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ON EULER'S CRITERION FOR QUINTIC
NONRESIDUES

KENNETH S. WILLIAMS

Let p be a prime=1 (mod 5). If 2 is a quintic nonresidue
(mod p) then 2P"1/5 s a (mod p) for some fifth root of unity
α6 (^ 1) (mod p). Emma Lehmer has given an explicit expres-
sion for <?6 in terms of a particular solution of a certain
quadratic partition of p. In this paper we show how in
principle the corresponding result can be obtained for any
quintic nonresidue D(mod p). Full details are given for
D=2, 3, 5.

1* Introduction* Let k be an integer ;> 2 and let p be a
prime = l(modA ). Euler's criterion states that D{p~1)/k = l(modp) if
and only if D is a fcth power residue (modp). Thus if D is not a
kth power residue (mod p), for some kth root of unity ak ( ^ 1) moduo p
we have DiP~1)/k = ak(modp). Clearly a2 = - 1 . For A > 2 Emma
Lehmer [3] has proposed the problem of specifying which ah corre-
sponds to a given D. For D = 2, & = 3, 4, 5, 8, she has given explicit
expressions for α^ in terms of certain quadratic partitions of p.
Elsewhere the author [6] has given a complete treatment of the
case k = 3. In this paper we treat the case k — 5. Full details are
given for D = 2, 3, 5. The method used is described in § 4 and can
be applied to any value of D if the reader has the patience to
supply the many details.

2* Two lemmas involving the domain Z[ζ]. We set ζ =
exp (2πi/5). If Q denotes the field of rational numbers, the cyclotomic
field formed by adjoining ζ to Q is denoted by Q(ζ). The domain of
integers of Q(ζ) is denoted by Z[ζ]. Every element of Z[ζ] can be
written in the form αxζ + α2ζ

2 + α3ζ
3 + a4ζ\ where alf a2, α8, a4 are

rational integers. The domain Z[ζ] is a unique factorization domain.
The element 1 — ζ is a prime in Z[ζ] which divides 5. The units of
Z[ζ] are given by ±ζ ' (ζ + ζ4)5, where i and j are integers with
0 ^ i ^ 4. If a and β are associated nonzero elements, that is a/β
is a unit, we write a ~ β. The complex conjugate of an element
a e Z[ζ] will be denoted by a( e Z[ζ]). We will need the following
two results.

LEMMA 1. If ae Z[ζ] is such that a =έ 0 (mod 1 — ζ) then a
possesses an associate a1 such that a! = — l ( m o d ( l — ζ)2).

Proof. Set a = αxζ + α2ζ
2 + α3ζ

3 + α4ζ*, 6 = αx + α2 + α3 + α4, c =

543
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aι + 2α2 + 3α3 + 4α4. As α ^ O (mod 1 — ζ) we have 6 ^ 0 (mod 5).
We define d uniquely by 2db = — I ( m o d 5 ) , 0 tί d ^ 3. Then we have
only to choose a' = ζc2\ζ + ζ*)da, as ζ + ζ4 = 2 (mod (1 - 3)2) and
ζc2<* = b (mod (1 - ζ)2).

LEMMA 2. If a, βe Z[ζ] are such that
( a) aa = ββ
(b) αf /2=£0(modl-ζ),
(c) α Ξ ^ ( m o d ( l - ζ ) 2 ) ,
(d) a~β,

then

a = /S .

Proof. By (d) we have a: = ±ζ*(ζ + ζ4)J'/3, for integers i and j
with 0 ̂  i ^ 4. Thus using (a) we obtain aά = (ζ + ζ4)2i/?^ =
(ζ + ζ4)2iα:α. Now (b) guarantees that a Φ 0, so that αά ̂ t 0, and
we must have (ζ + ζ4)2i = 1. As ζ + ζ4 = | ( l / T - 1) > 0 we have
j = 0 and so a = ±ζί/3, 0 ̂  i ^ 4. From (b) and (c) we have
(±ζ* -ΐ)β = 0 (mod (1 - ζ)2), β -jέ 0 (mod 1 - ζ), so that

±ζ* - 1 = 0(mod(l - ζ ) 2 ) .

As i = 0, 1, 2, 3, 4 this can only hold with the positive sign and
i = 0, so that a = β.

