Note on Cubics over $G F\left(2^{n}\right)$ and $G F\left(3^{n}\right)^{*}$

Kenneth S. Williams
Department of Mathematics, Carleton University, Ottawa, Canada KlS 5B6

Communicated by S. Chowla
Received March 27, 1972

A description of the factorization of a cubic polynomial over the fields $G F\left(2^{n}\right)$ and $G F\left(3^{n}\right)$ is given. The results are analogous to those given by Dickson for a cubic over $G F\left(p^{n}\right), p>3$.

1. Introduction

A description of the factorization of a cubic polynomial over the field $G F\left(p^{n}\right)$ has been given by Dickson [4] when the characteristic p of the field is >3. As $p \neq 3$ it is clear that we need only consider cubics $f(x)$ of the form $x^{3}+a x+b$, where $a, b \in G F\left(p^{n}\right)$. Further f has no squared factors if discrim $(f)=-4 a^{3}-27 b^{2} \neq 0$. If f factors over $G F\left(p^{n}\right)$ as a product of three linear factors we write $f=(1,1,1)$, if f factors as a product of a linear factor and an irreducible quadratic factor we write $f=(1,2)$, and finally if f is itself irreducible over $G F\left(p^{n}\right)$ we write $f=(3)$. Denoting a root of $y^{2}=-3$ by w, so that $w \in G F\left(p^{n}\right)$ if $p^{n} \equiv 1(\bmod 3)$ and $w \in G F\left(p^{2 n}\right)$ if $p^{n} \equiv 2(\bmod 3)$, we can state Dickson's theorem as follows:

Theorem (Dickson). The factorizations of $f(x)=x^{3}+a x+b$ $\left(a, b \in G F\left(p^{n}\right), p>3,-4 a^{3}-27 b^{2} \neq 0\right)$ over $G F\left(p^{n}\right)$ are characterized as follows:

$$
\begin{equation*}
f=(1,1,1) \Leftrightarrow-4 a^{3}-27 b^{2} \text { is a square in } G F\left(p^{n}\right), \tag{1.1}
\end{equation*}
$$

say $-4 a^{3}-27 b^{2}=81 c^{2}$, and $1 / 2\left(-b+c w\right.$) is a cube in $G F\left(p^{n}\right)$ (if $\left.p^{n} \equiv 1(\bmod 3)\right), G F\left(p^{2 n}\right)\left(\right.$ if $\left.p^{n} \equiv 2(\bmod 3)\right)$,

$$
\begin{gather*}
f=(1,2) \Leftrightarrow-4 a^{3}-27 b^{2} \text { is not a square in } G F\left(p^{n}\right), \tag{1.2}\\
f=(3) \Leftrightarrow-4 a^{3}-27 b^{2} \text { is a square in } G F\left(p^{n}\right), \tag{1.3}
\end{gather*}
$$

[^0]say $-4 a^{3}-27 b^{2}=81 c^{2}$, and $1 / 2(-b+c w)$ is not a cube in $G F\left(p^{n}\right)$ (if $\left.p^{n} \equiv 1(\bmod 3)\right), G F\left(p^{2 n}\right)\left(\right.$ if $\left.p^{n} \equiv 2(\bmod 3)\right)$.

In this note we obtain analogous results for cubics over $G F\left(2^{n}\right)$ and $G F\left(3^{n}\right)$. We make use of Stickelberger's theorem for both even and odd characteristics (see for example [1, pp. 159-171] and the well-known result that the polynomial $x^{2}+b x+c, b(\neq 0)$ and $c \in G F\left(2^{n}\right)$, is reducible over $G F\left(2^{n}\right)$ if and only $\operatorname{tr}\left(c / b^{2}\right)=0$, where for $\lambda \in G F\left(2^{n}\right)$, $\operatorname{tr}(\lambda)=\lambda+\lambda^{2}+\lambda^{2^{2}}+\cdots+\lambda^{2^{n-1}}$ denotes the trace of λ over $G F(2)$ (see for example [3, p. 555]).

