A RATIONAL OCTIC RECIPROCITY LAW

Kenneth S. Williams

A rational octic reciprocity theorem analogous to the rational biquadratic reciprocity theorem of Burde is proved.

Let p and q be distinct primes $\equiv 1(\bmod 4)$ such that $(p / q)=$ $(q / p)=1$. For such primes there are integers a, b, A, B with

$$
\left\{\begin{array}{l}
p=a^{2}+b^{2}, a \equiv 1(\bmod 2), b \equiv 0(\bmod 2) \tag{1}\\
q=A^{2}+B^{2}, A \equiv 1(\bmod 2), B \equiv 0(\bmod 2)
\end{array}\right.
$$

Moreover it is well-known than $(A / q)=1,(B / q)=(-1)^{(q-1) / 4}$. If k is a quadratic residue $(\bmod q)$ we set

$$
\left(\frac{k}{q}\right)_{4}=\left\{\begin{array}{l}
+1, \text { if } k \text { is a biquadratic residue }(\bmod q), \\
-1, \text { otherwise } .
\end{array}\right.
$$

In 1969 Burde [2] proved the following
Theorem (Burde).

$$
\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=(-1)^{(q-1) / 4}\left(\frac{a B-b A}{q}\right) .
$$

Recently Brown [1] has posed the problem of finding an octic reciprocity law analogous to Burde's biquadratic law for distinct primes p and q with $p \equiv q \equiv 1(\bmod 8)$ and $(p / q)_{4}=(q / p)_{4}=1$. It is the purpose of this paper to give such a law. From this point on we assume that p and q satisfy these conditions and set for any biquadratic residue $k(\bmod q)$

$$
\left(\frac{k}{q}\right)_{8}=\left\{\begin{array}{l}
+1, \text { if } k \text { is an octic residue }(\bmod q), \\
-1, \text { otherwise } .
\end{array}\right.
$$

It is a familar result that there are integers c, d, C, D with

$$
\left\{\begin{array}{l}
p=c^{2}+2 d^{2}, c \equiv 1(\bmod 2), d \equiv 0(\bmod 2), \tag{2}\\
q=C^{2}+2 D^{2}, C \equiv 1(\bmod 2), D \equiv 0(\bmod 2) .
\end{array}\right.
$$

Moreover we have $(D / q)=1$. Also from Burde's theorem we have

$$
\begin{equation*}
\left(\frac{a B-b A}{q}\right)=1, \tag{3}
\end{equation*}
$$

and from the law of biquadratic reciprocity after a little calculation we find that $(B / q)_{4}=+1$. We prove

Theorem. Let p and q be distinct primes $\equiv 1(\bmod 8)$ such that

$$
\left(\frac{p}{q}\right)_{4}=\left(\frac{q}{p}\right)_{4}=1 . \quad \text { Then }\left(\frac{p}{q}\right)_{8}\left(\frac{q}{p}\right)_{8}=\left(\frac{a B-b A}{q}\right)_{4}\left(\frac{c D-d C}{q}\right)
$$

We note that it is easy to show that

$$
\left(\frac{ \pm a B \pm b A}{q}\right)_{4}=\left(\frac{a B-b A}{q}\right)_{4}\left(\frac{ \pm c D \pm d C}{q}\right)=\left(\frac{c D-d C}{q}\right)
$$

so that the expression on the right-hand side of the theorem is independent of the particular choices of a, b, c, d, A, B, C, D made in (1) and (2). In the course of the proof it is convenient to make a particular choice of a, b, c, d (see (9) and (10)).

We begin by proving three lemmas.
Lemma 1. $(c+d \sqrt{-2})^{(q-1) / 2} \equiv((c D-d C) / q) \quad(\bmod q)$.
Proof. As $(p / q)=1$ we can define an integer u by $p \equiv u^{2}(\bmod q)$. Next we define integers l and m by

$$
l \equiv \frac{c D-d C+D u}{2}, m \equiv \frac{C}{D} \cdot \frac{c D-d C-D u}{4} \quad(\bmod q)
$$

so that

$$
l^{2}-2 m^{2} \equiv c D(c D-d C)
$$

and

$$
2 l m \equiv d D(c D-d C) \quad(\bmod q)
$$

giving

$$
D(c D-d C)(c+d \sqrt{-2}) \equiv(l+m \sqrt{-2})^{2} \quad(\bmod q)
$$

and so

$$
D^{(q-1) / 2}(c D-d C)^{(q-1) / 2}(c+d \sqrt{-2})^{(q-1) / 2} \equiv(l+m \sqrt{-2})^{q-1} \quad(\bmod q)
$$