3. Dickson's diophantine system* Throughout the rest of this
paper p denotes a prime = 1 (mod 5). Our results involve the
diophantine system

x2 + 50u2 + 50Ϊ;2 + 125^2 , x = l (mod 5) ,

A t h e o r e m of Dickson [1] a s s e r t s t h a t (3.1) h a s exactly four solutions.
If (x, u, v, w) is one of these, t h e o t h e r t h r e e a re given by (x, —u,
— v, w)f (x, v9 —u, — w), (xf —v, u, —w). Taking the first equation
in (3.1) modulo 8 and the second one modulo 4 we can show (after
a little calculation) that x Λ- 2u — w = χ + 2v + w = 0 (mod 4) for
any solution of (3.1). This enables us to make the following defi-
nition.

DEFINITION 1. For any solution (x, u, v, w) of [(3.1) we define
ψ = ψ(χ, u, v, w) e Z[ζ] by

c3ζ
3(3.2) ψ = c£ + c2ζ

2 + c3

w h e r e d = et(xr u, v, w) e Z(l ^ i <; 4) a r e given by
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4^ = — x + 2u + 4v + 5w ,

4c2 = — x + Au — 2v — 5w ,

4c3 = — x — Au + 2v — 5w ,

4c4 = —x — 2u — <ίv + 5w .

The properties of ψ that we shall need are given in the next
lemma.

LEMMA 3. ( a) ψψ = p.

(b) ψ = - l ( m o d ( l - ζ ) 2 ) .
( c ) // σ t(l ^ i ^ 4) is ίΛe automorphism of Q(ζ)

defined by σt(ζ) = ζi then G.C.D. (ψu f2) is a prime of Z[ζ], where
^ i ^ 4).

Proof. (a ) As ζ + ζ4 = l/2(- l + VΊΓ), ζ2 + ζ3 = l/2(-l - τ/T),
we have from (3.2)

CSC4

c 2 c 4
c4)|

= ^(a;2 + 50M2 + 50v2 + 125w2) -
O

x (v2 — 4^v — u2 — xw) = p .

(b) From (3.1) and (3.3) we have

c1 + c2 + cz + cA= —x = —1, d + 2c2 + 3c3 + 4c4 Ξ 0 (mod 5) ,

so that ψ = - 1 (mod (1 - ζ)2).

( c ) Let JΓ be a prime dividing p. As p = 1 (mod 5) we have
p = πλπ^πzπ^ where π < = σ^π), 1 ^ i <; 4. By (a) ^ is (up to multi-
plication by a unit) one of πγπly πγπZi π2π4, τr3τr4. In each case G.C.D.
(ΨD ΨZ) is a prime.

Lemma 1 and Lemma 3(c) enable us to define a prime JsΓ of
Z[ζ] as follows.

DEFINITION 2. For any solution (x, u, v, w) of (3.1) we let
Ξ= 3ίΓ(x, u, v, w) e Z[ζ] be such that

G.C.D. (^, f 2) , ^T= - 1 (mod (1 - ζ)2) .

We remark that S%~ is not unique, indeed all such 3ίΓ are given by
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( - l ) r ( ζ + ζ4)2r3Γ(re Z). However this does not matter for our pur-
poses. Next we give the prime decomposition of f using Lemma 2.

LEMMA 4. ψ = - ^ ^ ς .

Proof. As 3ίT~ G.C.D. (ψlf ψ2) we have 3^\flf say, ^ =
Hence ψ2 = J ^ λ 2 and as J%ϊ\ψ2 we must have ^T |λ 2 , that is
say λj. = ._^μ. Then ψx — 3t[3Γzμ and so we have

= p =

Hence we have μμ = 1, so that μ is a unit of Z[ζ\, proving that
ψ~ 3ίΓx3?l. Clearly ψ and —3ίΓγ,^ίz satisfy the conditions of Lemma 2
so that f = -ST^.

Finally in this section we set for any solution (x, u, v, w) of (3.1):

a{x, u, v, w)

(3.4) = w(l25w2 - x2) + 2(xw + 5uv)(25w - x + 20u - lO-y)
w(125w2 - x2) + 2(xw + 5uv)(25w - x - 20u + 10 ;̂)

and prove

LEMMA 5. a(x, u, v, w) = ζ (mod ^%^).

Proof. From (3.2) and ^ = ψ2 ~ 0 (mod J^") we obtain modulo

5c, = (ζ2 - l)f 3 + (ζ -

5c2 = (C - l ) ta + (C -

5c3 = (ζ - l ) t s + (C3 -

5c4 = (C -

Appealing to (3.3) we get

x = ^ + α

/fs ^ 4 , 25w = -Ύf, +

where

a = - 2 ζ + ζ2 - ζ3 + 2ζ4 ,

/3 = ζ + 2ζ2 - 2ζ3 - ζ4 ,

7 - ζ - ζ2 - ζ3 + ζ4 .