2. Factorizations Over GF(2^{n})

Clearly we may take $f(x)=x^{3}+a x+b$, where $a, b \in G F\left(2^{n}\right)$ and $b \neq 0$. We let t_{1}, t_{2} denote the roots of $t^{2}+b t+a^{3}=0$, so that t_{1}, t_{2} lie in $G F\left(2^{n}\right)$, if $\operatorname{tr}\left(a^{3} / b^{2}\right)=0$, and in $G F\left(2^{2 n}\right)$, if $\operatorname{tr}\left(a^{3} / b^{2}\right)=1$. As $t_{1} t_{2}=a^{3}$, t_{1}, t_{2} are both cubes or both not cubes in $G F\left(2^{n}\right)$ (if $\left.\operatorname{tr}\left(a^{3} / b^{2}\right)=0\right), G F\left(2^{2 n}\right)$ (if $\operatorname{tr}\left(a^{3} / b^{2}\right)=1$). We prove

TheOrem 1. The factorizations of $f(x)=x^{3}+a x+b\left(a, b \in G F\left(2^{n}\right)\right.$, $b \neq 0)$ over $G F\left(2^{n}\right)$ are characterized as follows:

$$
\begin{align*}
f & =(1,1,1) \Leftrightarrow \operatorname{tr}\left(a^{3} / b^{2}\right) \\
& =\operatorname{tr}(1), t_{1}, t_{2} \text { cubes in } G F\left(2^{n}\right)(n \text { even }), G F\left(2^{2 n}\right)(n \text { odd }), \tag{2.1}\\
f & =(1,2) \Leftrightarrow \operatorname{tr}\left(a^{3} / b^{2}\right) \neq \operatorname{tr}(1) \tag{2.2}\\
f & =(3) \Leftrightarrow \operatorname{tr}\left(a^{3} / b^{2}\right) \\
& =\operatorname{tr}(1), t_{1}, t_{2} \text { not cubes in } G F\left(2^{n}\right)(n \text { even }), G F\left(2^{2 n}\right)(n \text { odd }) . \tag{2.3}
\end{align*}
$$

Proof. By Stickelberger's theorem ([1, p. 169]) f has an even number of irreducible factors over $G F\left(2^{n}\right)$ if and only if $\operatorname{tr}\left(1+a^{3} / b^{2}\right)=1$, that is, $f=(1,2)$ if and only if $\operatorname{tr}\left(a^{3} / b^{2}\right) \neq \operatorname{tr}(1)$. This proves (2.2). To complete the proof it suffices to prove (2.1).

If $f=(1,1,1)$ then by Stickelberger's theorem we have $\operatorname{tr}\left(1+a^{3} / b^{2}\right)=0$, that is $\operatorname{tr}\left(a^{3} / b^{2}\right)=\operatorname{tr}(1)$. Suppose however t_{1}, t_{2} are not cubes in $G F\left(2^{n}\right)$ (if n even), $G F\left(2^{2 n}\right)$ (if n odd). Let t denote one of t_{1}, t_{2} and define θ by $\theta^{3}=t$ so that

$$
\left\{\begin{array}{lll}
\theta \in G F\left(2^{3 n}\right), & \theta \notin G F\left(2^{n}\right), & \text { if } n \text { even } \tag{2.4}\\
\theta \in G F\left(2^{6 n}\right), & \theta \notin G F\left(2^{2 n}\right), & \text { if } n \text { odd }
\end{array}\right.
$$

Now

$$
\left(\theta+\frac{a \theta^{2}}{t}\right)^{3}+a\left(\theta+\frac{a \theta^{2}}{t}\right)+b=0
$$

so that as $f=(1,1,1)$ we have $\theta+a \theta^{2} / t \in G F\left(2^{n}\right)$. But $t \in G F\left(2^{n}\right)$ (if n even), $G F\left(2^{2 n}\right)$ (if n odd), so that we have $\theta \in G F\left(2^{2 n}\right)$ (if n even), $G F\left(2^{4 n}\right)$ (if n odd), which contradicts (2.4).

