NOTE ON BURDE'S RATIONAL BIQUADRATIC RECIPROCITY LAW

KENNETH S. WILLIAMS

A short proof is given of a biquadratic reciprocity law proved by Burde in 1969.
Let p and q be primes $\equiv 1(\bmod 4)$ such that $(p \mid q)=(q \mid p)=1$. Then there are integers a, b, c, d with

$$
\begin{array}{lll}
p=a^{2}+b^{2}, & a \equiv 1(\bmod 2), & b \equiv 0(\bmod 2), \\
q=c^{2}+d^{2}, & c \equiv 1(\bmod 2), & d \equiv 0(\bmod 2) .
\end{array}
$$

Set

$$
(p \mid q)_{4}=\left\{\begin{array}{lc}
+1 & \text { if } p \text { a biquadratic residue }(\bmod q) \\
-1, & \text { otherwise } .
\end{array}\right.
$$

Burde [2] proved using the law of biquadratic reciprocity that

$$
\begin{equation*}
(p \mid q)_{4}(q \mid p)_{4}=(-1)^{(q-1) / 4}(a d-b c \mid q) \tag{1}
\end{equation*}
$$

Lehmer [4, 5] has given two proofs of (1) using results from cyclotomy. In this note we put together two classical results ((2) and (4) below) to give a short proof of (1).

It is easy to show that $(\pm a d \pm b c \mid q)=(a d-b c \mid q)$ for any choice of signs so that (1) is independent of the particular choices made of a, b, c, d. We choose a, b to satisfy $a-b+1 \equiv 0(\bmod 4)$ and set $\pi=a+b i$ so that $\pi \bar{\pi}=p$. For any integer $x \not \equiv 0(\bmod p)$ we define a biquadratic character by

$$
(x \mid \pi)_{4}=i^{e} \quad \text { if } \quad x^{(p-1) / 4} \equiv i^{e}(\bmod \pi), \quad 0 \leq e \leq 3
$$

The Gauss sum corresponding to this character is

$$
G=\sum_{x=0}^{p-1}(x \mid \pi)_{4} \exp (2 \pi i x / p)
$$

It is well-known that (see for example [1])

$$
\begin{equation*}
G^{2}=(-1)^{(p-1) / 4} p^{1 / 2} \pi \tag{2}
\end{equation*}
$$

Raising G to the q th power we obtain by a familiar argument

$$
G^{q} \equiv(q \mid \pi)_{4}^{-1} G \equiv(q \mid p)_{4} G(\bmod q)
$$

that is

$$
\begin{equation*}
G^{q-1} \equiv(q \mid p)_{4}(\bmod q) \tag{3}
\end{equation*}
$$

Taking the ($q-1$)/2th power of (2) and using (3) we obtain

$$
(q \mid p)_{4} \equiv p^{(q-1) / 4} \pi^{(q-1) / 2}(\bmod q)
$$

or

$$
(p \mid q)_{4}(q \mid p)_{4} \equiv(a+i b)^{(q-1) / 2}(\bmod q)
$$

It follows from an old result of Dörrie [3] that

$$
\begin{equation*}
(a+i b)^{(q-1) / 2} \equiv(-1)^{(q-1) / 4}(a d-b c \mid q)(\bmod q) \tag{4}
\end{equation*}
$$

which completes the proof of (1). For completeness we give a proof of (4). We have

$$
d(a+b i) \equiv a d-b c(\bmod c+d i)
$$

so that

$$
\begin{equation*}
(a+b i)^{(q-1) / 2} \equiv(-1)^{(q-1) / 4}(a d-b c \mid q)(\bmod c+d i) \tag{5}
\end{equation*}
$$

as it is well known that $(d \mid q) \equiv d^{(q-1) / 2} \equiv(-1)^{(q-1) / 4}(\bmod q)$.
Also

$$
d(a+b i) \equiv a d+b c(\bmod c-d i)
$$

so that
(6) $(a+b i)^{(a-1) / 2} \equiv(-1)^{(q-1) / 4}(a d+b c \mid q)$

$$
\equiv(-1)^{(q-1 / 4}(a d-b c \mid q)(\bmod c-d i)
$$

(4) now follows from (5) and (6).

References

1. P. Bachmann, Die Lehre von der Kreisteilung, Leipzig (1872), equation (9), p. 169.
2. K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, Jour. reine angew. Math., 235 (1969), 175-184.
3. H. Dörrie, Das quadratische Reciprocitätsgesetz in quadratischen Zahlkörper mit der Classenzahl 1, Gött. Diss., 1898.
4. E. Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.
5. E. Lehmer, On the quadratic character of some quadratic surds, Jour. reine angew. Math., 250 (1971), 42-48.
Carleton University
Ottawa, Canada
