ON EULER'S CRITERION FOR QUINTIC NONRESIDUES

Abstract

Kenneth S. Williams

Let p be a prime $\equiv 1(\bmod 5)$. If 2 is a quintic nonresidue $(\bmod p)$ then $2^{p-1 / 5} \equiv \alpha(\bmod p)$ for some fifth root of unity $\alpha_{5}(\not \equiv 1)(\bmod p)$. Emma Lehmer has given an explicit expression for α_{5} in terms of a particular solution of a certain quadratic partition of p. In this paper we show how in principle the corresponding result can be obtained for any quintic nonresidue $D(\bmod p)$. Full details are given for $D=2,3,5$.

1. Introduction. Let k be an integer $\geqq 2$ and let p be a prime $\equiv 1(\bmod k)$. Euler's criterion states that $D^{(p-1) / k} \equiv 1(\bmod p)$ if and only if D is a k th power residue $(\bmod p)$. Thus if D is not a k th power residue $(\bmod p)$, for some k th root of unity $\alpha_{k}(\not \equiv 1)$ moduo p we have $D^{(p-1) / k} \equiv \alpha_{k}(\bmod p)$. Clearly $\alpha_{2}=-1$. For $k>2$ Emma Lehmer [3] has proposed the problem of specifying which α_{k} corresponds to a given D. For $D=2, k=3,4,5,8$, she has given explicit expressions for α_{k} in terms of certain quadratic partitions of p. Elsewhere the author [6] has given a complete treatment of the case $k=3$. In this paper we treat the case $k=5$. Full details are given for $D=2,3,5$. The method used is described in $\S 4$ and can be applied to any value of D if the reader has the patience to supply the many details.
2. Two lemmas involving the domain $Z[\zeta]$. We set $\zeta=$ $\exp (2 \pi i / 5)$. If Q denotes the field of rational numbers, the cyclotomic field formed by adjoining ζ to Q is denoted by $Q(\zeta)$. The domain of integers of $Q(\zeta)$ is denoted by $Z[\zeta]$. Every element of $Z[\zeta]$ can be written in the form $a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}+a_{4} \zeta^{4}$, where $a_{1}, a_{2}, a_{3}, a_{4}$ are rational integers. The domain $Z[\zeta]$ is a unique factorization domain. The element $1-\zeta$ is a prime in $Z[\zeta]$ which divides 5 . The units of $Z[\zeta]$ are given by $\pm \zeta^{i}\left(\zeta+\zeta^{4}\right)^{j}$, where i and j are integers with $0 \leqq i \leqq 4$. If α and β are associated nonzero elements, that is α / β is a unit, we write $\alpha \sim \beta$. The complex conjugate of an element $\alpha \in Z[\zeta]$ will be denoted by $\bar{\alpha}(\in Z[\zeta])$. We will need the following two results.

Lemma 1. If $\alpha \in Z[\zeta]$ is such that $\alpha \not \equiv 0(\bmod 1-\zeta)$ then α possesses an associate α^{\prime} such that $\alpha^{\prime} \equiv-1\left(\bmod (1-\zeta)^{2}\right)$.

Proof. Set $\alpha=a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}+a_{4} \zeta^{4}, b=a_{1}+a_{2}+a_{3}+a_{4}, c=$
$a_{1}+2 a_{2}+3 a_{3}+4 a_{4}$. As $\alpha \not \equiv 0(\bmod 1-\zeta)$ we have $b \not \equiv 0(\bmod 5)$. We define d uniquely by $2^{d} b \equiv-1(\bmod 5), 0 \leqq d \leqq 3$. Then we have only to choose $\alpha^{\prime}=\zeta^{c^{2} d}\left(\zeta+\zeta^{4}\right)^{d} \alpha$, as $\zeta+\zeta^{4} \equiv 2\left(\bmod (1-3)^{2}\right)$ and $\zeta^{{ }^{2} d} \equiv b\left(\bmod (1-\zeta)^{2}\right)$.

