Evaluation of Certain Jacobsthal Sums.

PHILIP A. LEONARD (Tempe, Arizona) KENNETH S. WILLIAMS (Ottawa, Ontario) (*)

Sunto. – I numeri primi q = 3, 5, 7, 11, 13, 17 e 19 sono esattamente quei numeri primi dispari per cui l'anello $Z[\zeta], \zeta = \exp(2\pi i/q)$ è un dominio a fattorizzazione unica. Per tali numeri primi la somma di Jacobsthal

$$\varphi_{\varphi}(a) = \sum_{x=0}^{p-1} \left(\frac{x}{p}\right) \left(\frac{x^{q}+a}{p}\right)$$

e la somma associata

$$\psi_{\psi}(a) = \sum_{x=0}^{p-1} \left(\frac{x^{2}+a}{p} \right)$$

(dove (\cdot/p) è il simbolo di Legendre per un numero primo $p \equiv 1 \pmod{q}$ ed a è un intero non divisibile per p) si esprimono in termini di opportuni fattori primi normalizzati di p in Z[ζ]. I casi q = 3 e 5 sono già stati studiati da A. R. Rajwade.

1. - Introduction.

Recently Rajwade [3], [4] has evaluated the character sums

$$\psi_q(a) = \sum_{x=0}^{p-1} \left(\frac{x^q + a}{p} \right),$$

where (\cdot/p) is the Legendre symbol, for a prime $p \equiv 1 \pmod{q}$, a an integer not divisible by p, and q = 3, 5. In this paper we extend his results to evaluate these sums and the Jacobsthal sums

$$\phi_q(a) = \sum_{x=0}^{p-1} \left(\frac{x}{p}\right) \left(\frac{x^q+a}{p}\right)$$

(*) The research of both authors was supported by the National Research Council of Canada under Grant A-7233. for the primes q = 3, 5, 7, 11, 13, 17 and 19. These are precisely the odd primes q for which the ring $Z[\zeta]$, where $\zeta = \exp(2\pi i/q)$, is a unique factorization domain [2], and $\psi_{\alpha}(a)$, $\varphi_{\alpha}(a)$ are evaluated in terms of suitable normalized prime factors of p in $Z[\zeta]$.

Let p be a prime $\equiv 1 \pmod{q}$, where q is one of the primes listed above. If π is any prime factor of p in $Z[\zeta]$, we order its conjugates by setting $\pi_k = \sigma_k(\pi)$, $1 \leq k \leq q-1$, where σ_k is the automorphism of $Q(\zeta)$ determined by $\sigma_k(\zeta) = \zeta^k$. If (\cdot/π) is the q-th power character defined (for integers $y \not\equiv 0 \pmod{p}$) by $(y/\pi)_q = \zeta^4$ if $y^{(p-1)/q} \equiv \zeta^{\lambda} \pmod{\pi}$, this ordering is such that $(y/\pi_k)_q = (y/\pi_1)_q^k$ for $1 \leq k \leq q-1$. Finally we define, for $1 \leq k \leq q-1$, \bar{k} to be the unique integer such that $k\bar{k} \equiv 1 \pmod{q}$, $1 \leq \bar{k} \leq q-1$. Our result is the following

THEOREM. – Let q be one of 3, 5, 7, 11, 13, 17, 19, let p be a prime $\equiv 1 \pmod{q}$, and let a be an integer $\neq 0 \pmod{p}$. Then, if π is any prime factor of p in $Z[\zeta]$ with $\pi \equiv -1 \pmod{(1-\zeta)^2}$, we have

(1.1)
$$\psi_{q}(a) = (-1)^{q+1/2} \left(\frac{a}{p}\right) \sum_{l=1}^{(a-1)} \left(\frac{4a}{\pi_{l}}\right)_{q}^{\frac{1}{2}(a-1)} \pi_{lk}$$

and

(1.2)
$$\phi_q(a) = (-1)^{q+1/2} \sum_{i=1}^{q-1} \left(\frac{4\bar{a}}{\pi_i} \right)_q \prod_{k=1}^{i(q-1)} \pi_{i\bar{k}} - 1 .$$

2. – Preliminary results.

We first prove three lemmas. Lemmas 1 and 2 are needed for the proof of Lemma 3. Lemmas 1 and 3 are used in the proof of the Theorem. (We emphasize that throughout this paper q is restricted to be one of 3, 5, 7, 11, 13, 17, 19 so that $Z[\zeta]$ is a U.F.D.)

LEMMA 1. - If $\alpha \in \mathbb{Z}[\zeta]$ is such that $\alpha \neq 0 \pmod{(1-\zeta)}$, then α possesses an associate α' such that $\alpha' \equiv -1 \pmod{(1-\zeta)^2}$.

