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2 AS A NINTH POWER (MOD p) 

By KENNETH S . WILLIAMS* 

[Received July 10, 19741 

1. Introduction. Let p be a prime Z 2,3. We consider the problem 
of giving a necessary and sufficient condition for 2 to be a ninth power 
(mod p), analogous to those known for 2 to be a k th i>ower (mod p) for 
k = 3 [ 3 ] , k = 5 [ 4 ] , k = 7 [ 5 j ' a n d k = l l  [6].  L f p ~ 2 ( m o d 3 ) t h e n 2  
is always a ninth power (modp) so we may restrict our attention to 
primk p 3 1 (d 3). For such primes, Gauss showed that there are 
integers L,M such that 

4p = La + 27Me, L r 1 (mod 3) (1.1) 
Indeed there are just two solutions of (1.11, namely (L, f M). Jacobi 
[3] proved that 2 is a cube (mod p) if and only if L- 0 (mod 2). Clearly 
2 cannot be a ninth power (mod p) without being a cube (mod p). If 2 is a 
cube (mod p) and p +  1 (mod 9) then 2 will also be a ninth power 
(modp). However if 2 is a cube (modp) andp 1 (mod 9) then 2 may 
or may not be a ninth power (mod p). In this case, using a result of 
Dickson [2], we prove that 2 is a ninth power (mod p) if and only if 
x, G O  (mod 2), where x, is uniquely determined by the diophantine 
system 

8p = 2x: + 3xi + 184 + f8xt + 27x; + 54x:, 
e xz - 9 ~ :  - 2 x 1 ~ ~  + 4 x 1 ~ ~  + 2xlxS - 2x2x8 + 2 ~ ~ x 4  
+ 6x,x6 + 1 2x3x4 + 6x8x6 + 12x,x, + 6 x ~ ,  + 24x4x, 
+ 1 8x,x6 = 0, 

1 (1.2) 

xlx, - 2xlx, + xlx, + 2x,x, - 2x,x4 - 3x,x6 - 6x8x, 
- 12x3x, - 6x4x, - 6x4x8 + ~x,x, = 0, 

(compare [3], [dl, [5] and [Q]). 

i 
with (x,, x,, x,, x4, x,, x,) Z (L, 0, 0, 0, 0; f M) and x l r  1 (mod 3) 
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2 .  . A Prehinary Lemma. We prove 

LEMMA. Let p be a prime= 1 (md 9). Then any soltrtion (x,, x,, x,, 
x4, x6, xJ of (1.2) satisfis 

x, + x 6 ~ x a + x , ~ x ,  + x a +  x4=O(mod 2) (2.1) 
and 

x, + 24, + 3x6 0 (mod 4). (2 2) 

PROOF. Reducing the first equation in (1.2) modulo 2 we obtain 

x , + x s ~ O  (mod2), (2.3) 

which is part of the assertion (2.1). Next we reduce the same equation 
modulo 4 obtaining 

q + 3 4 + f + + 4 + 3 d + x r ~ ( m o d 4 ) .  (2.4) 

From (2.3) we have 4 3 (mod 4) and using this in (2.4) we obtain 

2 ( 4 + 4 + + : + 4 + f  =0(mod4), 
that is 

xl+ x a + x , + x 4 + x 6 ~ o  (mod2). (2.5) 

Now reducing the second equation in (1.2) modulo 8 we get 

3 - X: - 2 x 1 ~ ~  + 4 ~ ~ x 3  + 2xlxS - k,xa + b8x4  - kg6 + 4xax4 - 
2x,x, + 4xax6 - 2x,x, + = 0 (mod 8). (2.6) 

By (2.3) we may define an integer t by x, = x, + 2t and substituting 
this in (2.6) yields 

~ ( X ~ + X ~ + X ~ + X ~ + X ~ ) + ~ ' + X *  ( ~ ~ + ~ 4 + ~ 5  + x ~ E O  (mod219 
which appealing to (2.3) and (2.5) gives 
r x, (mod 2), that is, *(x, - xb) r x, (mod 2) or x, + 2x, + 3x6 = 0 
(mod 4), which is the assertion of (2.2). Finally reducing the third 
equation in (1 .2) modulo 4 we get using (2.3) 

~ 6 )  (xS + 2x4 + x6) =O (mod 4), 
that is 

( ~ l ~ ~ ~ ( x 8 + ~ 4 + ~ b l ~ ( ~ 1 + x ~ ( ~ + ~ 4 + ~ g ) ~ ~ ( ~ ~ ~ ) ,  (2n7) 

follows from (2.3), (2.5) and (2 .7), completing the +reef-&-the .mt sf - 
the assertion of (2.1). 

. . . .. 
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3. A Tbeorem of Dickson. Our results depend upon the following 
result of Dickson (121 Theorem 3, p. 193). 

