Note on a Cubic Character Sum
Kenneth S. Williams (Ottawa, Ontario, Canada)

Abstract

A short evaluation is given of a cubic character sum considered by Rajwade [5].

Let $w=(-1+\sqrt{-3}) / 2$ and let p be a rational prime $\equiv 1(\bmod 3)$. In the unique factorization domain $Z[w], p$ has the factorization $p=\pi \bar{\pi}$, where $\pi, \bar{\pi}$ are primes. By taking a suitable associate of π we can assume that $\pi, \bar{\pi}$ are primary, that is $\pi, \bar{\pi}$ $\equiv-1(\bmod 3)$. Rajwade $[5]$ has recently evaluated the character sum $\sum_{x=0}^{p-1}\left(x^{3}+a / p\right)$, where (\cdot / p) is the Legendre symbol and $a \neq 0(\bmod p)$. He proved, (slightly different notation)

$$
\sum_{x=0}^{p-1}\left(\frac{x^{3}+a}{p}\right)=\left(\frac{a}{p}\right)\left\{\left(\frac{4 a}{\pi}\right)_{3} \pi+\left(\frac{4 a}{\bar{\pi}}\right)_{3} \bar{\pi}\right\}
$$

where $(\cdot / \pi)_{3}$ is the cubic residue character $(\bmod \pi)$, so that

$$
\left(\begin{array}{l}
\frac{y}{\bar{\pi}}
\end{array}\right)_{3}=\left(\frac{y}{\pi}\right)_{3}^{2}=\left(\frac{\bar{y}}{\pi}\right)_{3}
$$

His proof covers more than three pages. It is the purpose of this note to give the following four-line proof (each step is justified below):

$$
\begin{align*}
\sum_{x=0}^{p-1}\left(\frac{x^{3}+a}{p}\right) & =\sum_{y=0}^{p-1}\left(\frac{y+a}{p}\right)\left\{1+\left(\frac{y}{\pi}\right)_{3}+\left(\frac{y}{\bar{\pi}}\right)_{3}\right\} \tag{1}\\
& =\left(\frac{a}{p}\right) \sum_{y=0}^{p-1}\left\{1+\left(\frac{a(y+a)}{p}\right)\right\}\left\{\left(\frac{y}{\pi}\right)_{3}+\left(\frac{y}{\bar{\pi}}\right)_{3}\right\} \tag{2}\\
& =\binom{a}{p} \sum_{z=0}^{p-1}\left\{\left(\frac{4 a z(z+1)}{\pi}\right)_{3}+\left(\frac{4 a z(z+1)}{\bar{\pi}}\right)_{3}\right\} \tag{3}\\
& =\binom{a}{p}\left\{\left(\frac{4 a}{\pi}\right)_{3} \pi+\left(\frac{4 a}{\bar{\pi}}\right)_{3} \bar{\pi}\right\} . \tag{4}
\end{align*}
$$

AMS Primary Subject Classification: 10G05. Secondary Subject Classification: 12C20.
Research supported by National Research Council of Canada, Grant A-7233.
(2) follows from (1) as

$$
\sum_{y=0}^{p-1}\left(\frac{y+a}{p}\right)=\sum_{y=0}^{p-1}\left(\frac{y}{\pi}\right)_{3}=\sum_{y=0}^{p-1}\left(\frac{y}{\pi}\right)_{3}=0
$$

(3) follows from (2) as the number of solutions z of $4 a z(z+1) \equiv y(\bmod p)$ is $1+$ $+(a(y+a) / p)$; (4) follows from (3) as the Jacobi sum

$$
J=\sum_{y=0}^{p-1}\left(\frac{y(y+1)}{\pi}\right)_{3}=\pi
$$

(see [2] Lemma 1, p. 116). Only the last of these is non-trivial (but well-known) and for completeness we indicate a proof.

We set $G_{k}(a)=\sum_{t=0}^{p-1}(t / \pi)_{3}^{k} \exp (2 \pi i a t / p)(k=1,2)$, so that $G_{k}(a)=(a / \pi)_{3}^{2} G_{k}$, where $G_{k}=G_{k}(1)$. Squaring G_{1} a standard argument shows that $G_{1}^{2}=J G_{2}$. Evaluating $\sum_{a=1}^{p-1} G_{k}(a) \overline{G_{k}(a)}$ in two ways we obtain $(p-1) G_{k} G_{k}=(p-1) p$, so that $G_{k} \bar{G}_{k}=p$, giving $J \bar{J}=p=\pi \bar{\pi}$. Note that $J \in Z[w]$. Now as $\sum_{y=0}^{p-1} y^{n} \equiv 0(\bmod p)$, if $n \neq 0(\bmod p-1)$, we have

$$
J \equiv \sum_{y=0}^{p-1} y^{p-1 / 3}(y+1)^{p-1 / 3} \equiv 0(\bmod \pi)
$$

so that $\pi \mid J$, giving $J= \pm w^{r} \pi, 0 \leqslant r \leqslant 2$. Finally as

$$
1+2\left(\frac{z}{\pi}\right)_{3} \equiv 0(\bmod \sqrt{-3})
$$

for any integer z, we have

$$
\sum_{y=0}^{p-1}\left(1+2\left(\frac{y}{\pi}\right)_{3}\right)\left(1+2\left(\frac{y+1}{\pi}\right)_{3}\right) \equiv 0\left(\bmod (\sqrt{-3})^{2}\right)
$$

so that

$$
p+4 J \equiv 0(\bmod 3), J \equiv-p \equiv-1(\bmod 3)
$$

proving $J=\pi$ as required.
It is perhaps worth noting that Rajwade's result includes results of von Schrutka [6], Whiteman [7], Lehmer [3] (Theorem 6), and that it also contains the case $a=-1$
treated by Hasse [1]. In order to verify this it is convenient to appeal to the following consequence of the law of cubic reciprocity:

$$
\left(\frac{2}{\pi}\right)_{3} \equiv \pi(\bmod 2)
$$

(see [2] (p. 120)).
We also remark that the method of this paper can be used to give a similar evaluation of the sum

$$
\sum_{x=0}^{p-1}\left(\frac{x\left(x^{2}+a\right)}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{x^{4}+a}{p}\right)-\sum_{x=0}^{p-1}\left(\frac{x^{2}+a}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{x^{4}+a}{p}\right)+1
$$

for primes $p \equiv 1(\bmod 4)$, in a few lines. The recent evaluation by Morlaye $[4]$ takes (unnecessarily) eight pages.

REFERENCES

[1] Hasse, H., Vorlesungen über Zahlentheorie (Springer-Verlag, 1964), pp. 158-166.
[2] Ireland, K. and Rosen, M. I., Elements of Number Theory (Bogden and Quigley, Inc., 1972).
[3] Lehmer, E., On the Number of Solutions of $u^{t i}+D \equiv w^{2}(\bmod p)$, Pacific J. Math. 5, 103-118 (1955).
[4] Morlaye, B., Démonstration élémentaire d'un théorème de Davenport et Hasse, L'Enseignement mathématique 18, 269-276 (1972).
[5] Rajwade, A. R., On Rational Primes p Congruent to $1(\bmod 3$ or 5), Proc. Cambridge Philos. Soc. 66, 61-70 (1969).
[6] von Shrutka, L., Ein Beweis für die Zerlegbarkeit der Primzahlen von der Form $6 n+1$ in ein einfaches und ein driefaches Quadrat, Jour. für Math. 140, 252-265 (1911).
[7] Whiteman, A. L., Cyclotomy and Jacobsthal Sums, Amer. J. Math. 74, 89-99 (1952).
Carleton University

