Note on Cubics over $GF(2^n)$ and $GF(3^n)^*$

KENNETH S. WILLIAMS

Department of Mathematics, Carleton University, Ottawa, Canada KIS 5B6 Communicated by S. Chowla

Received March 27, 1972

A description of the factorization of a cubic polynomial over the fields $GF(2^n)$ and $GF(3^n)$ is given. The results are analogous to those given by Dickson for a cubic over $GF(p^n), p > 3$.

1. INTRODUCTION

A description of the factorization of a cubic polynomial over the field $GF(p^n)$ has been given by Dickson [4] when the characteristic p of the field is >3. As $p \neq 3$ it is clear that we need only consider cubics f(x) of the form $x^3 + ax + b$, where $a, b \in GF(p^n)$. Further f has no squared factors if discrim $(f) = -4a^3 - 27b^2 \neq 0$. If f factors over $GF(p^n)$ as a product of three linear factors we write f = (1, 1, 1), if f factors as a product of a linear factor and an irreducible quadratic factor we write f = (1, 2), and finally if f is itself irreducible over $GF(p^n)$ we write f = (3). Denoting a root of $y^2 = -3$ by w, so that $w \in GF(p^n)$ if $p^n \equiv 1 \pmod{3}$ and $w \in GF(p^{2n})$ if $p^n \equiv 2 \pmod{3}$, we can state Dickson's theorem as follows:

THEOREM (Dickson). The factorizations of $f(x) = x^3 + ax + b$ (a, $b \in GF(p^n)$, p > 3, $-4a^3 - 27b^2 \neq 0$) over $GF(p^n)$ are characterized as follows:

$$f = (1, 1, 1) \Leftrightarrow -4a^3 - 27b^2 \text{ is a square in } GF(p^n), \qquad (1.1)$$

say $-4a^3 - 27b^2 = 81c^2$, and 1/2(-b + cw) is a cube in $GF(p^n)$ (if $p^n \equiv 1 \pmod{3}$), $GF(p^{2n})$ (if $p^n \equiv 2 \pmod{3}$),

$$f = (1, 2) \Leftrightarrow -4a^3 - 27b^2 \text{ is not a square in } GF(p^n), \qquad (1.2)$$

$$f = (3) \Leftrightarrow -4a^3 - 27b^2 \text{ is a square in } GF(p^n), \qquad (1.3)$$

* Research partially supported by National Research Council of Canada (Grant A-7233).

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved.

say $-4a^3 - 27b^2 = 81c^2$, and 1/2(-b + cw) is not a cube in $GF(p^n)$ (if $p^n \equiv 1 \pmod{3}$), $GF(p^{2n})$ (if $p^n \equiv 2 \pmod{3}$).

In this note we obtain analogous results for cubics over $GF(2^n)$ and $GF(3^n)$. We make use of Stickelberger's theorem for both even and odd characteristics (see for example [1, pp. 159–171] and the well-known result that the polynomial $x^2 + bx + c$, $b (\neq 0)$ and $c \in GF(2^n)$, is reducible over $GF(2^n)$ if and only $tr(c/b^2) = 0$, where for $\lambda \in GF(2^n)$, $tr(\lambda) = \lambda + \lambda^2 + \lambda^{2^2} + \cdots + \lambda^{2^{n-1}}$ denotes the trace of λ over GF(2) (see for example [3, p. 555]).

2. FACTORIZATIONS OVER $GF(2^n)$

Clearly we may take $f(x) = x^3 + ax + b$, where $a, b \in GF(2^n)$ and $b \neq 0$. We let t_1, t_2 denote the roots of $t^2 + bt + a^3 = 0$, so that t_1, t_2 lie in $GF(2^n)$, if $tr(a^3/b^2) = 0$, and in $GF(2^{2n})$, if $tr(a^3/b^2) = 1$. As $t_1t_2 = a^3$, t_1, t_2 are both cubes or both not cubes in $GF(2^n)$ (if $tr(a^3/b^2) = 0$), $GF(2^{2n})$ (if $tr(a^3/b^2) = 1$). We prove

THEOREM 1. The factorizations of $f(x) = x^3 + ax + b$ (a, $b \in GF(2^n)$, $b \neq 0$) over $GF(2^n)$ are characterized as follows:

$$f = (1, 1, 1) \Leftrightarrow \operatorname{tr}(a^3/b^2)$$

= tr(1), t₁, t₂ cubes in GF(2ⁿ) (n even), GF(2²ⁿ) (n odd), (2.1)
$$f = (1, 2) \Leftrightarrow \operatorname{tr}(a^3/b^2) \neq \operatorname{tr}(1), (2.2)$$

$$f = (3) \Leftrightarrow \operatorname{tr}(a^3/b^2)$$

= tr(1), t₁, t₂ not cubes in GF(2ⁿ) (n even), GF(2²ⁿ) (n odd). (2.3)

Proof. By Stickelberger's theorem ([1, p. 169]) f has an even number of irreducible factors over $GF(2^n)$ if and only if $tr(1 + a^3/b^2) = 1$, that is, f = (1, 2) if and only if $tr(a^3/b^2) \neq tr(1)$. This proves (2.2). To complete the proof it suffices to prove (2.1).