PROOF. - For any $\varkappa \in Z[\zeta]$ we can define $(k_1, \ldots, k_{\alpha-1}) \in Z^{\alpha-1}$ uniquely by $\varkappa = k_1 \zeta + \ldots + k_{\alpha-1} \zeta^{\alpha-1}$. We define mappings $r_i: Z[\zeta] \to Z$ (i = 1, 2) by

(2.1)
$$r_1(\varkappa) = k_1 + \ldots + k_{q-1}, \quad r_2(\varkappa) = k_1 + 2k_2 + \ldots + (q-1)k_{q-1},$$

so that

$$r_1(1) \equiv 1 \pmod{q}$$
, $r_2(1) \equiv 0 \pmod{q}$.

It is easy to verify that

(2.2)
$$r_i(x_1 + x_2) = r_i(x_1) + r_i(x_2)$$
, $(x_1, x_2 \in Z[\zeta], i = 1, 2)$
 $r_i(nx) = nr_i(x)$, $(x \in Z[\zeta], n \in Z, i = 1, 2)$

and that

(2.3)
$$r_1(\zeta \varkappa) \equiv r_1(\varkappa) \pmod{q}$$
, $r_2(\zeta \varkappa) \equiv r_1(\varkappa) + r_2(\varkappa) \pmod{q}$.

From (2.3) it follows that for l = 0, 1, 2, ...

(2.4)
$$\begin{aligned} r_1(\zeta^{\imath}\varkappa) &\equiv r_1(\varkappa) \pmod{q} , \\ r_2(\zeta^{\imath}\varkappa) &\equiv lr_1(\varkappa) + r_2(\varkappa) \pmod{q} . \end{aligned}$$

From (2.2), (2.3), (2.4) it follows using the multinomial theorem (or by induction) that for m = 0, 1, 2, ...

(2.5)
$$\begin{aligned} r_1((1+\zeta)^m\varkappa) &\equiv 2^m r_1(\varkappa) \pmod{q} , \\ r_1((1+\zeta+\zeta^2)^m\varkappa) &\equiv 3^m r_1(\varkappa) \pmod{q} , \end{aligned}$$

and

(2.6)
$$\begin{aligned} r_2((1+\zeta)^m \varkappa) &\equiv m 2^{m-1} r_1(\varkappa) + 2^m r_2(\varkappa) \pmod{q} , \\ r_2((1+\zeta+\zeta^2)^m \varkappa) &\equiv m 3^m r_1(\varkappa) + 3^m r_2(\varkappa) \pmod{q} . \end{aligned}$$

Thus from (2.4), (2.5), (2.6) we obtain for l, m = 0, 1, 2, ...

(2.7)
$$r_1(\zeta^{\iota}(1+\zeta)^m\varkappa) \equiv 2^m r_1(\varkappa) \pmod{q}, \\ r_1(\zeta^{\iota}(1+\zeta+\zeta^2)^m\varkappa) \equiv 3^m r_1(\varkappa) \pmod{q},$$

and

(2.8)
$$\begin{aligned} r_2(\zeta^l(1+\zeta)^m\varkappa) &\equiv (m2^{m-1}+l2^m)r_1(\varkappa)+2^mr_2(\varkappa) \pmod{q} , \\ r_2(\zeta^l(1+\zeta+\zeta^2)^m\varkappa) &\equiv (m3^m+l3^m)r_1(\varkappa)+3^mr_2(\varkappa) \pmod{q} . \end{aligned}$$

Now let $\alpha \in Z[\zeta]$ be such that $\alpha \neq 0 \pmod{(1-\zeta)}$ so that $r_1(\alpha) \neq 0 \pmod{q}$. If q = 3, 5, 11, 13, or 19, then 2 is a primitive root (mod q), and we can choose non-negative integers l and m such that

$$2^m r_1(\alpha) + 1 \equiv 0 \pmod{q} ,$$

(2l+m)r_1(\alpha) + 2r_2(\alpha) \equiv 0 \pmod{q} ,

so that by (2.2), (2.7), (2.8) we have

$$r_1(\zeta^{\iota}(1+\zeta)^m\alpha+1) \equiv r_2(\zeta^{\iota}(1+\zeta)^m\alpha+1) \equiv 0 \pmod{q},$$

so that $\alpha' + 1 \equiv 0 \pmod{(1-\zeta)^2}$ where $\alpha' = \zeta^{\iota}(1+\zeta)^m \alpha$. α' is an associate of α as $1+\zeta$ is a unit of $Z[\zeta]$.