Now working modulo q we have

$$
\begin{aligned}
(l+m \sqrt{-2})^{q-1} & \equiv \frac{(l+m \sqrt{-2})^{q}}{l+m \sqrt{-2}} \equiv \frac{l^{q}+m^{q}(\sqrt{-2})^{q}}{l+m \sqrt{-2}} \\
& \equiv \frac{l+m i^{q} 2^{q^{\prime 2}}}{l+m \sqrt{-2}} \equiv \frac{l+m i \sqrt{2}}{l+m \sqrt{-2}} \\
& \equiv 1,
\end{aligned}
$$

also

$$
D^{(q-1) / 2} \equiv\left(\frac{D}{q}\right)=1
$$

and

$$
(c D-d C)^{(q-1) / 2} \equiv\left(\frac{c D-d C}{q}\right)
$$

from which the required result follows immediately.
Lemma 2. $(a+b \sqrt{-1})^{(q-1) / 4} \equiv((a B-b A) / q)_{4} \quad(\bmod q)$.
Proof. As $(p / q)=1$ we define $a r$ integer u by $p \equiv u^{2}(\bmod q)$ as in Lemma 1. Next we define integers r and s by

$$
r \equiv \frac{a B-b A+B u}{2}, s \equiv \frac{A}{B} \cdot \frac{a B-b A-B u}{2} \quad(\bmod q)
$$

so that

$$
r^{2}-s^{2} \equiv a B(a B-b A)
$$

and

$$
2 r s \equiv b B(a B-b A)
$$

giving

$$
B(a B-b A)(a+b \sqrt{-1}) \equiv(r+s \sqrt{-1})^{2} \quad(\bmod q)
$$

and so

$$
B^{(q-1) / 4}(a B-b A)^{(q-1) / 4}(a+b \sqrt{-1})^{(q-1) / 4} \equiv(r+s \sqrt{-1})^{(q-1) / 2}(\bmod q) .
$$

Thus as $(B / q)_{4}=((a B-b A) / q)=1$ we obtain

$$
(a+b \sqrt{-1})^{(q-1) / 4} \equiv\left(\frac{a B-b A}{q}\right)_{4}(r+s \sqrt{-1})^{(q-1) / 2} \quad(\bmod q)
$$

Next we note that $r^{2}+s^{2} \equiv u B(a B-b A)(\bmod q)$ so that

$$
\left(\frac{r^{2}+s^{2}}{q}\right)=\left(\frac{p}{q}\right)_{4}\left(\frac{B}{q}\right)\left(\frac{a B-b A}{q}\right)=1 .
$$

Hence we may define an integer w by $w^{2} \equiv r^{2}+s^{2}(\bmod q)$. Then we define integers e and f by

$$
e \equiv \frac{r B-s A+B w}{2}, f \equiv \frac{A}{B} \cdot \frac{r B-s A-B w}{2} \quad(\bmod q)
$$

so that

$$
e^{2}-f^{2} \equiv r B(r B-s A) \quad(\bmod q)
$$

and

$$
2 e f \equiv s B(r B-s A)
$$

giving

$$
B(r B-s A)(r+s \sqrt{-1}) \equiv(e+f \sqrt{-1})^{2} \quad(\bmod q)
$$

and so

$$
B^{(q-1) / 2}(r B-s A)^{(q-1) / 2}(r+s \sqrt{-1})^{(q-1) / 2} \equiv(e+f \sqrt{-1})^{q-1} \quad(\bmod q)
$$

Now working modulo q we have

$$
\begin{aligned}
(e+f \sqrt{-1})^{q-1} & \equiv \frac{(e+f \sqrt{-1})^{q}}{(e+f \sqrt{-1})} \equiv \frac{e^{q}+f^{q}(\sqrt{-1})^{q}}{e+f \sqrt{-1}} \\
& \equiv \frac{e+f \sqrt{-1}}{e+f \sqrt{-1}} \equiv 1
\end{aligned}
$$

and

$$
B^{(q-1) / 2} \equiv\left(\frac{B}{q}\right)=1,(r B-s A)^{(q-1) / 2} \equiv\left(\frac{r B-s A}{q}\right)
$$

so

$$
(r+s \sqrt{-1})^{(q-1 / 2} \equiv\left(\frac{r B-s A}{q}\right)
$$

giving

$$
(a+b \sqrt{-1})^{(q-1) / 4} \equiv\left(\frac{a B-b A}{q}\right)_{4}\left(\frac{r B-s A}{q}\right) \quad(\bmod q)
$$

