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JACOBI SUMS AND A THEOREM OF BREWER
PHILIP A. LEONARD AND KENNETH §. WILLIAMS*

1. Introduction. Throughout p will denote an odd prime, and
(*/p) the familiar Legendre symbol. It is well known that p = ¢2 + 242
if and only if p = 8k + 1 or p = 8k + 3, and that in these cases ¢ is
unique if we require ¢= (—1)*!(mod4). In 1961, Brewer [1]
related this representation of p to the character sum

2L/ (x+ 2)(x2— 2)
. B= -—_— ).
(L1) Eo ( 4 )

More precisely, he proved

THEOREM.

B= {0, ifp # ¢+ 2d2,
2, ifp=c*+ 2d?and c= (—1)k*!(mod 4).

We present a variant of Whiteman’s proof [6] of this result, using
simple properties of Jacobi sums, with the view that this is more
natural than the use of Jacobsthal sums [6], modular curves [5]
(see Theorem 1) or the theory of cyclotomy [3] in other existing
proofs.

For multiplicative characters ¢ and A of GF(p’), the Jacobi sum
J(¥, A) is defined by :

(L2) J. N =3 w(a@B)
at+f=1

If ¥, A and YA are non-trivial, these sums satisfy [ 4]

G¥)G\)
1.3 = TR
where G() is the Gaussian sum G() = 3, ¥(a) exp(2mi tr(a)/p), with
trle) =a+a?+ -+ ar’! and therefore as |G )| p2,
(14) | J(¥, M) = p".
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The Gaussian sums also satisfy
(15) CW)GE) = w(~1)p"

where  is the character conjugate to ¢. The particular Jacobi sums
of interest will be studied in § 4.

It is convenient to introduce 6, an element of GF(p2) of multiplica-
tive order p + 1, and the notation 6 = 67, so that 66 = 1. (Similarly,

the integers x, X among 1,2, - - - p — 1 are related by x = 1 (mod p)).
We note the relation

(1.8) (" + 1)r-l=gwvforl=n=p+ Ln#(p+ 1)
which follows from (6" + 1)? = g*7 + g»r+1) = gr( g + 1).

2. Transformation formulae. The following result contains two
simple formulae which are useful in the argument.

Lemma 2.1. Let F be a complex-valued function of period p. Then

2.1) g(%)nxn "g; (x 2)F(x)

p=1 _
» = Zl(%)F(x+x),
(2.2) :;(’;2)1«‘(x)— g(’;2)z«‘(x)

= 2 1)"F (6" + o).

Proor. For (21), see [7]. The observation of Brewer [1] and
Whiteman [6] that the number of solutionsof x = 6"+ 6", 1=n=p
+ 1,is 1 — ((x2 — 4)/p), gives

p—-1

(2.3) 2 G(x) — 2 ( 24 )C(x) = pﬁ::l G(6" + o),

x=0

for any complex-valued function G of period p. Setting G(x) =
((x + 2)/p)F(x), we obtain (2.2) as (" + " + 2)/lp) = (—1)", 1=n
=p+ 1,n# (p+ 1)2. This assertion follows from (1.6) and Euler’s
criterion, since

(0" + 06+ 2)P-1r2 = ((gn + 1)2g~)p— 112
=gwene-12 = gre+1N2 = (=1
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for the indicated values of n.

3. Applications; the trivial cases. We apply Lemma 2.1 to F(x) =
((x2 = 2)/p). Forp =1 (mod 4), (2.1) gives

2= 5 ()5 )-2(5)(E)

(3.1) x=1 x=0
p—1 8 \ p—1
-3 (5)-S ()

If p = 5 (mod 8), the biquadratic and octic residues modulo p coincide,
so that B = 0 in this case.
For p = 3 (mod 4), (2.2) gives
p+l 2n 4 /2n
2B = 2 (_l)n( 6™ + 6™ )
(3.2) n=1 p
p+l 94" + 5471 p+l 92" + 5271
SE ()R (o)
n=1 (4 n=1 (4
As 97+1¥2 = —1] and (—1/p) = —1, the transformation n— (p + 1)/4
+ n shows that the second term in (3.2) is its own negative, and so
2B =SP11(( 6% +8*)lp) in this case. If p=7(mod8), the
transformation n— (p + 1)/8 + n applied to (3.3) shows that 2B =
— 2B, so that B = 0 in this case as well.