If f = (1, 1, 1) then by Stickelberger's theorem we have $tr(1 + a^3/b^2) = 0$, that is $tr(a^3/b^2) = tr(1)$. Suppose however t_1 , t_2 are not cubes in $GF(2^n)$ (if *n* even), $GF(2^{2n})$ (if *n* odd). Let *t* denote one of t_1 , t_2 and define θ by $\theta^3 = t$ so that

$$\begin{cases} \theta \in GF(2^{3n}), & \theta \notin GF(2^n), & \text{if } n \text{ even,} \\ \theta \in GF(2^{6n}), & \theta \notin GF(2^{2n}), & \text{if } n \text{ odd.} \end{cases}$$
(2.4)

Now

$$\left(heta+rac{a heta^2}{t}
ight)^{\!\!3}+a\left(heta+rac{a heta^2}{t}
ight)+b=0,$$

so that as f = (1, 1, 1) we have $\theta + a\theta^2/t \in GF(2^n)$. But $t \in GF(2^n)$ (if *n* even), $GF(2^{2n})$ (if *n* odd), so that we have $\theta \in GF(2^{2n})$ (if *n* even), $GF(2^{4n})$ (if *n* odd), which contradicts (2.4).

Now suppose that $tr(a^3/b^2) = tr(1)$ and t_1 , t_2 are cubes in $GF(2^n)$ (if n even), $GF(2^{2n})$ (if n odd). If $f \neq (1, 1, 1)$ then as $tr(a^3/b^2) = tr(1)$ (so that $f \neq (1, 2)$) we must have f irreducible over $GF(2^n)$. Letting t denote one of t_1 , t_2 we see that there exists $u \in GF(2^n)$ (n even), $GF(2^{2n})$ (n odd), such that $t = u^3$. As $t^2 + bt + a^3 = 0$ we have $u^6 + bu^3 + a^3 = 0$ and so $(u + a/u)^3 + a(u + a/u) + b = 0$, that is, f has a root in $GF(2^n)$ (if n even), $GF(2^{2n})$ (if n odd), contradicting that f is irreducible over $GF(2^n)$.

We remark that part of this theorem (namely (2.2)) is given in [3, p. 556], and that a different characterization is given in [2].

3. FACTORIZATIONS OVER $GF(3^n)$

We begin by proving the following lemma.

LEMMA. The factorizations of $x^3 - x + c$ ($c \in GF(3^n)$) over $GF(3^n)$ are characterized as follows:

$$x^{3} - x + c = (1, 1, 1) \Leftrightarrow \operatorname{tr}(c) = 0$$
 (3.1)

and

$$x^{3}-x+c=(3)\Leftrightarrow \operatorname{tr}(c)\neq 0, \tag{3.2}$$

where $tr(c) = c + c^3 + c^{3^2} + \dots + c^{3^{n-1}}$.

Proof. As discrim $(x^3 - x + c) = -4(-1)^3 - 27c^2 = 2^2$, by Stickelberger's theorem [1, p. 164] we have $x^3 - x + c \neq (1, 2)$. Moreover it has no squared factor. Hence $x^3 - x + c = (1, 1, 1)$ or (3), and it suffices to prove (3.1).

We let

$$V_1 = \{c \in GF(3^n) \mid tr(c) = 0\},\$$

$$V_2 = \{c \in GF(3^n) \mid x^3 - x + c = (1, 1, 1)\}.$$

If $c \in V_2$ there exists $x_1 \in GF(3^n)$ such that $x_1^3 - x_1 + c = 0$, that is

$$tr(c) = tr(x_1^3 - x_1) = tr(x_1^3) - tr(x_1)$$

= $(x_1^3 + x_1^9 + \dots + x_1^{3^n})$
 $- (x_1 + x_1^3 + \dots + x_1^{3^{n-1}})$
= $x_1^{3^n} - x_1 = 0$,

implying $c \in V_1$, that is $V_2 \subseteq V_1$.

