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A description of the factorization of a cubic polynomial over the fields GF(2”) 
and GF(3”) is given. The results are analogous to those given by Dickson for a 
cubic over GFcp”),p > 3. 

1. INTRODUCTION 

A description of the factorization of a cubic polynomial over the field 
GF(p”) has been given by Dickson [4] when the characteristic p of the 
field is >3. As p # 3 it is clear that we need only consider cubits f(x) of 
the form x3 + ax + b, where a, b E G&P). Further f has no squared 
factors if discrim (f) = -4~9 - 27b2 # 0. If f factors over GF(pn) as a 
product of three linear factors we write f = (1, 1, l), if f factors as a 
product of a linear factor and an irreducible quadratic factor we write 
f = (1, 2), and finally iffis itself irreducible over G&P) we writef = (3). 
Denoting a root of y2 = -3 by w, so that w  E GF(p”) if pn = 1 (mod 3) 
and w  E GF(p”“) if p” = 2 (mod 3) we can state Dickson’s theorem as 
follows: 

THEOREM (Dickson). The factorizations of f(x) = x3 + ax + b 
(a, b E GF(p”), p > 3, -42 - 27b2 # 0) over GF(pn) are characterized 
as follows: 

f = (I, 1, 1) o -4a3 - 27b2 is a square in GF(pn), (1.1) 

say -4a3 - 27b2 = 81c2, and l/2(-b + cw) is a cube in GF(pa) (if 
p” = 1 (mod 3)) GF(p2”) (ifpn = 2 (mod 3)) 

f = (I, 2) o -4a3 - 27b2 is not a square in GF(p”), U-2) 
f = (3) o -42 - 27b2 is a square in GF(p”), (1.3) 
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say -4a3 - 27b2 = 81cz, and 1/2(-b + cw) is not a cube in GF(pn) (if 
p” = 1 (mod 3)), GF(pzn) (ifpn = 2 (mod 3)). 

In this note we obtain analogous results for cubits over GF(2”) and 
GF(3n). We make use of Stickelberger’s theorem for both even and odd 
characteristics (see for example [l, pp. 159-1711 and the well-known 
result that the polynomial x2 + bx + c, b (# 0) and c E GF(2”), is 
reducible over GF(2”) if and only tr(c/b? = 0, where for h E GF(2%), 
tr(X) = A + h2 + h2” + --* + A2”-’ denotes the trace of h over GF(2) 
(see for example [3, p. 5551). 

2. FACTORIZATIONS OVER GF(2”) 

Clearly we may take f(x) = x3 + ax + b, where a, b E GF(2”) and 
b # 0. We let tl, t2 denote the roots of t2 4 bt + a3 = 0, so that C, , i2 
lie in GF(2”), if tr(a3/b2) = 0, and in GF(22n), if tr(aa/b2) = 1. As tlt2 = a3, 
t1 , t2 are both cubes or both not cubes in GF(2”) (if tr(a3/b*) = 0), GF(22n) 
(if tr(d,!b2) = 1). We prove 

THEOREM 1. The factorizations off(x) = x3 + ax + b (a, b E GF(2”), 
b # 0) over GF(2”) are characterized as follows: 

f = (1, 1, 1) o tr(a3/ba) 

= tr(l), r,, t2 cubes in GF(29 (n even), GF(22n) (n odd), 

f = (1, 2) 9 tr(as/b2) # tr(l), 

f = (3) o tr(a3/b2) 

(2.1) 

(2.2) 

= tr(l), t1 , t, not cubes in GF(2”) (n even), GF(22n) (n odd). (2.3) 

Prooj: By Stickelberger’s theorem (Cl, p. 1691) f has an even number 
of irreducible factors over GF(2n) if and only if tr(1 + a3/b2) = 1, that is, 
f = (1,2) if and only if tr@/b”) # tr(1). This proves (2.2). To complete 
the proof it suffices to prove (2.1). 

Iff = (1, 1,l) then by Stickelberger’s theorem we have tr(1 + a3jbs) = 0, 
that is tr(a3/b2) = tr(1). Suppose however t1 , t2 are not cubes in GF(2”) 
(if n even), GF(2en) (if n odd). Let t denote one of t1 , t2 and define 6 by 
Bs = t so that 

I 
8 E GF(28n), 8 4 GFCW, if n even, 
e E GF(2*“), e 4 GF(22n), if n odd. (2.4) 



CUBICS OVER GF(2”) AND GF(39 363 

Now 

so that as f = (1, 1, 1) we have 8 + a02[t E GF(2”). But t E GF(29 (if IZ 
even), GF(22”) (if n odd), so that we have 9 E GF(22”) (if n even), GF(24”) 
(if n odd), which contradicts (2.4). 