Lemma 2. If $\alpha, \beta \in Z[\zeta]$ are such that
(a) $\alpha \bar{\alpha}=\beta \bar{\beta}$
(b) $\alpha, \beta \not \equiv 0(\bmod 1-\zeta)$,
(c) $\alpha \equiv \beta\left(\bmod (1-\zeta)^{2}\right)$,
(d) $\alpha \sim \beta$,
then

$$
\alpha=\beta
$$

Proof. By (d) we have $\alpha= \pm \zeta^{i}\left(\zeta+\zeta^{4}\right)^{j} \beta$, for integers i and j with $0 \leqq i \leqq 4$. Thus using (a) we obtain $\alpha \bar{\alpha}=\left(\zeta+\zeta^{4}\right)^{2 j} \beta \bar{\beta}=$ $\left(\zeta+\zeta^{4}\right)^{2 j} \alpha \bar{\alpha}$. Now (b) guarantees that $\alpha \neq 0$, so that $\alpha \bar{\alpha} \neq 0$, and we must have $\left(\zeta+\zeta^{4}\right)^{2 j}=1$. As $\zeta+\zeta^{4}=\frac{1}{2}(\sqrt{5}-1)>0$ we have $j=0$ and so $\alpha= \pm \zeta^{i} \beta, 0 \leqq i \leqq 4$. From (b) and (c) we have $\left(\pm \zeta^{i}-1\right) \beta \equiv 0\left(\bmod (1-\zeta)^{2}\right), \beta \not \equiv 0(\bmod 1-\zeta)$, so that

$$
\pm \zeta^{i}-1 \equiv 0\left(\bmod (1-\zeta)^{2}\right)
$$

As $i=0,1,2,3,4$ this can only hold with the positive sign and $i=0$, so that $\alpha=\beta$.
3. Dickson's diophantine system. Throughout the rest of this paper p denotes a prime $\equiv 1(\bmod 5)$. Our results involve the diophantine system

$$
\begin{align*}
16 p & =x^{2}+50 u^{2}+50 v^{2}+125 w^{2}, \quad x \equiv 1(\bmod 5) \\
x w & =v^{2}-4 u v-u^{2} \tag{3.1}
\end{align*}
$$

A theorem of Dickson [1] asserts that (3.1) has exactly four solutions. If (x, u, v, w) is one of these, the other three are given by $(x,-u$, $-v, w),(x, v,-u,-w),(x,-v, u,-w)$. Taking the first equation in (3.1) modulo 8 and the second one modulo 4 we can show (after a little calculation) that $x+2 u-w \equiv x+2 v+w \equiv 0(\bmod 4)$ for any solution of (3.1). This enables us to make the following definition.

Definition 1. For any solution (x, u, v, w) of !(3.1) we define $\psi \equiv \psi(x, u, v, w) \in Z[\zeta]$ by

$$
\begin{equation*}
\psi=c_{1} \zeta+c_{2} \zeta^{2}+c_{3} \zeta^{3}+c_{4} \zeta^{4} \tag{3.2}
\end{equation*}
$$

where $c_{i} \equiv c_{i}(x, u, v, w) \in Z(1 \leqq i \leqq 4)$ are given by

$$
\begin{align*}
& 4 c_{1}=-x+2 u+4 v+5 w, \\
& 4 c_{2}=-x+4 u-2 v-5 w, \\
& 4 c_{3}=-x-4 u+2 v-5 w, \tag{3.3}\\
& 4 c_{4}=-x-2 u-4 v+5 w
\end{align*}
$$

The properties of ψ that we shall need are given in the next lemma.

Lemma 3. (a) $\psi \bar{\psi}=p$.
(b) $\psi \equiv-1\left(\bmod (1-\zeta)^{2}\right)$.
(c) If $\sigma_{i}(1 \leqq i \leqq 4)$ is the automorphism of $Q(\zeta)$
defined by $\sigma_{i}(\zeta)=\zeta^{i}$ then G.C.D. $\left(\psi_{1}, \psi_{2}\right)$ is a prime of $Z[\zeta]$, where $\psi_{i}=\sigma_{i}(\psi)(1 \leqq i \leqq 4)$.