It is easy to check that

aβ = a2 - /S2 = 57 , 72 = 5 .
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After some calculation we find that

25{w(125w2 - x2) + 2(xw + 5uv)(25w - x + 20u

= 47f 3 f 4((2

and

25{w(125w2 - x2) + 2(zw + 5w)(25w - x ~ 20u

4((2 + 2ζ4)^3 + 2ζ> 4)

from which the result follows immediately.

4* Outline of method* We start with the necessary and
sufficient condition for D (without loss of generality we may take D
to be a (positive) prime) to be a quintic residue (mod p) in terms of
congruences (modD) involving a solution of (3.1). These have been
given for D = 2, 3, 5, 7 in [4] and for D = 11, 13, 17, 19 in [9]. Results
for other values of D could be obtained using the period equation as
in [9]. If JD is a quintic nonresidue (mod p) this condition is used
to specify a unique solution of (3.1) by means of congruences (modD).
This unique solution is specified in such a way that after using
Lemma 4 we find that the corresponding 3ίΓ satisfies {J%r\B\ = ζ.
If D Φ 5 we can then appeal to Eisenstein's reciprocity law

"If a = — 1 (mod (1 — ζ)2) and a is a rational integer prime to 5
then (a/a)6 = (a/a)δ"
to obtain (Df^Γ)b = ζ, so that DiP'1)/5 = a(x, uy v, w) (mod 3ίί) by
Lemma 5. As both D{P~1)/δ and a(x, u, v, w) are rational we have
jj(P-D/δ Ξ a ^ u^ ^ yή (m 0 ( j p) a s required. If D = 5 we must replace
the use of Eisenstein's reciprocity law by Kummer's supplement to
the law of quintic reciprocity involving the prime 1 — ζ [7]. Un-
fortunately, this requires working modulo 25 rather than modulo 5
and so involves a large number of cases. We thus give an alternative
approach based on a result of Muskat [5].

5* D = 2. Lehmer [2] has shown that 2 is a quintic residue
(mod p) if and only if x = 0 (mod 2), where (x, u, v, w) is any solution
of (3.1). Thus if 2 is a quintic nonresidue (mod p) we can find by
Dickson's theorem a unique solution (x, u, v, w) of (3.1) such that

(5.1) x = 1 (mod 2) , u = 0 (mod 2), x + u - v = 0 (mod 4) .

In terms of this solution a simple calculation using (3.3) shows that
f ~ ζ3 (mod 2). Then by an examination of cases in conjunction with
f = —^[3^1 (Lemma 4) we find that

^ ζ2 , ζ + ζ» or ζ + ζ2 + ζ3 (mod 2) ,
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so that (Jst~/2)5 = ζ. Appealing to Eisenstein's reciprocity theorem
as indicated in §4 we have reproved

THEOREM 1 (Lehmer [3]). Let p be a prime ΞΞ 1 (mod 5) for which
2 is a quintic nonresidue (mod p). Let (x, u, v, w) be the unique
solution of (3.1) satisfying (5.1). Then we have

6. D = 3* (Lehmer [2] has shown that 3 is a quintic residue
(mod p) if and only if u = v = 0 (mod 3), where (#, u, v, w) is any
solution of (3.1).) Thus if 3 is a quintic nonresidue (modp) we can
find by Dickson's theorem a unique solution (x, uy v, w) of (3.1) satis-
fying one of

( a ) a ΞΞ 1 , u = l , v = 0 , w Ξ= 2 (mod3) ,

( b ) x = 2 , u = 2 , v ΞΞ 0 , w = 1 (mod3) ,

( c ) x = lf u = 2, v = 1 , w = 1 (mod3) ,

( d ) x ΞΞ 2 , W Ξ Ξ I , V Ξ Ξ 2 , W = 2 (mod 3) .

In terms of this solution a simple calculation using (3.3) shows that

ψ = - ζ - ζ2 + ζ4 (mod 3) , if (a) holds ,

ψ = ζ + ζ2 - ζ4 (mod 3) , if (b) holds ,

f ΞΞ - ζ 4 (mod3), if (c) holds,

t ΞΞ ζ4 (mod 3) , if (d) holds .

