2 AS A NINTH POWER (MOD p)

By KENNETH S. WILLIAMS*

[Received July 10, 1974]

1. Introduction. Let p be a prime $\neq 2,3$. We consider the problem of giving a necessary and sufficient condition for 2 to be a ninth power (mod p), analogous to those known for 2 to be a k th power (mod p) for k = 3 [3], k = 5 [4], k = 7 [5] and k = 11 [6]. If $p \equiv 2 \pmod{3}$ then 2 is always a ninth power (mod p) so we may restrict our attention to primes $p \equiv 1 \pmod{3}$. For such primes, Gauss showed that there are integers L, M such that

$$4p = L^2 + 27M^2, L \equiv 1 \pmod{3} \tag{1.1}$$

Indeed there are just two solutions of (1.1), namely $(L, \pm M)$. Jacobi [3] proved that 2 is a cube (mod p) if and only if $L \equiv 0 \pmod{2}$. Clearly 2 cannot be a ninth power (mod p) without being a cube (mod p). If 2 is a cube (mod p) and $p \not\equiv 1 \pmod{9}$ then 2 will also be a ninth power (mod p). However if 2 is a cube (mod p) and $p \equiv 1 \pmod{9}$ then 2 may or may not be a ninth power (mod p). In this case, using a result of Dickson [2], we prove that 2 is a ninth power (mod p) if and only if $x_1 \equiv 0 \pmod{2}$, where x_1 is uniquely determined by the diophantine system

$$\begin{array}{c}
8p = 2x_1^2 + 3x_2^2 + 18x_3^2 + 18x_4^2 + 27x_5^2 + 54x_6^2, \\
x_2^2 - 9x_5^2 - 2x_1x_2 + 4x_1x_3 + 2x_1x_5 - 2x_2x_3 + 2x_2x_4 \\
+ 6x_3x_6 + 12x_3x_4 + 6x_3x_5 + 12x_3x_6 + 6x_4x_5 + 24x_4x_6 \\
+ 18x_5x_6 = 0, \\
x_1x_2 - 2x_1x_4 + x_1x_5 + 2x_2x_3 - 2x_2x_4 - 3x_2x_6 - 6x_3x_5 \\
- 12x_3x_6 - 6x_4x_5 - 6x_4x_6 + 9x_5x_6 = 0, \\
\end{array}$$
(1.2)

with $(x_1, x_2, x_3, x_4, x_5, x_6) \neq (L, 0, 0, 0, 0, \pm M)$ and $x_1 \equiv 1 \pmod{3}$ (compare [3], [4], [5] and [6]).

*Research supported under a National Research Council of Canada grant (No. A-7233).

© INDIAN MATHEMATICAL SOCIETY 1975

KENNETH S. WILLIAMS

2. A Preliminary Lemma. We prove

LEMMA. Let p be a prime $\equiv 1 \pmod{9}$. Then any solution $(x_1, x_2, x_3, x_4, x_5, x_6)$ of (1.2) satisfies

$$x_1 + x_6 \equiv x_2 + x_5 \equiv x_2 + x_8 + x_6 \equiv 0 \pmod{2}$$
 (2.1)

and

$$x_{2} + 2x_{3} + 3x_{5} \equiv 0 \pmod{4}.$$
 (2.2)

PROOF. Reducing the first equation in (1.2) modulo 2 we obtain

$$x_{2} + x_{5} \equiv 0 \pmod{2}, \qquad (2.3)$$

which is part of the assertion (2.1). Next we reduce the same equation modulo 4 obtaining

$$2x_1^3 + 3x_2^3 + 2x_3^3 + 2x_4^3 + 3x_5^2 + 2x_6^3 \equiv 0 \pmod{4}.$$
 (2.4)

From (2.3) we have $x_2^{s} \equiv x_5^{s} \pmod{4}$ and using this in (2.4) we obtain

$$2(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_6^2) \equiv 0 \pmod{4},$$

that is

$$x_1 + x_8 + x_8 + x_6 + x_6 \equiv 0 \pmod{2}.$$
 (2.5)

Now reducing the second equation in (1.2) modulo 8 we get

$$\begin{array}{c} x_2^2 - x_5^3 - 2x_1x_2 + 4x_1x_3 + 2x_1x_5 - 2x_3x_3 + 2x_2x_4 - 2x_3x_6 + 4x_3x_4 - \\ & 2x_3x_5 + 4x_3x_6 - 2x_4x_5 + 2x_5x_6 \equiv 0 \pmod{8}. \end{array}$$

By (2.3) we may define an integer t by $x_2 = x_3 + 2t$ and substituting this in (2.6) yields

 $t(x_1 + x_3 + x_4 + x_5 + x_6) + t^2 + x_3 (x_1 + x_4 + x_5 + x_6) \equiv 0 \pmod{2}$, which appealing to (2.3) and (2.5) gives

 $t \equiv x_3 \pmod{2}$, that is, $\frac{1}{2}(x_2 - x_5) \equiv x_3 \pmod{2}$ or $x_2 + 2x_3 + 3x_5 \equiv 0 \pmod{4}$, which is the assertion of (2.2). Finally reducing the third equation in (1.2) modulo 4 we get using (2.3)

$$(x_1 + x_6) (x_2 + 2x_4 + x_5) \equiv 0 \pmod{4},$$

that is

 $(x_1 + x_6) (x_3 + x_4 + x_5) \equiv (x_1 + x_6) (t + x_4 + x_5) \equiv 0 \pmod{2}$, (2.7) so that

 $x_1 + x_6 \equiv x_3 + x_4 + x_5 \equiv 0 \pmod{2}$

follows from (2.3), (2.5) and (2.7), completing the -proof of the rest of - the assertion of (2.1).