Proof. (a) As $\zeta+\zeta^{4}=1 / 2(-1+\sqrt{5}), \zeta^{2}+\zeta^{3}=1 / 2(-1-\sqrt{5})$, we have from (3.2)

$$
\begin{aligned}
\dot{\psi} \bar{\psi}= & \left\{\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+c_{4}^{2}\right)-\frac{1}{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{3} c_{4}+c_{1} c_{3}\right.\right. \\
& \left.+c_{1} c_{4}+c_{2} c_{4}\right)+\frac{\sqrt{5}}{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{3} c_{4}-c_{1} c_{3}\right. \\
& \left.\left.-c_{1} c_{4}-c_{2} c_{4}\right)\right\} \\
= & \frac{1}{16}\left(x^{2}+50 u^{2}+50 v^{2}+125 w^{2}\right)-\frac{5 \sqrt{5}}{8} \\
& \times\left(v^{2}-4 u v-u^{2}-x w\right)=p .
\end{aligned}
$$

(b) From (3.1) and (3.3) we have

$$
c_{1}+c_{2}+c_{3}+c_{4}=-x \equiv-1, c_{1}+2 c_{2}+3 c_{3}+4 c_{4} \equiv 0(\bmod 5)
$$

so that $\psi \equiv-1\left(\bmod (1-\zeta)^{2}\right)$.
(c) Let π be a prime dividing p. As $p \equiv 1(\bmod 5)$ we have $p=\pi_{1} \pi_{2} \pi_{3} \pi_{4}$, where $\pi_{i}=\sigma_{i}(\pi), 1 \leqq i \leqq 4$. By (a) ψ is (up to multiplication by a unit) one of $\pi_{1} \pi_{2}, \pi_{1} \pi_{3}, \pi_{2} \pi_{4}, \pi_{3} \pi_{4}$. In each case G.C.D. (ψ_{1}, ψ_{2}) is a prime.

Lemma 1 and Lemma 3(c) enable us to define a prime \mathscr{K} of $Z[\zeta]$ as follows.

Definition 2. For any solution (x, u, v, w) of (3.1) we let $\mathscr{K} \equiv \mathscr{K}(x, u, v, w) \in Z[\zeta]$ be such that

$$
\mathscr{K} \sim \text { G.C.D. }\left(\psi_{1}, \psi_{2}\right), \quad \mathscr{K} \equiv-1\left(\bmod (1-\zeta)^{2}\right) .
$$

We remark that \mathscr{K} is not unique, indeed all such \mathscr{K} are given by
$(-1)^{r}\left(\zeta+\zeta^{4}\right)^{2 r} \mathscr{K}^{r}(r \in Z)$. However this does not matter for our purposes. Next we give the prime decomposition of ψ using Lemma 2.

Lemma 4. $\psi=-\mathscr{K}_{1} \mathscr{K}_{3}$.
Proof. As $\mathscr{K} \sim$ G.C.D. $\left(\psi_{1}, \psi_{2}\right)$ we have $\mathscr{K}_{1} \mid \psi_{1}$, say, $\psi_{1}=\mathscr{K}_{1} \lambda_{1}$. Hence $\psi_{2}=\mathscr{K}_{2} \lambda_{2}$ and as $\mathscr{K}_{1} \mid \psi_{2}$ we must have $\mathscr{K}_{1} \mid \lambda_{2}$, that is $\mathscr{K}_{3} \mid \lambda_{1}$, say $\lambda_{1}=\mathscr{K}_{3} \mu$. Then $\psi_{1}=\mathscr{K}_{1} \mathscr{K}_{3} \mu$ and so we have

$$
\begin{aligned}
\mathscr{K}_{1} \mathscr{K}_{2} \mathscr{K}_{3} \mathscr{K}_{4} & =p=\psi_{1} \bar{\psi}_{1}=\left(\mathscr{K}_{1} \mathscr{K}_{3} \mu\right)\left(\mathscr{K}_{4} \mathscr{K}_{2} \bar{\mu}\right) \\
& =\mathscr{K}_{1} \mathscr{K}_{2} \mathscr{K}_{3} \mathscr{K}_{4} \mu \bar{\mu} .
\end{aligned}
$$