4. The Jacobi sums. For p =1 (mod 8) and p = 3 (mod 8), some
special Jacobi sums are needed First, let D denote the ring of integers
of the number field Q(V?2,i) = Q(w), where w = exp(27il8). D is a
unique factorization domam If 7 denotes a prime factor of p in D,
then k = Dj(x) is a field of N(r) elements, where

- fp ifp=1(mod8),
(4.1) N(r) {’D2 )= 3 (med )
We define a character X = X,, of k by specifying
(42) X(¢) = o lf f(N(") U8 = g (mod 7),

for elements £ of D not d1v131ble by . The@tlon X defined by (4.2)
is related to the Legendre symbol by ——
(4.3) (_a_)= X¥4a) if p=1(mod8), T
' X(a) ifp=3(mod8),forallainZ
When p = 3 (mod 8) we have
QPP -8 = ( g+ DI4)p~1)2 = (£ §)P-I2 = 4 s0 that X( ) = +i.

\_\—'\
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Replacing 6 by — 8 if necessary we can assume without loss of gener-
ality thatX( 6) = i.

Since our Gauss and Jacobi sums involve only characters which are
powers of X, we set J(m, n) = J(X™,X") and G(m) = G(X™) to simplify
notation. Also, @ and a’ denote the conjugates of a in D with respect
to i and V2, respectively. Thus @’ = w3, for example.

For p =8k + 1, the central role is played by the Jacobi sum
KL, 4).

Lemma 4.1. Forp=8k+ 1,J(1,4) = *a7’.

ProoF. As 2:;5 y™ = 0 (mod p) wherever p —1 } n, we have

(4.4) J(1,4) = 2 y®-18(1 — y)®-2 = Q (mod x) in D.

y=0

Since y®-18 = @ (modx) implies y3*-V8 = @ (mod#'), we have

—1
45)  JA,4)= 3 yoo-1i8(l— y)»-12= 0 (mod7')in D.

y=0
As 7w and #' are non-associated primes of D, (44) and (4.5) imply

(4.6) J(1,4) = , for somey in D.

Now by (13) and (15), J(L,4) = J3,4) = GB)GHA)IGT) =
G(1)G(4)IG(5) = J(1,4) showing that J(1,4) is in Z[V—2]. Since
air’ is in Z[V—2], y is in Z[V—2] as well. Computing norms in
(4.8) gives, by (1.4), thaty is a unit of Z[ V—2], soy = *1 as required.

Lemma 42. For p=8k+1, J(1,4) = c+ dV—2, where c=
(—1)**!(mod 4) and p = c2 + 2d>.

Proor. By lemma 4.1 and its proof, J(1, 4) is a prime factor of p in
Z[V-2]. Thus, since we do not distinguish d from —d, J(1,4)
= *(c + dV—2), with d even and ¢ = (—1)**! (mod 4). The correct
sign is obtained by using an idea of Davenport and Hasse [2]. For
1=y=p—-2((y+ 1)ip)+ 1=0(mod 2),and

1, if( L)=1,
X(y) = ( P > (mod V=2),
o, if( -"()L >= -1

so that
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+ 2 () - w}{(y% )+ 1} = omod2v=2)

(£)-

After some simplification of (4.7) we obtain

JOL 4= 5 (p = 5+ 2p = 1) + X(=1) (mod 2v=D),
or
(4.8) J(1,4) = (—1)k — 2= (—1)k*+1 = ¢(mod 2V —2).

As d is even, we have J(1,4) = ¢ + dV —2, completing the proof.

For p = 8k + 3, the central role is played by a factor of the Jacobi
sum J(1, 3). Following Whiteman, we consider the Eisenstein sum

(49) K= "S'x0 + bi),

b=0
which satisfies (see [6] , lemma 2)
(4.10) KK=p,
and also (as can be shown by a straightforward calculation)
(4.11) J(1,3) = — K2,
showing that K is indeed a factor of the Jacobi sum J(1, 3).