The required result now follows as modulo q we have

$$
\begin{aligned}
r B-s A & \equiv \frac{B(a B-b A+B u)}{2}-\frac{A^{2}}{B} \frac{(a B-b A-B u)}{2} \\
& \equiv \frac{B}{2}\{(a B-b A+B u)+(a B-b A-B u)\} \\
& \equiv B(a B-b A)
\end{aligned}
$$

that is

$$
\left(\frac{r B-s A}{q}\right)=\left(\frac{B}{q}\right)\left(\frac{a B-b A}{q}\right)=+1
$$

Before proving the final lemma we state some results we shall need. Let $w=\exp (2 \pi i / 8)=(\sqrt{2}+\sqrt{-2}) / 2$ and let R be the ring
of integers of the cyclotomic field $Q(w)=Q(\sqrt{2, \sqrt{-1}}) . \quad R$ is a unique factorization domain. Let π be any prime factor of p in R, fixed once and for all. For integers $x \not \equiv 0(\bmod p)$ we define an octic character $(\bmod p)$ by

$$
\left(\frac{x}{\pi}\right)_{8}=w^{\lambda} \text { if } x^{(p-1) / 8} \equiv w^{\lambda}(\bmod \pi), 0 \leqq \lambda \leqq 7
$$

If $x \equiv 0(\bmod p)$ we set $(x / \pi)_{8}=0$. In terms of this character we define the corresponding Jacobi and Gauss sums for arbitrary integers k and l as follows:

$$
\begin{aligned}
J(k, l) & =\sum_{x=0}^{p-1}\left(\frac{x}{\pi}\right)_{8}^{k}\left(\frac{1-x}{\pi}\right)_{8}^{l} \\
G(k) & =\sum_{x=0}^{p-1}\left(\frac{x}{\pi}\right)_{8}^{k} \exp (2 \pi i x / p) .
\end{aligned}
$$

These sums have the following well-known properties (see for example [4], Chapter 8):

$$
\begin{equation*}
J(k, l) \overline{J(k, l)}=p, \quad \text { if } \quad k, l \not \equiv 0(\bmod 8), \tag{4}
\end{equation*}
$$

$$
J(k, l)=\frac{G(k) G(l)}{G(k+l)}, \quad \text { if } \quad k, l, k+l \not \equiv 0(\bmod 8)
$$

$$
\begin{equation*}
G(k) G(-k)=(-1)^{k(p-1) / 8} p, \quad \text { if } \quad k \not \equiv 0(\bmod 8) \tag{6}
\end{equation*}
$$

We shall also need the evaluation of the familar sum

$$
\begin{equation*}
G(4)=\sum_{x=0}^{p-1}\left(\frac{x}{\pi}\right)_{8}^{4} \exp (2 \pi i x / p)=\sum_{x=0}^{p-1}\left(\frac{x}{p}\right) \exp (2 \pi i x / p)=p^{1 / 2} \tag{7}
\end{equation*}
$$

and the result

$$
\begin{equation*}
J(2,2)= \pm J(1,2) \tag{8}
\end{equation*}
$$

A more precise form of (8) follows from a theorem of Jacobi (see for Example [3], page 411, equation (99)). Finally we let $\sigma_{k}(k=$ $1,3,5,7$) be the automorphism of $Q(w)$ defined by $\sigma_{k}(w)=w^{k}$.

Now from (5) and (6) we have

$$
\sigma_{3}(J(1,4))=J(3,12)=J(3,4)=\frac{G(3) G(4)}{G(7)}=\frac{G(1) G(4)}{G(5)}=J(1,4),
$$

so that $J(1,4) \in Z[\sqrt{-2}]$. Moreover from (4) we have $J(1,4) \overline{J(1,4)}=p$ so we may choose the signs of c and d in (2) so that

$$
\begin{equation*}
J(1,4)=c+d \sqrt{-2} \tag{9}
\end{equation*}
$$

Also from (5) and (6) we have

$$
\sigma_{5}(J(1,2))=J(5,10)=J(5,2)=\frac{G(5) G(2)}{G(7)}=\frac{G(1) G(2)}{G(3)}=J(1,2),
$$

so that $J(1,2) \in Z[\sqrt{-1}]$. Moreover from (4) we have $J(1,2) \overline{J(1,2)}=$ p so we may choose the signs of a and b in (1) so that

$$
\begin{equation*}
J(1,2)=a+b \sqrt{-1} \tag{10}
\end{equation*}
$$

since it is easy to prove (and well-known) that $J(1,2) \equiv 1(\bmod 2)$.
Lemma 3. $G(1)^{8}=p(a+b \sqrt{-1})^{2}(c+d \sqrt{-2})^{4}$.
Proof. From (5), (9), (10) have

$$
c+d \sqrt{-2}=J(1,4)=\frac{G(1) G(4)}{G(5)}
$$

and

$$
a+b \sqrt{-1}=J(1,2)=\frac{G(1) G(2)}{G(3)}
$$

Multiplying these together we obtain

$$
(a+b \sqrt{-1})(c+d \sqrt{-2})=\frac{G(1)^{2} G(2) G(4)}{G(3) G(5)}=\frac{G(1)^{2} G(2)}{(-1)^{(p-1) / 8} p^{1 / 2}}
$$

by (6) and (7). Hence taking the fourth power of both sides we get

$$
\begin{equation*}
G(1)^{8} G(2)^{4}=p^{2}(a+b \sqrt{-1})^{4}(c+d \sqrt{-2})^{4} \tag{11}
\end{equation*}
$$