If c_1 , $c_2 \in V_1$ and $\lambda \in GF(3)$ then

$$\operatorname{tr}(c_1+c_2)=\operatorname{tr}(c_1)+\operatorname{tr}(c_2)=0, \quad \operatorname{tr}(\lambda c)=\lambda \operatorname{tr}(c)=0,$$

so that V_1 is a subspace of $GF(3^n)$ considered as a vector space (of dimension *n*) over GF(3). Since $card(V_1) = 3^{n-1}$ we have dim $V_1 = n - 1$.

If $c_1, c_2 \in V_2$ and $\lambda \in GF(3)$ then there exist $x_1, x_2 \in GF(3^n)$ such that

$$(x_1 + x_2)^3 - (x_1 + x_2) + (c_1 + c_2)$$

= $(x_1^3 - x_1 + c_1) + (x_2^3 - x_2 + c_2) = 0$

and (as $\lambda^3 = \lambda$) $(\lambda x_1)^3 - (\lambda x_1) + \lambda c_1 = \lambda (x_1^3 - x_1 + c_1) = 0$, implying V_2 is also a subspace of the vector space $GF(3^n)$ over GF(3). Since $card(V_2) = 3^{n-1}$ we have dim $V_2 = n - 1$.

Hence we have $V_2 \subseteq V_1$, dim $V_1 = \dim V_2$, proving $V_1 = V_2$ as required.

We are now in a position to treat the factorization of a general cubic $g(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ over $GF(3^n)$. If $a_2 = 0$ we work with $(1/a_3) g(x)$. If $a_2 \neq 0$ we work with $(x^3/a_3) g(1/x + a_1/a_2)$.

In both cases the factorization of g(x) can be retrieved, and so it suffices to consider $f(x) = x^3 + ax + b$ $(a, b \in GF(3^n))$. Moreover since the factorization of $x^3 + b$ over $GF(3^n)$ is well-known we can further take $a \neq 0$. We prove

THEOREM 2. The factorizations of $f(x) = x^3 + ax + b$ ($a, b \in GF(3^n)$), $a \neq 0$) over $GF(3^n)$ are characterized as follows:

$$f = (1, 1, 1) \Leftrightarrow -a \text{ is a square in } GF(3^n),$$
 (3.3)

 $say - a = c^2$, and $tr(b/c^3) = 0$,

$$f = (1, 2) \Leftrightarrow -a \text{ not a square in } GF(3^n),$$
 (3.4)

$$f = (3) \Leftrightarrow -a \text{ is a square in } GF(3^n),$$
 (3.5)

say $-a = c^2$, and $tr(b/c^3) \neq 0$.

Proof. (3.4) follows immediately from Stickelberger's theorem [1, p. 164]. Hence we can suppose there exists $c \in GF(3^n)$ such that $-a = c^2$ so that $f(x) = x^3 - c^2x + b$. We set $f^*(x) = x^3 - x + b/c^3$ and note that as $f(cx) = c^3f^*(c)$, f and f^* factor in the same way over $GF(3^n)$. Hence by the lemma we have $f = (1, 1, 1) \Leftrightarrow g = (1, 1, 1) \Leftrightarrow tr(b/c^3) = 0$, which completes the proof of Theorem 2.

4. REMARK

We remark that similar results for quartic polynomials over $GF(p^n)$ (p > 2) can be deduced from [5] (see also [4, 7]) and over $GF(2^n)$ the results are given in [6].

References

- 1. E. R. BERLEKAMP, "Algebraic Coding Theory," McGraw-Hill, 1968.
- E. R. BERLEKAMP, H. RUMSEY, AND G. SOLOMON, Solutions of algebraic equations in fields of characteristic 2, Jet Propulsion Lab. Space Programs Summary No. 4, 37–39, 1966.
- 3. E. R. BERLEKAMP, H. RUMSEY, AND G. SOLOMON, On the solution of algebraic equations over finite fields, *Inform. Contr.* 10 (1967), 553-564.
- L. E. DICKSON, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc. 13 (1906), 1-8.
- 5. P. A. LEONARD, On factoring quartics (mod p), J. Number Theory 1 (1969), 113-115.
- 6. P. A. LEONARD AND K. S. WILLIAMS, QUARTICS OVER GF(2ⁿ), Proc. Amer. Math. Soc. 36 (1972), 347-350.
- 7. TH. SKOLEM, The general congruence of 4th degree modulo p, p prime, Norsk. Mat. Tidsskr. 34 (1952), 73-80.