Hence we have $\mu \bar{\mu}=1$, so that μ is a unit of $Z[\zeta]$, proving that $\psi \sim \mathscr{K}_{1} \mathscr{K}_{3}$. Clearly ψ and $-\mathscr{K}_{1} \mathscr{K}_{3}$ satisfy the conditions of Lemma 2 so that $\psi=-\mathscr{K}_{1} \mathscr{K}_{3}$.

Finally in this section we set for any solution (x, u, v, w) of (3.1):

$$
\begin{align*}
& \alpha(x, u, v, w) \\
& \quad=\frac{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x+20 u-10 v)}{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x-20 u+10 v)} \tag{3.4}
\end{align*}
$$

and prove
Lemma 5. $\quad \alpha(x, u, v, w) \equiv \zeta(\bmod \mathscr{K})$.
Proof. From (3.2) and $\psi_{1} \equiv \psi_{2} \equiv 0(\bmod \mathscr{K})$ we obtain modulo $\mathscr{K}:$

$$
\begin{aligned}
& 5 c_{1} \equiv\left(\zeta^{2}-1\right) \psi_{3}+(\zeta-1) \psi_{4}, \\
& 5 c_{2} \equiv\left(\zeta^{4}-1\right) \psi_{3}+\left(\zeta^{2}-1\right) \psi_{4}, \\
& 5 c_{3} \equiv(\zeta-1) \psi_{3}+\left(\zeta^{3}-1\right) \psi_{4}, \\
& 5 c_{4} \equiv\left(\zeta^{3}-1\right) \psi_{3}+\left(\zeta^{4}-1\right) \psi_{4} .
\end{aligned}
$$

Appealing to (3.3) we get

$$
\begin{aligned}
x & \equiv \psi_{3}+\psi_{4}, & & 25 u \equiv \alpha \psi_{3}+\beta \psi_{4}, \\
25 v & \equiv \beta \psi_{3}-\alpha \psi_{4}, & & 25 w \equiv-\gamma \psi_{3}+\gamma \psi_{4},
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha & =-2 \zeta+\zeta^{2}-\zeta^{3}+2 \zeta^{4} \\
\beta & =\zeta+2 \zeta^{2}-2 \zeta^{3}-\zeta^{4} \\
\gamma & =\zeta-\zeta^{2}-\zeta^{3}+\zeta^{4}
\end{aligned}
$$

It is easy to check that

$$
\alpha \beta=\alpha^{2}-\beta^{2}=5 \gamma, \quad \gamma^{2}=5
$$

After some calculation we find that

$$
\begin{aligned}
& 25\left\{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x+20 u-10 v)\right\} \\
& \quad \equiv 4 \gamma \psi_{3} \psi_{4}\left((2+2 \zeta) \psi_{3}+2 \zeta^{3} \psi_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& 25\left\{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x-20 u+10 v)\right\} \\
& \quad \equiv 4 \gamma \psi_{3} \psi_{4}\left(\left(2+2 \zeta^{4}\right) \psi_{3}+2 \zeta^{2} \psi_{4}\right)
\end{aligned}
$$