Now suppose that $\operatorname{tr}\left(a^{3} / b^{2}\right)=\operatorname{tr}(1)$ and t_{1}, t_{2} are cubes in $G F\left(2^{n}\right)$ (if n even), $G F\left(2^{2 n}\right)$ (if n odd). If $f \neq(1,1,1)$ then as $\operatorname{tr}\left(a^{3} / b^{2}\right)=\operatorname{tr}(1)$ (so that $f \neq(1,2)$) we must have f irreducible over $G F\left(2^{n}\right)$. Letting t denote one of t_{1}, t_{2} we see that there exists $u \in G F\left(2^{n}\right)$ (n even), $G F\left(2^{2 n}\right)$ (n odd), such that $t=u^{3}$. As $t^{2}+b t+a^{3}=0$ we have $u^{6}+b u^{3}+a^{3}=0$ and so $(u+a / u)^{3}+a(u+a / u)+b=0$, that is, f has a root in $G F\left(2^{n}\right)$ (if n even), $G F\left(2^{2 n}\right)$ (if n odd), contradicting that f is irreducible over $G F\left(2^{n}\right)$.

We remark that part of this theorem (namely (2.2)) is given in [3, p. 556], and that a different characterization is given in [2].

3. Factorizations Over $G F\left(3^{n}\right)$

We begin by proving the following lemma.

Lemma. The factorizations of $x^{3}-x+c\left(c \in G F\left(3^{n}\right)\right)$ over $G F\left(3^{n}\right)$ are characterized as follows:

$$
\begin{equation*}
x^{3}-x+c=(1,1,1) \Leftrightarrow \operatorname{tr}(c)=0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{3}-x+c=(3) \Leftrightarrow \operatorname{tr}(c) \neq 0 \tag{3.2}
\end{equation*}
$$

where $\operatorname{tr}(c)=c+c^{3}+c^{3^{2}}+\cdots+c^{3^{n-1}}$.
Proof. As discrim $\left(x^{3}-x+c\right)=-4(-1)^{3}-27 c^{2}=2^{2}$, by Stickelberger's theorem [1, p. 164] we have $x^{3}-x+c \neq(1,2)$. Moreover it has no squared factor. Hence $x^{3}-x+c=(1,1,1)$ or (3), and it suffices to prove (3.1).

We let

$$
\begin{aligned}
& V_{1}=\left\{c \in G F\left(3^{n}\right) \mid \operatorname{tr}(c)=0\right\} \\
& V_{2}=\left\{c \in G F\left(3^{n}\right) \mid x^{3}-x+c=(1,1,1)\right\}
\end{aligned}
$$

If $c \in V_{2}$ there exists $x_{1} \in G F\left(3^{n}\right)$ such that $x_{1}^{3}-x_{1}+c=0$, that is

$$
\begin{aligned}
\operatorname{tr}(c)=\operatorname{tr}\left(x_{1}^{3}-x_{1}\right)= & \operatorname{tr}\left(x_{1}^{3}\right)-\operatorname{tr}\left(x_{1}\right) \\
= & \left(x_{1}^{3}+x_{1}^{9}+\cdots+x_{1}^{3^{n}}\right) \\
& -\left(x_{1}+x_{1}^{3}+\cdots+x_{1}^{3^{n-1}}\right) \\
= & x_{1}^{3^{n}}-x_{1}=0,
\end{aligned}
$$

implying $c \in V_{1}$, that is $V_{2} \subseteq V_{1}$.
If $c_{1}, c_{2} \in V_{1}$ and $\lambda \in G F(3)$ then

$$
\operatorname{tr}\left(c_{1}+c_{2}\right)=\operatorname{tr}\left(c_{1}\right)+\operatorname{tr}\left(c_{2}\right)=0, \quad \operatorname{tr}(\lambda c)=\lambda \operatorname{tr}(c)=0
$$

so that V_{1} is a subspace of $G F\left(3^{n}\right)$ considered as a vector space (of dimen$\operatorname{sion} n$) over $G F(3)$. Since $\operatorname{card}\left(V_{1}\right)=3^{n-1}$ we have $\operatorname{dim} V_{1}=n-1$.

If $c_{1}, c_{2} \in V_{2}$ and $\lambda \in G F(3)$ then there exist $x_{1}, x_{2} \in G F\left(3^{n}\right)$ such that

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)^{3}-\left(x_{1}+x_{2}\right)+\left(c_{1}+c_{2}\right) \\
& \quad=\left(x_{1}^{3}-x_{1}+c_{1}\right)+\left(x_{2}^{3}-x_{2}+c_{2}\right)=0
\end{aligned}
$$

and (as $\lambda^{3}=\lambda$) $\left(\lambda x_{1}\right)^{3}-\left(\lambda x_{1}\right)+\lambda c_{1}=\lambda\left(x_{1}{ }^{3}-x_{1}+c_{1}\right)=0$, implying V_{2} is also a subspace of the vector space $G F\left(3^{n}\right)$ over $G F(3)$. Since $\operatorname{card}\left(V_{2}\right)=3^{n-1}$ we have $\operatorname{dim} V_{2}=n-1$.