THEOREM 1 (DICKSON) Let p be a prime = 1 (mod 9). The triple of 
diophantine equations 

~ = 4 +  4 +4 + 4 + 4 + 4 - ~ a  -c,c~-c:c,~* 
cocl + clc, + c,c8 + cac4 + c4cs - c0c4 -c,c5- cec6 = 0, 
CaCa + CICa + CaC4 + CaCs - C0C4 - CICb - CeC6 = 0, 

1 (3.1) 

has exactly six integral solutions (c,, c,, c,, c,, c4, c,) # (+(Lf 3M), 
0,O, f 3M, 0,0) (upper signs together or lower signs together) satisfying 

co- - 1, C,=C*G -c4_=- c,, c,=O (mod 3) (3.2) 
If (co, c,, c,, c,, c4, cd is one of these six solutions, the other five are 
given by 

(co - ca, Cb, C1 - C4, - C,, C*, - c4), 
(~0, - C4, C, - C,, C,, C1 - C4, - c*), 
(co - c,, - c,, - c,, -c,, c, - ca, c,- c,), (3 3) 
(co, c4 - - C,, C,' -C1, C* - cJ, 
('0 - '8, c* - c6, c4, - c8, - c6, cl). 

Moreover, if g is a primitive root (modp), then for some solution 
(co, c,, ca, c,, c,, c,) # (4(L f 3M), 0s 0, f 3Ms 090) of (3.1) and (3.2) 
we have 

p - 26 + L + 54c0 - 27c,, if ind, (3) G 0 (mod 3), 
p - 26 + L - 27c,, if ind, (3) = 1 (mod 3). (3.4) 
p - 26 + L + 27c, if ind, (3) = 2 (mod 3), 

where (h, k), denotes the cyclotomic number of order nine, that is, the 
number of solutions (s, t) of gkth + 1 =gaitL (modp), and ind, (I) (I qk 0) 
(modp)) denotes the unique integer m such that I=gm (mod p), 
O\<m\<p-2.  

Diagonalizing the first equation in (3.1) and absorbing the conditions 
(3.2) into the equations in (3.1) we obtain 

COROLLARY. Let p be a prime 1 (mod 9). The triple of diophantine 
.equations (1.2) has exactly six solutions (x,, x,, x,, x,, x,, x& + (L, O,0,0, 
0, f M) satisfying x, 1 (mod 3). .If (x,, x,, x,, x4, x,, x,) is one of 
these solutions, the other fire solutions are given by 



where k = 0, 1, 2, 3, 4, 5, so that XI 1 (mod 3) is uniquely determined 
by (1 .2). Moreover, if g is a primitive root (mod p), then for sorne- 
solution (x,, .r,, x,, x,, x,, x,J # (L, O,O, 0, 0, f M) of (1.2) with x, = 1 
(mod 3) we have 

p - 26 + L + 27xl, if ind, (3) 0 (mod 3), 
p - 26 + L - 8 lx,, if ind, (3) = 1 (mod 3), (3.6) 
p - 26 + L + 81x,, if ind, (3) = 2 (mod 3), 

PROOF. For any solution (co, c,, c,, cay c4, cb of (3.1) and (3.2) we 
obtain a solution (x,, x,, x,, x,, x,, x,) of (1.2) by setting 

x, = 2EO - cs, 
x, = c, + c,, 

3x* = 2c, - c* , 7 r (3.7) 
3x4 = 2c, - c,, 

I 3xa = c4 - C,, 
3x, = c,, J 

with x, 1 (mod 3). Conversely if (XI, xa, x,, x,, x,, x,) is a solption 
of (1.2) with x , ~  1 (mod 3) then, by the Lemma, we may define a 
solution (c,, c,, cap c,, c,, c,J of (3.1) by setting 

2c0 = x, + 3x,, 
4c1 = X, + 6xa + 3x6, ? 4ca = X, + 6x4 - 3x6, 
c, = 3x,. 

(3.8) 

2c4 = X, + 3x6, 
2c5 = x, - 3x,, J 

which satisfies (3.2). Clearly the excluded solutions ()(L f 3M), 0,0, 
f 3 ~ ,  0, 0) and (L, O,0, 0, 0, f M), (3.3) and (3.9, (3.4) and (3.6), 
correspond under the transformations (3.7) and (3.8). This completes 
the proof of the corollary. 

d 
4. Necessary and sdEcient condition for 2 to be A Nlete power i* 

(mod p). We are now in a position to prove the main result of this 



THEOREM 2. Let p be a prime= 1 (mod 9) for which 2 is a cube 
(mod p). Let x, = 1 (mod 3) be the unique integer determined by the system 
(1.2) (see corollary). Then 2 is a ninth power (mod p) if and only if 
x,=O (mod 2). 

PROOF. Using a well-known result (see for example [4] or [7]) 2 is 
a ninth power (modp) if and only if (0, O), 3 1 (mod 2), that is, by the 
corollary if and only if x, = 0 (mod 2), since L = 0 (mod 2) as 2 is a cube 
(mod PI. 

5. Numerical Examples. The only primes p < 1000, p E 1 (mod 9), 
for which 2 is a cube (mod p) are 

p = 109, 127, 307, 397,433,739, 81 1, 919. (5.1) 
Mr. Barry Lowe, using Carleton University's Sigma-9 computer, found 
solutions of (1.2) for these values of p as follows : 

Thus, by Theorem 2, of these primes only p = 127 and 397 have 2 as a 
ninth power (mod p). Indeed it is easy to check directly that 

2 = 84@ (mod 127), 2 = 32' (mod 397). 
. We close by kmarking that elsewhere [8] the author has obtained a 
r. similar nwessary and sufficient condition for 3 to be a ninth power (mod p). 
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