ON THE SUPPLEMENT TO THE LAW OF Biquadratic Reciprocity

KENNETH S. WILLIAMS

ABSTRACT. A short proof is given of the supplement to the law of biquadratic reciprocity proved by Eisenstein in 1844.

If \(\pi \) is a Gaussian prime, which is not an associate of \(1 + i \), then \(N(\pi) \equiv 1 \pmod{4} \) and the biquadratic residue character of the Gaussian integer \(\alpha \) modulo \(\pi \) is defined by

\[
(1) \quad \left(\frac{\alpha}{\pi} \right)_4 = \left\{ \begin{array}{ll}
0, & \text{if } \alpha \equiv 0 \pmod{\pi}, \\
i^r, & \text{if } \alpha \not\equiv 0 \pmod{\pi} \text{ and } \alpha^{(N(\pi)-1)/4} \equiv i^r \pmod{\pi}, \\
& \text{with } r = 0, 1, 2, 3.
\end{array} \right.
\]

As Gaussian integers can be factored uniquely into primes, the Jacobi extension of this symbol is obtained by defining for any Gaussian integer \(\tau \not\equiv 0 \pmod{1 + i} \)

\[
(2) \quad \left(\frac{\alpha}{\tau} \right)_4 = \left(\frac{\alpha}{\pi_1} \right)_4 \cdots \left(\frac{\alpha}{\pi_r} \right)_4, \quad \text{if } \tau \text{ is not a unit and } \tau = \pi_1 \cdots \pi_r
\]

where the \(\pi_i \) are primes.

If \(\alpha, \beta, \tau, \rho \) are Gaussian integers with \(\tau, \rho \not\equiv 0 \pmod{1 + i} \) then it is easily verified that

\[
(3) \quad \left(\frac{\alpha}{\tau} \right)_4 = \left\{ \begin{array}{ll}
1, & \text{if } (\alpha, \tau) = 1, \\
\sqrt{\frac{\alpha}{\tau}}, & \text{if } (\alpha, \tau) \neq 1,
\end{array} \right.
\]

\[
\left(\frac{\alpha}{\tau} \right)_4 \left(\frac{\alpha}{\tau} \right)_4 = \left(\frac{\alpha}{\tau} \right)_4 \left(\frac{\alpha}{\tau} \right)_4 = \left(\frac{\alpha}{\tau} \right)_4.
\]

Received by the editors January 31, 1975.

Key words and phrases. Gaussian integers, biquadratic residues, primary integers, biquadratic reciprocity.

© American Mathematical Society 1976
\[(4) \quad \left(\frac{\alpha \beta}{\tau}\right)_4 = \left(\frac{\alpha}{\tau}\right)_4 \left(\frac{\beta}{\tau}\right)_4, \quad \left(\frac{\alpha}{\tau \rho}\right)_4 = \left(\frac{\alpha}{\tau}\right)_4 \left(\frac{\alpha}{\rho}\right)_4,\]

and

\[(5) \quad (\alpha/\tau)_4 = (\beta/\tau)_4 \quad \text{if} \quad \alpha \equiv \beta \pmod{\tau}.\]

Also we have

\[(6) \quad (i/\tau)_4 = i^{(N(\tau) - 1)/4},\]

so that in particular if \(k\) is a rational integer \(\equiv 1 \pmod{4}\) then

\[(7) \quad (i/k)_4 = (-1)^{(k-1)/4}.\]

It is also easy to show that if \(a\) and \(k\) are rational integers with \((a, k) = 1\), \(k\) odd, then

\[(8) \quad (a/k)_4 = +1.\]

(See [5, p. 143] for (7) and (8).)

A Gaussian integer \(a + bi\) will be called primary if

\[a + bi \equiv 1 \pmod{(1 + i)^3},\]

equivalently \(a + b - 1 \equiv 0 \pmod{4}\) and \(b \equiv 0 \pmod{2}\). A product of primary Gaussian integers is clearly also primary. If a Gaussian integer is not divisible by \(1 + i\), then among its four associates exactly one is primary. No multiple of \(1 + i\) can of course be primary. If \(a + bi\) is primary it is convenient to set \(a^* = (-1)^{b/2} a\) so that

\[(9) \quad a^* \equiv 1 \pmod{4}, \quad \frac{a^* - 1}{2} \equiv \frac{a - 1}{2} + \frac{b^2}{4} \pmod{4}.\]

Also from (6) with \(a + bi\) primary we obtain

\[(10) \quad \left(i/(a + bi)\right)_4 = i^{-(a-1)/2}.\]

We are now in a position to state (see, for example, [3, p. 106])

THE LAW OF BIQUADRATIC RECIPROCITY. If \(\alpha = a + bi, \beta = c + di\) are primary Gaussian integers, then

\[(11) \quad (\alpha/\beta)_4 = (-1)^{bd/4} (\beta/\alpha)_4.\]

This law was first formulated by Gauss [2] and later proved by Jacobi [4] and Eisenstein [1]. More recently a proof of it has been given by Kaplan [5].
The purpose of this note is to give a simple presentation of the complementary theorem to the law of biquadratic reciprocity relating to the prime \(1 + i\). The proof uses a special case of (11) namely: if \(k\) is a rational integer \(\equiv 1 \pmod{4}\) and \(\gamma\) is a primary Gaussian integer then

\[
(k/\gamma)_4 = (\gamma/k)_4.
\]

Supplement to the Law of Biquadratic Reciprocity. If \(\alpha = c + di\) is a primary Gaussian integer then

\[
((1 + i)/\alpha)_4 = i^{((c+d)+(1+d)^2)/4}.
\]

(For this formulation see, for example, [6, p. 77].)