If q = 7 or 17, then 3 is a primitive root (mod q), and we can choose positive integers l and m such that

$$3^m r_1(\alpha) + 1 \equiv 0 \pmod{q},$$

$$(l+m) r_1(\alpha) + r_2(\alpha) \equiv 0 \pmod{q},$$

so that by (2.2), (2.7), (2.8) we have

$$r_1(\zeta^{\prime}(1+\zeta+\zeta^2)^m\alpha+1) \equiv r_2(\zeta^{\prime}(1+\zeta+\zeta^2)^m\alpha+1) \equiv 0 \pmod{q},$$

so that $\alpha' + 1 \equiv 0 \pmod{(1-\zeta)^2}$ where $\alpha' = \zeta'(1+\zeta+\zeta^2)^m \alpha$. α' is an associate of α as $1+\zeta+\zeta^2$ is a unit of $Z[\zeta]$.

This completes the proof of Lemma 1.

LEMMA 2. - If $\alpha, \beta \in Z[\zeta]$ are such that

- (a) $\alpha \bar{\alpha} = \beta \bar{\beta}$,
- (b) $\alpha, \beta \not\equiv 0 \pmod{(1-\zeta)}$,
- (c) $\alpha \equiv \beta \pmod{(1-\zeta)^2}$,

(d)
$$\alpha \sim \beta$$
,

then

$$\alpha = \beta$$
.

PROOF. – Any unit of $Z[\zeta]$ can be expressed in the form $\zeta^{i}r$, where 0 < i < q-1 and r is a real number. Thus from (d) we have $\alpha = \zeta^{i} r\beta$. Using (a) we obtain $\alpha \bar{\alpha} = r^{2}\beta \bar{\beta} = r^{2}\alpha \bar{\alpha}$. Now (b) guarantees that $\alpha \neq 0$, so that $\alpha \bar{\alpha} \neq 0$, and we must have $r^{2} = 1$, $r = \pm 1$, that is, $\alpha = \pm \zeta^{i}\beta$, 0 < i < q-1. From (b) and (c) we have

 $(\pm \zeta^i - 1)\beta \equiv 0 \pmod{(1-\zeta)^2}, \quad \beta \not\equiv 0 \pmod{(1-\zeta)},$

so that $\pm \zeta^{i} - 1 \equiv 0 \pmod{(1-\zeta)^{2}}$. As i = 0, 1, ..., q-1 this can only hold with the positive sign and i = 0, so that $\alpha = \beta$.

This completes the proof of Lemma 2.

Next let π be any prime of $Z[\zeta]$ dividing the rational prime $p \equiv 1 \pmod{q}$, and let $(\cdot/\pi)_q$ denote the corresponding q-th power

4

character. We consider the Jacobi sums $J_{\pi}(k, l)$, where k, l are rational integers, defined by

$$J_{\pi}(k, l) = \sum_{\substack{x,y=0\\x+y=1 \pmod{p}}}^{p-1} \left(\frac{x}{\pi}\right)_a^k \left(\frac{y}{\pi}\right)_a^l = \sum_{x=0}^{p-1} \left(\frac{x}{\pi}\right)_a^k \left(\frac{x+1}{\pi}\right)_a^l.$$

If none of k, l, k+l is divisible by q, then ([1], p. 94)

$$J_{\pi}(k, l)\overline{J_{\pi}(k, l)} = p \; .$$

Moreover, an argument of Davenport-Hasse ([1], p. 153) shows that

$$J_{\pi}(k, l) \equiv -1 \pmod{(1-\zeta)^2}.$$

LEMMA 3. – Let q be one of 3, 5, 7, 11, 13, 17, 19, and let p be a prime $\equiv 1 \pmod{q}$. Let π be any prime factor of p in $Z[\zeta]$ such that $\pi \equiv -1 \pmod{(1-\zeta)^2}$. (The existence of such a π is guaranteed by Lemma 1; indeed, there are infinitely many choices for π .) Set $\pi_k = \sigma_k(\pi), 1 \leq k \leq q-1$, so that $p = \pi_1 \pi_2 \dots \pi_{q-1}$. Then for $1 \leq l \leq q-1$ we have

$$J_{\pi}(l, l) = (-1)^{(a+1)/2} \prod_{k=1}^{\frac{1}{2}(a-1)} \pi_{\tilde{k}l} .$$

PROOF. - As $\sigma_l(\pi_s) = \pi_{ls}$ and $J_{\pi}(l, l) = \sigma_l(J_{\pi}(1, 1))$ it suffices to prove the result for l = 1. Now set

$$\alpha = J_{\pi}(1, 1)$$
 and $\beta = (-1)^{(q+1)/2} \prod_{k=1}^{\frac{1}{q}(q-1)} \pi_{\overline{k}}$,

so that $\alpha \bar{\alpha} = \beta \bar{\beta} = p$, $\alpha \equiv \beta \equiv -1 \pmod{(1-\zeta)^2}$. Next

$$\begin{aligned} \alpha &= J_{\pi}(1,1) = \sum_{x=0}^{p-1} \left(\frac{x}{\pi}\right)_{q}^{k\bar{k}} \left(\frac{x+1}{\pi}\right)_{q}^{k\bar{k}} \\ &= \sum_{x=0}^{p-1} \left(\frac{x}{\pi_{\bar{k}}}\right)_{q}^{k} \left(\frac{x+1}{\pi_{\bar{k}}}\right)_{q}^{k} \\ &\equiv \sum_{x=0}^{p-1} x^{k(p-1)/q} (x+1)^{k(p-1)/q} (\text{mod } \pi_{\bar{k}}) \;. \end{aligned}$$