Then by an examination of cases (mod 3) in conjunction with Lemma 4
we find that

ΞΞ ± ( ζ - ζ2 - ζ4) , ± ( ζ - ζ2 + ζ3 + ζ4) (mod 3) , if (a) holds ,

ΞΞ ±(ζ 3 - ζ4) , ± ( ζ - ζ2 - ζ3) (mod 3) , if (b) holds ,

ΞΞ ± ζ , ± ( ζ - ζ3 - C) (mod 3) , if (c) holds ,

ΞΞ ±(ζ 3 + C) , ± ( ζ + ζ3 + C) (mod 3) , if (d) holds ,

so that in every case ( ^ 7 3 ) 5 = ζ. Appealing to Eisenstein's reci-
procity theorem as before we have the following result.

THEOREM 2. Let p be a prime = 1 (mod 5) for which 3 is a
quintic nonresidue (mod p). Let (x, u, v, w) be the unique solution
of (3.1) satisfying (6.1). Then we have

D = 5* For p a prime ΞΞ 1 (mod 5), # a primitive root (mod p),
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h, k integers selected from 0, 1, 2, 3, 4, the cyclotomic number (h, k)5 is
defined to be the number of solutions (s, t) with 0 ̂  s, t < (p — l)/5

of gzs+h + i = ̂ 5ί+fc ( m o d p)# L e t (^ <̂  v, w) be an?/ solution of (3.1).
Choose g such that (g/^)δ = ζ. Then it can be shown that

25(0, 0)
β
 = p - 14 + 3a ,

100(0, l)
β
 = 100(1, 0)

β
 = 100(4, 4)

δ
 = 4p - 16 - Zx +

100(0, 2)
5
 = 100(2, 0)

5
 = 100(3, 3)

5
 - Ap - 16 - Zx +

100(0, 3)
6
 - 100(3, 0)

5
 = 100(2, 2)

5
 - 4p - 16 - 3x - 50u - 25w ,

100(0, 4)
β
 - 100(4, 0)

β
 = 100(1, 1)

5
 - 4p ~ 16 - 3^ - 50v + 25w ,

100(1, 2)
β
 - 100(1, 4)

5
 - 100(2, 1)

5
 - 100(3, 4)

5
 = 100(4, 1)

5

= 100(4, 3)
5
 = 4p + 4 + 2x - 50^ ,

100(1, 3)
5
 - 100(2, 3)

5
 - 100(2, 4)

5
 = 100(3, 1)

5
 = 100(3, 2)

β

= 100(4, 2)
β
 = 4p + 4 + 2x + 50w ,

and Muskat [5] has shown that

ind, (5) = (0, 4)
5
 - (0, 1)

6
 + 2((0, 3)

5
 - (0, 2)

5
)) (mod 5)

so that

ind^ (5) = —2u — v (mod 5) .

Thus if 5 is a quintic nonresidue (mod p) 2u + v ^ 0 (mod 5) and by
Dickson's theorem there is a unique solution of (3.1) satisfying
2u + v = 4 (mod 5). With this solution we have ind^ (5) = 1 (mod 5)
and so

5(P-l)/5 Ξ 0inty5).(P-l)

Thus we have proved

THEOREM 3. Let p be a prime = 1 (mod 5) for which 5 is a quintic
nonresidue (mod p). Let {x, u, v, w) be the unique solution of (3.1)
satisfying 2u + v = 4 (mod 5). Then we have

5<P-l)/5 Ξ

8. EXAMPLE. We take p = 311. A solution of (3.1) in this case
is ( — 49, 7, 0, 1) (see for example [8]) so none of 2, 3, 5 is a quintic
residue (mod 311). The unique solution given by Theorem 1 is ( — 49,
0, 7, -1) so that

2(P-i,/B _ 262 = 2276 - 98.46 _ -2232 _ - 5 5 _
2 ~ 2 ~ 2276 + 98.94 = ΊΪ488" = ^ 1 9 =
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The unique solution given by Theorem 2 is (—49, — 7, 0, 1) so that

-2276 + 98.66 Ξ 4192 s 149o-!,,. = 3β2 Ξ
( m o d 8 1 1 ) #g 3 Ξ Ξ s

-2276 - 98.214 -23248 77
The unique solution given by Theorem 3 is ( — 49, 7, 0, 1) so that

5(*-υ/β == 5β2 Ξ -2276 - 98.214 _ -23248 Ξ H Ξ 3 6 /m o ( j 3 : m #

-2276 + 98.66 4192 149
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