Proof. We first establish that if \(k\) is a rational integer \(\equiv 1 \pmod{4}\) then

\[
((1 + i)/k)_4 = i^{(k-1)/4}.
\]

If \(k_1, k_2\) are rational integers \(\equiv 1 \pmod{4}\) then

\[
\frac{k_1 - 1}{4} + \frac{k_2 - 1}{4} = \frac{k_1 k_2 - 1}{4} \pmod{4},
\]

so that by (4), as (13) is trivially true when \(k = 1\), it suffices to prove (13) for (i) \(k = p\) (prime) \(\equiv 1 \pmod{4}\), and (ii) \(k = -q, q\) (prime) \(\equiv 3 \pmod{4}\).

(i) We have \(p = \pi \overline{\pi}\), where \(\pi, \overline{\pi}\) are primary Gaussian primes, so that

\[
\left(\frac{1 + i}{p}\right)_4 = \left(\frac{1 + i}{\pi}\right)_4 \left(\frac{1 + i}{\overline{\pi}}\right)_4 = \left(\frac{1 + i}{\pi}\right)_4 \left(\frac{i}{\overline{\pi}}\right)_4 \left(\frac{1 - i}{\pi}\right)_4
\]

\[
= \left(\frac{i}{\overline{\pi}}\right)_4 \left(\frac{1 + i}{\pi}\right)_4 \left(\frac{1 + i}{\overline{\pi}}\right)_4 = \left(\frac{i}{\overline{\pi}}\right)_4 = i^{(p-1)/4}.
\]

(ii) Working modulo \(q\) we have

\[
\left(\frac{1 + i}{-q}\right)_4 = (1 + i)^{(q^2-1)/4} = (2i)^{(q^2-1)/8} = (2(q-1)/2(q+1)/4i(q-1)/8
\]

\[
= (-1)^{(q+1)/4}(q+1)/4i(q^2-1)/8 = (-1)(q+1)/4i(q-1)/8
\]

\[
= i(q+1)/2+(q^2-1)/8 = i(-q-1)/4,
\]

so that

\[
((1 + i)/-q)_4 = i^{(-q-1)/4}.
\]

This completes the proof of (13).

Now set \(\alpha = c + di = k(a + bi)\), where \((a, b) = 1\) and \(k \equiv 1 \pmod{4}\), so that \(a + bi\) is primary. Then we have
\[
\left(\frac{1+i}{a+bi}\right)_4 = \left(\frac{i}{a^*}\right)_4 \left(\frac{bi}{a^*}\right)_4 \left(\frac{1+i}{a+bi}\right)_4 \quad \text{(by (3), (8))}
\]
\[
= \left\{(-(a^*-1)/4\right\}_4^3 \left(\frac{a+bi}{a^*}\right)_4 \left(\frac{1+i}{a+bi}\right)_4 \quad \text{(by (5), (7))}
\]
\[
= (-1)^{(a^*-1)/4} \left(\frac{a^*}{a+bi}\right)_4 \left(\frac{1+i}{a+bi}\right)_4 \quad \text{(by (9), (12))}
\]
\[
i(a^*-1)/2 \left(\frac{i}{a+bi}\right)_4^b \left(\frac{a+ai}{a+bi}\right)_4 \quad \text{(by (4))}
\]
\[
i(a-1)/2+b^2/4+b^2/2 \left(\frac{i(a-b)}{a+bi}\right)_4 \quad \text{(by (5), (9), (10))}
\]
\[
i^3b^2/4 \left(\frac{a-b}{a+bi}\right)_4 \quad \text{(by (10))}
\]
\[
i+b^2/4 \left(\frac{a+bi}{a-b}\right)_4 \quad \text{(by (12))}
\]
\[
i^2b^2/4 \left(\frac{b}{a-b}\right)_4 \left(\frac{1+i}{a-b}\right)_4 \quad \text{(by (4), (5))}
\]
\[
i^2b^2/4+(a-b-1)/4 \quad \text{(by (8), (13))}
\]
so that
\[
\left(\frac{1+i}{a}\right)_4 = \left(\frac{1+i}{k}\right)_4 \left(\frac{1+i}{a+bi}\right)_4 \quad \text{(by (4))}
\]
\[
i^{(k-1)/4+a+b-(1+b^2)/4} \quad \text{(by (13))}
\]
\[
i^{(ka+kb-(1+kb)^2)/4}
\]
\[
i^{(c+d-(1+d)^2)/4}
\]

REFERENCES

2. C. F. Gauss, (i) Theoria residuorum biquadraticorum. I, Göttinger Abh. 6 (1828);
 (ii) Theoria residuorum biquadraticorum. II, Göttinger Abh. 7 (1832).