3. A Theorem of Dickson. Our results depend upon the following result of Dickson ([2] Theorem 3, p. 193).

THEOREM 1 (DICKSON) Let p be a prime $\equiv 1 \pmod{9}$. The triple of diophantine equations

$$p = c_0^3 + c_1^3 + c_2^2 + c_3^3 + c_4^3 + c_5^3 - c_0c_3 - c_1c_4 - c_3c_5, \\ c_0c_1 + c_1c_2 + c_3c_3 + c_3c_4 + c_4c_5 - c_0c_4 - c_1c_5 - c_0c_5 = 0, \\ c_8c_2 + c_1c_3 + c_2c_4 + c_3c_5 - c_0c_4 - c_1c_5 - c_0c_5 = 0, \end{cases}$$

$$(3.1)$$

has exactly six integral solutions $(c_0, c_1, c_3, c_4, c_5) \neq (\frac{1}{2}(L \pm 3M))$, 0, 0, $\pm 3M$, 0, 0) (upper signs together or lower signs together) satisfying

$$c_0 \equiv -1, c_1 \equiv c_2 \equiv -c_4 \equiv -c_5, c_3 \equiv 0 \pmod{3}$$
 (3.2)

If $(c_0, c_1, c_2, c_3, c_4, c_5)$ is one of these six solutions, the other five are given by

$$\begin{cases} (c_0 - c_3, c_5, c_1 - c_4, - c_3, c_2, - c_4), \\ (c_0, - c_4, c_5 - c_3, c_3, c_1 - c_4, - c_2), \\ (c_0 - c_3, - c_3, - c_1, - c_3, c_5 - c_2, c_4 - c_1), \\ (c_0, c_4 - c_1, - c_5, c_3, - c_1, c_2 - c_5), \\ (c_0 - c_3, c_2 - c_5, c_4, - c_3, - c_5, c_1). \end{cases}$$

$$(3.3)$$

Moreover, if g is a primitive root $(\mod p)$, then for some solution $(c_0, c_1, c_2, c_3, c_4, c_5) \neq (\frac{1}{4}(L \pm 3M), 0, 0, \pm 3M, 0, 0)$ of (3.1) and (3.2) we have

$$81(0,0)_{g} = \begin{cases} p - 26 + L + 54c_{0} - 27c_{3}, \text{ if ind}_{g} (3) \equiv 0 \pmod{3}, \\ p - 26 + L - 27c_{3}, \text{ if ind}_{g} (3) \equiv 1 \pmod{3}, \\ p - 26 + L + 27c, \text{ if ind}_{g} (3) \equiv 2 \pmod{3}, \end{cases}$$
(3.4)

where $(h, k)_9$ denotes the cyclotomic number of order nine, that is, the number of solutions (s, t) of $g^{9s+h} + 1 \equiv g^{9t+k} \pmod{p}$, and $\operatorname{ind}_{\sigma}(l) \ (l \not\equiv 0) \pmod{p}$) denotes the unique integer m such that $l \equiv g^m \pmod{p}$, $0 \leq m \leq p-2$.

Diagonalizing the first equation in (3.1) and absorbing the conditions (3.2) into the equations in (3.1) we obtain

COROLLARY. Let p be a prime $\equiv 1 \pmod{9}$. The triple of diophantine equations (1.2) has exactly six solutions $(x_{11}, x_2, x_3, x_4, x_5, x_6) \neq (L, 0, 0, 0, 0, \pm M)$ satisfying $x_1 \equiv 1 \pmod{3}$. If $(x_1, x_2, x_3, x_4, x_5, x_6)$ is one of these solutions, the other five solutions are given by

$$(x_1, x_2, x_3, x_4, x_5, x_6) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{3}{2} & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{9}{4} & -\frac{3}{4} & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix},$$
(3.5)

where $k \equiv 0, 1, 2, 3, 4, 5$, so that $x_1 \equiv 1 \pmod{3}$ is uniquely determined by (1.2). Moreover, if g is a primitive root (mod p), then for some solution $(x_1, x_2, x_3, x_4, x_5, x_6) \neq (L, 0, 0, 0, 0, \pm M)$ of (1.2) with $x_1 \equiv 1 \pmod{3}$ we have

$$81(0, 0)_{9} = \begin{cases} p - 26 + L + 27x_{1}, \text{ if ind}_{g} (3) \equiv 0 \pmod{3}, \\ p - 26 + L - 81x_{6}, \text{ if ind}_{g} (3) \equiv 1 \pmod{3}, \\ p - 26 + L + 81x_{6}, \text{ if ind}_{g} (3) \equiv 2 \pmod{3}, \end{cases}$$
(3.6)