As $\sum_{x=0}^{p-1} x^n \equiv 0 \pmod{p}$ for 0 < n < p-1 we have $\alpha \equiv 0 \pmod{\pi_{\tilde{k}}}$ whenever $1 < k < \frac{1}{2}(q-1)$. Thus, as $\alpha \bar{\alpha} = p$, we have $\alpha \sim \prod_{k=1}^{i(q-1)} \pi_{\bar{k}}$, that is

 $\alpha \sim \beta$. The result $\alpha = \beta$ now follows from Lemma 2 completing the proof of Lemma 3.

3. – Proof of the Theorem.

Let π be any prime of $Z[\zeta]$ dividing $p \equiv 1 \pmod{q}$ such that $\pi \equiv -1 \pmod{(1-\zeta)^2}$. Then

(3.1)
$$\sum_{x=0}^{p-1} \left(\frac{x^{q}+a}{p} \right) = \sum_{y=0}^{p-1} \left(\frac{y+a}{p} \right) \sum_{l=0}^{q-1} \left(\frac{y}{\pi} \right)_{q}^{l}.$$

Now if F(z) is a complex-valued function of period p with $\sum_{z=0}^{p-1} F(z) = 0$ then we have

(3.2)
$$\sum_{y=0}^{p-1} \left(\frac{y+a}{p}\right) F(y) = \left(\frac{a}{p}\right) \sum_{s=0}^{p-1} F(4az(z+1)) ,$$

as the number of solutions z of $4az(z+1) \equiv y \pmod{p}$ is 1 + (a(y+a)/p). Taking $F(y) = \sum_{l=0}^{q-1} (y/\pi)_q^l$ in (3.2), (3.1) becomes by Lemma 3

$$\begin{split} \psi_{a}(a) &= \left(\frac{a}{p}\right) \sum_{l=1}^{a-1} \left\{ \sum_{z=0}^{p-1} \left(\frac{4az(z+1)}{\pi}\right)_{a}^{l} \right\} \\ &= \left(\frac{a}{p}\right) \sum_{l=1}^{a-1} \left(\frac{4a}{\pi}\right)_{a}^{l} J_{\pi}(l,\,l) \\ &= (-1)^{(a+1)/2} \left(\frac{a}{p}\right) \sum_{l=1}^{a-1} \left(\frac{4a}{\pi_{l}}\right)_{a}^{\frac{1}{2}(a-1)} \pi_{l\bar{k}} \end{split}$$

which proves (1.1).

The transformation $x \to \bar{x}$ gives

$$\sum_{x=1}^{p-1} \left(\frac{ax^{q}+1}{p} \right) = \sum_{x=1}^{p-1} \left(\frac{x}{p} \right)^{q+1} \left(\frac{a\overline{x}^{q}+1}{p} \right) = \sum_{x=1}^{p-1} \left(\frac{x}{p} \right) \left(\frac{x^{q}+a}{p} \right)$$

so that

$$\begin{split} \varphi_{q}(a) &= \left(\frac{a}{p}\right) \sum_{x=0}^{p-1} \left(\frac{x^{q} + \bar{a}}{p}\right) - 1 \\ &= (-1)^{(q+1)/2} \sum_{i=1}^{q-1} \left(\frac{4\bar{a}}{\pi_{i}}\right)_{q}^{\frac{1}{2}(q-1)} \prod_{k=1}^{q-1} \pi_{i\bar{k}} - 1 \qquad \text{(by (1.1))} \;, \end{split}$$

which proves (1.2).

This completes the proof of the Theorem.

REFERENCES

- [1] K. IRELAND M. I. ROSEN, *Elements of number theory*, Bogden and Quigley, Tarrytown, New York, 1972.
- [2] J. MYRON MASLEY HUGH L. MONTGOMERY, Cyclotomic fields with unique factorization, J. Reine Angew. Math., 286/287 (1976), pp. 248-256.
- [3] A. R. RAJWADE, On rational primes p congruent to 1 (mod 3 or 5), Proc. Cambridge Philos. Soc., 66 (1969), pp. 61-70.
- [4] A. R. RAJWADE, On the congruence y² = x⁵ a (mod p), Proc. Cambridge Philos. Soc., 74 (1973), pp. 473-475.

Pervenuta alla Segreteria dell' U. M. I. il 27 settembre 1977