Now suppose that tr(a”/b”) = tr(1) and t, , t, are cubes in GF(2”) (if 
II even), GF(22”) (if n odd). If f # (1, 1, 1) then as tr(a”/P) = tr(1) (so 
that f # (1, 2)) we must have f irreducible over GF(2”). Letting t denote 
one of tl , t2 we see that there exists u E GF(2”) (n even), GF(22”) (n odd), 
such that t = u3. As t2 + bt + a3 = 0 we have ~6 + bu3 + a3 = 0 and so 
(u + a/u)” + a(u + a/u) + b = 0, that is, f has a root in GF(2”) (if n even), 
GF(2”“) (if n odd), contradicting that f is irreducible over GF(2”). 

We remark that part of this theorem (namely (2.2)) is given in [3, p. 5561, 
and that a different characterization is given in [2]. 

3. FACTORIZATIONS OVER GF( 3 “) 

We begin by proving the following lemma. 

LEMMA. The factorizations of x3 - x + c (c E GF(3”)) over GF(3”) 
are characterized as follows: 

x3 - x + c = (1, 1, 1) Q tr(c) = 0 (3.1) 

Xs - x + c = (3) u tr(c) # 0, (3.2) 

where tr(c) = c + c3 + c3’ + *** + c3”-‘. 

Proof. As discrim (9 - x + c) = -4(-1)3 - 279 = 22, by Stickel- 
berger’s theorem [I, p. 1641 we have x3 - x + c # (1, 2). Moreover it 
has no squared factor. Hence x3 - x + c = (1, 1, 1) or (3), and it suffices 
to prove (3.1). 

We let 

V, = {c E GF(3”) 1 tr(c) = 0}, 

V, = {c E GF(3”) 1 Xa - x + c = (1, 1, 1)). 
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If c E V, there exists x, E GF(3”) such that xl3 - x1 + c = 0, that is 

tr(c) = tr(xi3 - x1) = tr(x13) - tr(xi) 

= (x13 + Xl9 + *-. + x3;) 

- (x1 + Xl3 + 3.. + xi”-‘) 

=x y - x1 = 0, 

implying c E V, , that is V, Z V, . 
If ci , c2 E V, and h E GF(3) then 

tr(c, + c2) = tr(c,) + tr(c.J = 0, tr(hc) = X tr(c) = 0, 

so that V, is a subspace of GF(3”) considered as a vector space (of dimen- 
sion n) over GF(3). Since card( V,) = 3”-l we have dim V, = n - 1. 

If c1 , c2 E V, and h E GF(3) then there exist x1 , xz E GF(3”) such that 

(Xl + x2Y - (Xl + x2> + (Cl + c2) 
= (x13 - Xl + Cl) + (xs3 - x2 + CJ = 0 

and (as A3 = A) @x1)3 - (Ax,) + Xc, = h(x13 - x1 + cr) = 0, implying 
V, is also a subspace of the vector space GF(3”) over GF(3). Since 
card(V,) = 3”-l we have dim V, = n - 1. 

Hence we have V, C V, , dim V, = dim V, , proving Vi = V, as 
required. 

We are now in a position to treat the factorization of a general cubic 
g(x) = a,, + a,x + a2x2 + a,? over GF(3”). If a2 = 0 we work with 
(l/a,) g(x). If a, # 0 we work with (x%) g( l/x + az/a2), 

In both cases the factorization of g(x) can be retrieved, and so it suffices 
to consider f(x) = x3 + ax + b (a, b E GF(39). Moreover since the 
factorization of x3 + b over GF(3”) is well-known we can further take 
a # 0. We prove 

THEOREM 2. The factorizations off(x) = x3 + ax + b (a, b E GF(3”), 
a # 0) over GF(3*) are characterized as follows: 

f = (1, 1, 1) o --a is a square in GF(39, (3.3) 

say -a = c2, and tr(b/c3) = 0, 

f = (1, 2) e -a not a square in GF(3”), (3.4) 

f = (3) + --a is a square in G&3+9, (3.5) 

say -a = c2, and tr(b/cs) f 0. 
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Proof. (3.4) follows immediately from Stickelberger’s theorem [l, 
p. 1641. Hence we can suppose there exists c E GF(3”) such that -a = 9 
so that j(x) = ~3 - c2x + b. We set f*(x) = x3 - x + b/c3 and note 
that as f(cx) = c3,f*(c), f and f* factor in the same way over GF(39. 
Hence by the lemma we havef= (1, 1, 1) og = (1, 1, 1) -<j tr(b[c3) = 0, 
which completes the proof of Theorem 2. 

4. REMARK 

We remark that similar results for quartic polynomials over GF(pn) 
(p > 2) can be deduced from [5] (see also [4, 71) and over GF(2”) the 
results are given in [6]. 
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