Hence we have $V_{2} \subseteq V_{1}, \operatorname{dim} V_{1}=\operatorname{dim} V_{2}$, proving $V_{1}=V_{2}$ as required.

We are now in a position to treat the factorization of a general cubic $g(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ over $G F\left(3^{n}\right)$. If $a_{2}=0$ we work with $\left(1 / a_{3}\right) g(x)$. If $a_{2} \neq 0$ we work with $\left(x^{3} / a_{3}\right) g\left(1 / x+a_{1} / a_{2}\right)$.

In both cases the factorization of $g(x)$ can be retrieved, and so it suffices to consider $f(x)=x^{3}+a x+b\left(a, b \in G F\left(3^{n}\right)\right)$. Morcover since the factorization of $x^{3}+b$ over $G F\left(3^{n}\right)$ is well-known we can further take $a \neq 0$. We prove

Theorem 2. The factorizations of $f(x)=x^{3}+a x+b\left(a, b \in G F\left(3^{n}\right)\right.$, $a \neq 0)$ over $G F\left(3^{n}\right)$ are characterized as follows:

$$
\begin{equation*}
f=(1,1,1) \Leftrightarrow-a \text { is a square in } G F\left(3^{n}\right) \tag{3.3}
\end{equation*}
$$

say $-a=c^{2}$, and $\operatorname{tr}\left(b / c^{3}\right)=0$,

$$
\begin{align*}
& f=(1,2) \Leftrightarrow-\text { a not a square in } G F\left(3^{n}\right), \tag{3.4}\\
& f=(3) \Leftrightarrow-a \text { is a square in } G F\left(3^{n}\right) \tag{3.5}
\end{align*}
$$

say $-a=c^{2}$, and $\operatorname{tr}\left(b / c^{3}\right) \neq 0$.

Proof. (3.4) follows immediately from Stickelberger's theorem [1, p. 164]. Hence we can suppose there exists $c \in G F\left(3^{n}\right)$ such that $-a=c^{2}$ so that $f(x)=x^{3}-c^{2} x+b$. We set $f^{*}(x)=x^{3}-x+b / c^{3}$ and note that as $f(c x)=c^{3} f^{*}(c), f$ and f^{*} factor in the same way over $G F\left(3^{n}\right)$. Hence by the lemma we have $f=(1,1,1) \Leftrightarrow g=(1,1,1) \Leftrightarrow \operatorname{tr}\left(b / c^{3}\right)=0$, which completes the proof of Theorem 2.

4. Remark

We remark that similar results for quartic polynomials over $G F\left(p^{n}\right)$ ($p>2$) can be deduced from [5] (see also [4, 7]) and over $G F\left(2^{n}\right)$ the results are given in [6].

References

1. E. R. Berlekamp, "Algebraic Coding Theory," McGraw-Hill, 1968.
2. E. R. Berlekamp, H. Rumsey, and G. Solomon, Solutions of algebraic equations in fields of characteristic 2, Jet Propulsion Lab. Space Programs Summary No. 4, 37-39, 1966.
3. E. R. Berlekamp, H. Rumsey, and G. Solomon, On the solution of algebraic equations over finite fields, Inform. Contr. 10 (1967), 553-564.
4. L. E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc. 13 (1906), 1-8.
5. P. A. Leonard, On factoring quartics (mod p), J. Number Theory 1 (1969), 113-115.
6. P. A. Leonard and K. S. Williams, Quartics over GF(2^{n}), Proc. Amer. Math. Soc. 36 (1972), 347-350.
7. Th. Skolem, The general congruence of 4th degree modulo p,p prime, Norsk. Mat. Tidsskr. 34 (1952), 73-80.

[^0]: * Research partially supported by National Research Council of Canada (Grant A-7233).