Lemma 4.3. For p—8k+3 let L=3r1X(6"+ 1). Then L
isin Z[V—2], and —

L= e+5="3 xo+ 1)

=1 n=1

3

3

p+1 p+1
=3 Xor+1)= Y x(on+1)=
= n=1

n=1
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so that L is in Z[V—2]. For 0 = b = p — 1, the numbers (1 — bi)/
(1 + bi) are distinct, and different from —1. As ((1 — bi)/(1 + bi))?
= (1 + bi)/(1 — bi), each of them satisfies y»*! = 1, and so these p
elements of GF(p?) are simply 6", 1=n=p+1, n# (p+ 1)2
Therefore

{0"+1 |1§n§p+ L,n# ‘%1}

= {1+2bi |O§b§p+1 }

so that

p=1 , [ 2
K= X(1 + bi) = X
2, =x(%5t)

= - ¥Xx(6+1)=—L
as required, where the dash (') indicates that the summation is over
those nsatisfyingl=n=p+ 1,n# (p + 1)2.

LemMma 4.4. For p = 8k + 3 = ¢ + 2d?, with ¢ = (—1)**(mod 4),
we have L = x(c + dV —2). (The ambiguity of sign is resolved in
§5)-

Proor. From (4.10) and lemma 4.3 we have p= LL=#7, so

that L = =7 or %7, showing that L can be written in the form
*(c + dV—2) with¢ = (—1)**! (mod 4) and ¢% + 242 = p.

5. Completion of the proof. For p = 8k + 1, we have
2 (xs +1 )

= 3;); (% ){1 +X(x) + X2(x) + -+ XT(D)},

(5.1)

and

(52)

)

){1 + X2(x) + X4(x) + X9(x)},

||M|
/\

+ <
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which, with (3.1) gives

(5.3) 2B= J(1,4) + J(1,4)" + J(1,4)' + Jja,4).

From lemma 4.2, 2B = 4c, so that B = 2c as required.
For p = 8k + 3, we rewrite (3.3) by introducing X, and obtain

p+l p+1
(54) 2B= Y X(6%+ 1)= Y X(6*+ 1),
n=1 n=1

as p+ 1=4(2k + 1) implies that the fourth powers and eighth
powers in the cyclic group () coincide. Setting

= pf:lx( ginti+ 1), forj=10,1,2,3,
n=1
we have the equalities
2B = §,,
AL=S,+ S; + S; + S; = x4(c + dV=2).
Now (see [6], p.551) S; = iS; and S, = 0, giving
(5.6) +4(c + dV=2) = 2B + (1 + i)S,.

From (1.8) we obtain, for p =8k + 3, as X(8) =i, X3(6™ + 1) =
xX(om™ + 1)}t = x(0m) = {X(8™)}® = @®", so that

(5.5)

(5.7) X(0™ + 1) = + wdm,
Hence X( 8**+3 + 1) = * w, so that S; = ew, where e € Z, giving
(5.8) » 1+ i)S;=eV-2.
From (5.5), (5.8) and (5.8) we have B2 = Sy/4 = t¢. But
1 2k+1
st = LS x(om + 1) ="Sx(om + 1)
n=1 n=1

2k
2 X(6*+1)—1,

and

2k k k
Y x(om+1)=3 x(6-m+1)= 3 x(¢*™+ 1).

n=k+1 m=1 m=]
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Since (from (5.7)) X(*™ + 1) = *1, we have

k
§= 23 X(69m + 1) — 1= 2k — 1 = (— 1)}k+1 = ¢(mod 4).

m=1

Since c¢ is odd and B/2 = *¢, we must have B/2 = c¢. This completes
the proof.
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In the statement and proof of Lemma 4.2, the factor X(—1) should
appear with each occurrence of J(1, 4).

The right-hand side of (5.3) should also contain the factor x(—1).

In the line following (4.6), for J(1, 4) read J(1,4)". A

We are grateful to Professors B. Berndt and R. Evans for pointing
out the omission of X(—1).