from which the result follows immediately.
4. Outline of method. We start with the necessary and sufficient condition for D (without loss of generality we may take D to be a (positive) prime) to be a quintic residue $(\bmod p)$ in terms of congruences $(\bmod D)$ involving a solution of (3.1). These have been given for $D=2,3,5,7$ in [4] and for $D=11,13,17,19$ in [9]. Results for other values of D could be obtained using the period equation as in [9]. If D is a quintic nonresidue $(\bmod p)$ this condition is used to specify a unique solution of (3.1) by means of congruences $(\bmod D)$. This unique solution is specified in such a way that after using Lemma 4 we find that the corresponding \mathscr{K} satisfies $(\mathscr{K} / D)_{5}=\zeta$. If $D \neq 5$ we can then appeal to Eisenstein's reciprocity law
"If $\alpha \equiv-1\left(\bmod (1-\zeta)^{2}\right)$ and a is a rational integer prime to 5 then $(\alpha / a)_{5}=(\alpha / \alpha)_{5}$ "
to obtain $(D / \mathscr{K})_{5}=\zeta$, so that $D^{(p-1) / 5} \equiv \alpha(x, u, v, w)(\bmod \mathscr{K})$ by Lemma 5. As both $D^{(p-1) / 5}$ and $\alpha(x, u, v, w)$ are rational we have $D^{(p-1) / 5} \equiv \alpha(x, u, v, w)(\bmod p)$ as required. If $D=5$ we must replace the use of Eisenstein's reciprocity law by Kummer's supplement to the law of quintic reciprocity involving the prime $1-\zeta$ [7]. Unfortunately, this requires working modulo 25 rather than modulo 5 and so involves a large number of cases. We thus give an alternative approach based on a result of Muskat [5].
5. $D=2$. Lehmer [2] has shown that 2 is a quintic residue $(\bmod p)$ if and only if $x \equiv 0(\bmod 2)$, where (x, u, v, w) is any solution of (3.1). Thus if 2 is a quintic nonresidue $(\bmod p)$ we can find by Dickson's theorem a unique solution (x, u, v, w) of (3.1) such that

$$
\begin{equation*}
x \equiv 1(\bmod 2), \quad u \equiv 0(\bmod 2), \quad x+u-v \equiv 0(\bmod 4) \tag{5.1}
\end{equation*}
$$

In terms of this solution a simple calculation using (3.3) shows that $\psi \equiv \zeta^{3}(\bmod 2)$. Then by an examination of cases in conjunction with $\psi=-\mathscr{K}_{1} \mathscr{K}_{3}$ (Lemma 4) we find that

$$
\mathscr{K} \equiv \zeta^{2}, \quad \zeta+\zeta^{3} \quad \text { or } \quad \zeta+\zeta^{2}+\zeta^{3}(\bmod 2),
$$

so that $(\mathscr{K} / 2)_{5}=\zeta$. Appealing to Eisenstein's reciprocity theorem as indicated in $\S 4$ we have reproved

Theorem 1 (Lehmer [3]). Let p be a prime $\equiv 1(\bmod 5)$ for which 2 is a quintic nonresidue $(\bmod p)$. Let (x, u, v, w) be the unique solution of (3.1) satisfying (5.1). Then we have

$$
2^{(p-1) / 5} \equiv \alpha(x, u, v, w)(\bmod p)
$$

6. $D=3$. (Lehmer [2] has shown that 3 is a quintic residue $(\bmod p)$ if and only if $u \equiv v \equiv 0(\bmod 3)$, where (x, u, v, w) is any solution of (3.1).) Thus if 3 is a quintic nonresidue $(\bmod p)$ we can find by Dickson's theorem a unique solution (x, u, v, w) of (3.1) satisfying one of
(a) $x \equiv 1, \quad u \equiv 1, \quad v \equiv 0, \quad w \equiv 2(\bmod 3)$,
(b) $x \equiv 2, \quad u \equiv 2, \quad v \equiv 0, \quad w \equiv 1(\bmod 3)$,
(c) $\quad x \equiv 1, \quad u \equiv 2, \quad v \equiv 1, \quad w \equiv 1(\bmod 3)$,
(d) $\quad x \equiv 2, \quad u \equiv 1, \quad v \equiv 2, \quad w \equiv 2(\bmod 3)$.

