\sigma_{l}\left(\pi_{s}\right)=\pi_{l s}$ and $J_{\pi}(l, l)=\sigma_{l}\left(J_{\pi}(1,1)\right)$ it suffices to prove the result for $l=1$. Now set

$$
\alpha=J_{\pi}(1,1) \quad \text { and } \quad \beta=(-1)^{(a+1) / 2} \prod_{k=1}^{\downarrow(a-1)} \pi_{\bar{k}}
$$

so that $\alpha \bar{\alpha}=\beta \bar{\beta}=p, \alpha \equiv \beta \equiv-1\left(\bmod (1-\zeta)^{2}\right)$. Next

$$
\begin{aligned}
\alpha=J_{\pi}(1,1) & =\sum_{x=0}^{p-1}\left(\frac{x}{\pi}\right)_{a}^{k \bar{k}}\left(\frac{x+1}{\pi}\right)_{a}^{k \bar{k}} \\
& =\sum_{x=0}^{p-1}\left(\frac{x}{\pi_{\bar{k}}}\right)_{a}^{k}\left(\frac{x+1}{\pi_{\bar{k}}}\right)_{a}^{k} \\
& \equiv \sum_{x=0}^{p-1} x^{k(p-1) / a}(x+1)^{k(p-1) / a}\left(\bmod \pi_{\bar{k}}\right)
\end{aligned}
$$

$\operatorname{As} \sum_{x=0}^{p-1} x^{n} \equiv 0(\bmod p)$ for $0<n<p-1$ we have $\alpha \equiv 0\left(\bmod \pi_{\bar{k}}\right)$ whenever $1 \leqslant k \leqslant \frac{1}{2}(q-1)$. Thus, as $\alpha \bar{\alpha}=p$, we have $\alpha \sim \prod_{k=1}^{1(a-1)} \pi_{\bar{k}}$, that is
$\alpha \sim \beta$. The result $\alpha=\beta$ now follows from Lemma 2 completing the proof of Lemma 3.

3. - Proof of the Theorem.

Let π be any prime of $Z[\zeta]$ dividing $p \equiv 1(\bmod q)$ such that $\pi \equiv-1\left(\bmod (1-\zeta)^{2}\right)$. Then

$$
\begin{equation*}
\sum_{x=0}^{p-1}\left(\frac{x^{a}+a}{p}\right)=\sum_{v=0}^{p-1}\left(\frac{y+a}{p}\right)_{l=0}^{a-1}\left(\frac{y}{\pi}\right)_{q}^{l} \tag{3.1}
\end{equation*}
$$

Now if $F(z)$ is a complex-valued function of period p with $\sum_{z=0}^{p-1} F(z)=0$ then we have

$$
\begin{equation*}
\sum_{y=0}^{p-1}\left(\frac{y+a}{p}\right) F(y)=\left(\frac{a}{p}\right) \sum_{z=0}^{p-1} F^{\prime}(4 a z(z+1)) \tag{3.2}
\end{equation*}
$$

as the number of solutions z of $4 a z(z+1) \equiv y(\bmod p)$ is $1+$ $+(a(y+a) / p)$. Taking $F(y)=\sum_{l=0}^{a-1}(y / \pi)_{a}^{l}$ in (3.2), (3.1) becomes by Lemma 3

$$
\begin{aligned}
\psi_{a}(a) & =\left(\frac{a}{p}\right)^{a-1} \sum_{l=1}^{p-1}\left\{\sum_{\pi=0}^{\pi}\left(\frac{4 a z(z+1)}{\pi}\right)_{a}^{l}\right\} \\
& \left.=\left(\frac{a}{p}\right)_{l=1}^{a-1} \sum_{l=1}^{\pi}\right)_{a}^{l} J_{\pi}(l, l) \\
& =(-1)^{(a+1) / 2}\left(\frac{a}{p}\right)_{i=1}^{a-1}\left(\frac{4 a}{\pi_{i}}\right)_{a} \prod_{k=1}^{l(q-1)} \pi_{i \bar{k}}
\end{aligned}
$$

which proves (1.1).
The transformation $x \rightarrow \bar{x}$ gives

$$
\sum_{x=1}^{p-1}\left(\frac{a x^{q}+1}{p}\right)=\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)^{a+1}\left(\frac{a \bar{x}^{a}+1}{p}\right)=\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)\left(\frac{x^{a}+a}{p}\right)
$$

so that

$$
\begin{aligned}
& \varphi_{q}(a)=\left(\frac{a}{p}\right)_{x=0}^{p-1}\left(\frac{x^{a}+\bar{a}}{p}\right)-1 \\
& =(-1)^{(a+1) / 2} \sum_{i=1}^{a-1}\left(\frac{4 \bar{a}}{\pi_{i}}\right)_{a}\left(\prod_{k=1}^{p(\alpha-1)} \pi_{i \bar{k}}-1 \quad\right. \text { (by (1.1)), }
\end{aligned}
$$

which proves (1.2).
This completes the proof of the Theorem.

REFERENCES

[1] K. Ireland - M. I. Rosen, Elements of number theory, Bogden and Quigley, Tarrytown, New York, 1972.
[2] J. Myron Masley - Hogh L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math., 286/287 (1976), pp. 248-256.
[3] A. R. Rajwade, On rational primes p congruent to 1 (mod 3 or 5), Proc. Cambridge Philos. Soc., 66 (1969), pp. 61-70.
[4] A. R. Rajwade, On the congruence $y^{2} \equiv x^{5}-a(\bmod p)$, Proc. Cambridge Philos. Soc., 74 (1973), pp. 473-475.

Pervenuta alla Segreteria dell' U. M. I.
il 27 settembre 1977