PROOF. For any solution $(c_0, c_1, c_2, c_3, c_4, c_5)$ of (3.1) and (3.2) we obtain a solution $(x_1, x_2, x_3, x_4, x_5, x_6)$ of (1.2) by setting

$$\begin{array}{c}
x_{1} = 2c_{0} - c_{3}, \\
x_{2} = c_{4} + c_{5}, \\
3x_{3} = 2c_{1} - c_{4}, \\
3x_{4} = 2c_{2} - c_{5}, \\
3x_{5} = c_{4} - c_{5}, \\
3x_{6} = c_{3}.
\end{array}$$
(3.7)

with $x_1 \equiv 1 \pmod{3}$. Conversely if $(x_1, x_2, x_3, x_4, x_5, x_6)$ is a solution of (1.2) with $x_1 \equiv 1 \pmod{3}$ then, by the Lemma, we may define a solution $(c_0, c_1, c_2, c_3, c_4, c_5)$ of (3.1) by setting

$$2c_{0} = x_{1} + 3x_{0},$$

$$4c_{1} = x_{2} + 6x_{3} + 3x_{5},$$

$$4c_{2} = x_{2} + 6x_{4} - 3x_{5},$$

$$c_{3} = 3x_{0},$$

$$2c_{4} = x_{2} + 3x_{5},$$

$$2c_{5} = x_{2} - 3x_{5},$$

$$(3.8)$$

which satisfies (3.2). Clearly the excluded solutions $(\frac{1}{2}(L \pm 3M), 0, 0, \pm 3M, 0, 0)$ and $(L, 0, 0, 0, 0, \pm M)$, (3.3) and (3.5), (3.4) and (3.6), correspond under the transformations (3.7) and (3.8). This completes the proof of the corollary.

4. Necessary and sufficient condition for 2 to be A Ninth power (mod p). We are now in a position to prove the main result of this paper.

THEOREM 2. Let p be a prime $\equiv 1 \pmod{9}$ for which 2 is a cube (mod p). Let $x_1 \equiv 1 \pmod{3}$ be the unique integer determined by the system (1.2) (see corollary). Then 2 is a ninth power (mod p) if and only if $x_1 \equiv 0 \pmod{2}$.

PROOF. Using a well-known result (see for example [4] or [7]) 2 is a ninth power (mod p) if and only if $(0, 0)_9 \equiv 1 \pmod{2}$, that is, by the corollary if and only if $x_1 \equiv 0 \pmod{2}$, since $L \equiv 0 \pmod{2}$ as 2 is a cube (mod p).

5. Numerical Examples. The only primes p < 1000, $p \equiv 1 \pmod{9}$, for which 2 is a cube (mod p) are

p = 109, 127, 307, 397, 433, 739, 811, 919. (5.1) Mr. Barry Lowe, using Carleton University's Sigma-9 computer, found solutions of (1.2) for these values of p as follows:

p .	x1	<i>x</i> ₂	<i>x</i> ₃	x4	<i>x</i> 5	x _e
109	-5	10	4	2	2	-1
127	4	8	-2	2		2
307	7	24	2	2	4	-1
397	-14	2	4	6	-6	4
433	-23	4	2	2	8	3
739	-5	4		16	-4	3
811	41	16	10	2	4	1
919	-11	0	-10	-14	4	5

Thus, by Theorem 2, of these primes only p = 127 and 397 have 2 as a ninth power (mod p). Indeed it is easy to check directly that $2 \equiv 84^9 \pmod{127}, 2 \equiv 32^9 \pmod{397}.$

We close by remarking that elsewhere [8] the author has obtained a similar necessary and sufficient condition for 3 to be a ninth power (mod p).

1914

KENNETH S. 2 S

REFERENCES

1.	L.D. BAUMERT AND H. FREDRICKSEN, The cyclotomic numbers of order eighteen with applications to difference sets. Math. Comp. 21 (1967),
	204-219.
2.	L.E. DICKSON, Cyclotomy when e is composite, Trans. Amer. Math. Soc., 38 (1935), 187-200.
3.	K.G.J. JACOBI, Do residuis cubicis commentatio numerosa, J. für die reine und angew. Math., 2 (1827), 66-69.
4.	EMMA LEHMER, The quintic character of 2 and 3, Duke Math. J. 18 (1951), 11-18.
5.	P.A. LEONARD AND K.S. WILLIAMS, The septic character of 2, 3, 5, and 7, Pacific J. Mash. 52 (1974) 143-147.
6.	P.A. LEONARD, B.C. MORTIMER AND K.S. WILLIAMS, The eleventh power character of 2, to appear in Jour. für reine und angew Math.
7.	T. STORER, Cyclotomy and difference sets, Markham Publishing Co. (Chicago).
8.	K.S. WILLIAMS, 3 as a ninth power, Math. Scand 35 (1974), 309-317.
Carl	eton University

Ottawa, Ontario, Canada

172