In terms of this solution a simple calculation using (3.3) shows that

$$
\begin{array}{llll}
\psi \equiv-\zeta-\zeta^{2}+\zeta^{4}(\bmod 3), & \text { if } & \text { (a) holds } \\
\psi \equiv \zeta+\zeta^{2}-\zeta^{4} & (\bmod 3), & \text { if } & \text { (b) holds } \\
\psi \equiv-\zeta^{4} & (\bmod 3), & \text { if } & \text { (c) holds } \\
\psi \equiv \zeta^{4} & (\bmod 3), & \text { if } & \text { (d) holds }
\end{array}
$$

Then by an examination of cases $(\bmod 3)$ in conjunction with Lemma 4 we find that

$$
\begin{aligned}
& \mathscr{K} \equiv \pm\left(\zeta-\zeta^{2}-\zeta^{4}\right), \pm\left(\zeta-\zeta^{2}+\zeta^{3}+\zeta^{4}\right)(\bmod 3), \text { if (a) holds }, \\
& \mathscr{K} \equiv \pm\left(\zeta^{3}-\zeta^{4}\right), \pm\left(\zeta-\zeta^{2}-\zeta^{3}\right)(\bmod 3), \text { if (b) holds }, \\
& \mathscr{K} \equiv \pm \zeta, \quad \pm\left(\zeta-\zeta^{3}-\zeta^{4}\right)(\bmod 3), \text { if (c) holds, } \\
& \mathscr{K} \equiv \pm\left(\zeta^{3}+\zeta^{4}\right), \quad \pm\left(\zeta+\zeta^{3}+\zeta^{4}\right)(\bmod 3), \quad \text { if } \quad \text { (d) holds },
\end{aligned}
$$

so that in every case $(\mathscr{K} / 3)_{5}=\zeta$. Appealing to Eisenstein's reciprocity theorem as before we have the following result.

THEOREM 2. Let p be a prime $=1(\bmod 5)$ for which 3 is a quintic nonresidue $(\bmod p)$. Let (x, u, v, w) be the unique solution of (3.1) satisfying (6.1). Then we have

$$
3^{(p-1) / 5} \equiv \alpha(x, u, v, w)(\bmod p)
$$

7. $D=5$. For p a prime $\equiv 1(\bmod 5), g$ a primitive $\operatorname{root}(\bmod p)$,
h, k integers selected from $0,1,2,3,4$, the cyclotomic number $(h, k)_{5}$ is defined to be the number of solutions (s, t) with $0 \leqq s, t<(p-1) / 5$ of $g^{5 s+h}+1 \equiv g^{5 t+k}(\bmod p)$. Let (x, u, v, w) be any solution of (3.1). Choose g such that $\left(g / \mathscr{K}^{C}\right)_{5}=\zeta$. Then it can be shown that

$$
\begin{aligned}
& 25(0,0)_{5}=p-14+3 x, \\
& 100(0,1)_{5}= 100(1,0)_{5}=100(4,4)_{5}=4 p-16-3 x+50 v+25 w, \\
& 100(0,2)_{5}= 100(2,0)_{5}=100(3,3)_{5}=4 p-16-3 x+50 u-25 w, \\
& 100(0,3)_{5}= 100(3,0)_{5}=100(2,2)_{5}=4 p-16-3 x-50 u-25 w, \\
& 100(0,4)_{5}= 100(4,0)_{5}=100(1,1)_{5}=4 p-16-3 x-50 v+25 w, \\
& 100(1,2)_{5}=100(1,4)_{5}=100(2,1)_{5}=100(3,4)_{5}=100(4,1)_{5} \\
&= 100(4,3)_{5}=4 p+4+2 x-50 w, \\
& 100(1,3)_{5}=100(2,3)_{5}=100(2,4)_{5}=100(3,1)_{5}=100(3,2)_{5} \\
&= 100(4,2)_{5}=4 p+4+2 x+50 w,
\end{aligned}
$$