Now from (5) and (7) we have

$$
J(2,2)=\frac{G(2)^{2}}{G(4)}=\frac{G(2)^{2}}{p^{1 / 2}},
$$

so that from (8) and (10) we obtain

$$
\begin{equation*}
G(2)^{4}=p\{J(2,2)\}^{2}=p\{J(1,2)\}^{2}=p(a+b \sqrt{-1})^{2}, \tag{12}
\end{equation*}
$$

and the required result now follows from (11) and (12).
Proof of theorem. Raising $G(1)$ to the q th power we obtain modulo q,

$$
G(1)^{q} \equiv \sum_{x=0}^{p-1}\left(\frac{x}{\pi}\right)_{8}^{q} \exp (2 \pi i x q / p)=\sum_{x=0}^{p-1}\left(\frac{x}{\pi}\right)_{8} \exp (2 \pi i x q / p),
$$

since $q \equiv(\bmod q)$, giving

$$
G(1)^{q} \equiv\left(\frac{q}{\pi}\right)_{8}^{-1} \sum_{x=0}^{p-1}\left(\frac{x q}{\pi}\right)_{8} \exp (2 \pi i(x q) / p)=\left(\frac{q}{\pi}\right)_{8}^{-1} G(1),
$$

since $(q, p)=1$ implies that

$$
\sum_{x=0}^{p-1}\left(\frac{x q}{\pi}\right)_{8} \exp (2 \pi i x q / p)=\sum_{y=0}^{p-1}\left(\frac{y}{\pi}\right)_{8} \exp (2 \pi i y / p)=G(1) .
$$

Hence

$$
G(1)^{q} \equiv\left(\frac{q}{\pi}\right)_{8}^{-1} G(1)=\left(\frac{q}{p}\right)_{8} G(1),
$$

that is

$$
G(1)^{q-1} \equiv\left(\frac{q}{p}\right)_{8}(\bmod q)
$$

Hence by Lemmas $1,2,3$ we have modulo q

$$
\begin{aligned}
\left(\frac{q}{p}\right)_{8} & \equiv\left(G(1)^{8}\right)^{(q-1) / 8} \\
& \equiv p^{(q-1) / 8}(a+b \sqrt{-1})^{(q-1) / 4}(c+d \sqrt{-2})^{(q-1) / 2} \\
& \equiv\left(\frac{p}{q}\right)_{8}\left(\frac{a B-b A}{q}\right)_{4}\left(\frac{c D-d C}{q}\right)
\end{aligned}
$$

from which the theorem follows.
Example. We take $p=17 \equiv 1(\bmod 8)$ and $q=409 \equiv 1(\bmod 8)$ so that we may choose

$$
\begin{aligned}
& a=1, b=4, c=3, d=2 \\
& A=3, B=20, C=11, D=12
\end{aligned}
$$

Since $q \equiv 1(\bmod p)$ we clearly have

$$
\left(\frac{q}{p}\right)=\left(\frac{q}{p}\right)_{4}=\left(\frac{q}{p}\right)_{8}=1
$$

As $((a B-b A) / q)=(8 / 409)=+1$ by Burde's theorem we have $(p / q)_{4}=$ 1. Finally

$$
\begin{gathered}
\left(\frac{a B-b A}{q}\right)_{4}=\left(\frac{8}{409}\right)_{4}=\left(\frac{194}{409}\right)=-1, \\
\left(\frac{c D-d C}{q}\right)=\left(\frac{14}{409}\right)=-1,
\end{gathered}
$$

so by the theorem of this paper we have $(p / q)_{8}=1$, which is easily verified directly.

References

1. Ezra Brown, Quadratic forms and biquadratic reciprocity, J. für Math., 253 (1972), 214-220.
2. Klaus Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. für Math., 235 (1969), 175-184.
3. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math., 57 (1935), 391-424.
4. Kenneth Ireland and Michael I. Rosen, Elements of Number Theory, Bogden and Quigley, Inc. Publishers, Tarrytown-on-Hudson, New York (1972).

Received August 4, 1975. Research supported under National Research Council of Canada grant no. A-7233.

Carleton University-Ottawa Canada