and Muskat [5] has shown that

$$
\left.\operatorname{ind}_{g}(5) \equiv(0,4)_{5}-(0,1)_{5}+2\left((0,3)_{5}-(0,2)_{5}\right)\right)(\bmod 5)
$$

so that

$$
\operatorname{ind}_{g}(5) \equiv-2 u-v(\bmod 5)
$$

Thus if 5 is a quintic nonresidue $(\bmod p) 2 u+v \not \equiv 0(\bmod 5)$ and by Dickson's theorem there is a unique solution of (3.1) satisfying $2 u+v \equiv 4(\bmod 5)$. With this solution we have $\operatorname{ind}_{g}(5) \equiv 1(\bmod 5)$ and so

$$
5^{(p-1) / 5} \equiv g^{\operatorname{ind}_{g}(5) \cdot(p-1) / 5} \equiv g^{(p-1) / 5} \equiv\left(\frac{g}{\mathscr{K}}\right)_{5} \equiv \zeta(\bmod \mathscr{K}) .
$$

Thus we have proved
Theorem 3. Let p be a prime $\equiv 1(\bmod 5)$ for which 5 is a quintic nonresidue $(\bmod p)$. Let (x, u, v, w) be the unique solution of (3.1) satisfying $2 u+v \equiv 4(\bmod 5)$. Then we have

$$
5^{(p-1) / 5} \equiv \alpha(x, u, v, w)(\bmod p)
$$

8. Example. We take $p=311$. A solution of (3.1) in this case is $(-49,7,0,1)$ (see for example [8]) so none of $2,3,5$ is a quintic residue $(\bmod 311)$. The unique solution given by Theorem 1 is $(-49$, $0,7,-1$) so that

$$
2^{(p-1) / 5}=2^{62} \equiv \frac{2276-98.46}{2276+98.94} \equiv \frac{-2232}{11488} \equiv \frac{-55}{-19} \equiv 52(\bmod 311)
$$

The unique solution given by Theorem 2 is $(-49,-7,0,1)$ so that

$$
3^{(p-1) / 5}=3^{62} \equiv \frac{-2276+98.66}{-2276-98.214} \equiv \frac{4192}{-23248} \equiv \frac{149}{77} \equiv 216(\bmod 311)
$$

The unique solution given by Theorem 3 is $(-49,7,0,1)$ so that

$$
5^{(p-1) / 5}=5^{62} \equiv \frac{-2276-98.214}{-2276+98.66} \equiv \frac{-23248}{4192} \equiv \frac{77}{149} \equiv 36(\bmod 311)
$$

References

1. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math., 57 (1935), 391-424.
2. Emma Lehmer, The quintic character of 2 and 3, Duke Math. J., 18 (1951), 1118.
3. - On Euler's criterion, J. Austral. Math. Soc., 1 (1959) 64-70.
4. - On the divisors of the discriminant of the period equation, Amer. J. Math., 90 (1968), 375-379.
5. J. B. Muskat, On the solvability of $x^{e} \equiv e(\bmod p)$, Pacific J. Math., 14 (1964), 257-260.
6. K. S. Williams, On Euler's criterion for cubic nonresidues, Proc. Amer. Math. Soc., 49 (1975), 277-283.
7. -, Explicit forms of Kummer's complementary theorems to his law of quintic reciprocity, J. für Math., (to appear).
8. -, Table of solutions (x, u, v, w) of the diophantine system $16 p=x^{2}+50 u^{2}+$ $50 v^{2}+125 w^{2}, x w=v^{2}-4 u v-u^{2}, x \equiv 1(\bmod 5)$, for primes $p<10,000, p \equiv 1(\bmod 5)$, Unpublished Mathematical Tables File of American Mathematical Society (with B. Lowe).
9. —, Explicit criteria for quintic residuality (submited for publication).

Received June 4, 1974 and in revised form August 8, 1975. Research supported by National Research Council of Canada Grant No. A-7233.

Carleton University

