3 AS A NINTH POWER (MOD p)

KENNETH S. WILLIAMS*

1. Introduction.

Let p be a prime $\neq 3$. If $p \equiv 2(\bmod 3)$ then 3 is always a ninth power $(\bmod p)$ so we may restrict our attention to primes $p \equiv 1(\bmod 3)$. For such primes Gauss showed that there are integers L, M such that

$$
\begin{equation*}
4 p=L^{2}+27 M^{2}, \quad L \equiv 1(\bmod 3) \tag{1.1}
\end{equation*}
$$

Indeed there are just two solutions of (1.1), namely ($L, \pm M$). Jacobi proved that 3 is a cube $(\bmod p)$ if and only if $M \equiv 0(\bmod 3)$. As 3 cannot be a ninth power $(\bmod p)$ without being a cube $(\bmod p)$ we assume from now on that $M \equiv 0(\bmod 3)$, say $M=3 N$. If $p \neq 1(\bmod 9)$, as it is a cube $(\bmod p), 3$ will also be a ninth power $(\bmod p)$, so we need only consider primes $p \equiv 1(\bmod 9)$, in which case, 3 may or may not be a ninth power $(\bmod p)$. It is the purpose of this note to give a simple necessary and sufficient condition for 3 to be a ninth power $(\bmod p)$ in this case. This condition takes the form of a simple linear congruence $(\bmod 3)$ in the variables of a certain triple of diophantine equations (see (3.5)-(3.7)). This theorem is proved using a new expression for the index of 3 modulo 9 in terms of the cyclotomic numbers of order 9 (see Lemma 6) and certain classical results concerning these cyclotomic numbers proved by Dickson in [2].

2. Preliminary results.

From this point on we emphasize that p is assumed (unless otherwise stated) to be a prime $\equiv 1(\bmod 9)$ such that 3 is a cube $(\bmod p)$, so that $M \equiv 0(\bmod 3)$, say $M=3 N$, and $L \equiv 7(\bmod 9)$. First of all we wish to fix the sign of N. Let g be a fixed (once and for all) primitive $\operatorname{root}(\bmod p)$ and for any integer $n \neq 0(\bmod p)$ we define ind $(n) \equiv \operatorname{ind}_{g}(n)$ to be the least non-negative integer l such that

$$
n \equiv g^{l}(\bmod p)
$$

[^0]We set $\beta=\exp (2 \pi i / 9)$, so that

$$
\beta^{6}+\beta^{3}+1=0
$$

and define a primitive 9 th order character χ by

$$
\chi(n)=\beta^{\operatorname{1nd}(n)}, \quad n \neq 0(\bmod p) .
$$

For completeness we set $\chi(n)=0$, if $n \equiv 0(\bmod p)$. For any integers r and s the Jacobi sum $J(r, s)$ is defined by

$$
J(r, s)=\sum_{n=0}^{p-1} \chi^{r}(n) \chi^{s}(1-n) .
$$

If Q denotes the field of rational numbers, $J(r, s)$ is clearly an integer of the sextic field $Q(\beta)$. As $J(3,3)$ is invariant under the transformation $\beta \rightarrow \beta^{4}$, it is an element of $\mathrm{Q}\left(\beta^{3}\right)=\mathrm{Q}(\gamma-3)(\subset \mathrm{Q}(\beta))$, and Dickson [2, equation (6)] has noted that we may fix the sign of N by

$$
\begin{equation*}
J(3,3)=\frac{1}{2}(L+9 N \sqrt{-3}) . \tag{2.1}
\end{equation*}
$$

Also following Dickson [2, equation (14)] we define integers
by

$$
\begin{equation*}
J(1,1)=\sum_{i=0}^{5} c_{i} \beta^{i} \tag{2.2}
\end{equation*}
$$

Dickson [2, equation (25)] showed that (for any prime $p \equiv 1(\bmod 9)$)

$$
\begin{equation*}
c_{0} \equiv-1, \quad c_{1} \equiv c_{2} \equiv-c_{4} \equiv-c_{5}, \quad c_{3} \equiv 0(\bmod 3) \tag{2.3}
\end{equation*}
$$

In view of our additional assumption that $M \equiv 0(\bmod 3)$ we are able to prove more, namely,

Lemma 1. $c_{1} \equiv c_{2} \equiv c_{3} \equiv c_{4} \equiv c_{5} \equiv 0(\bmod 3)$.
Proof. We use the notation $(h, k)_{9}$ for a cyclotomic number of order 9 , that is, the number of solutions x, y of the congruence

$$
g^{9 x+h}+1 \equiv g^{9 y+k}(\bmod p)
$$

with $0 \leqq x, y<\frac{1}{8}(p-1)$, and the notation $(h, k)_{3}$ for a cyclotomic number of order 3, that is, the number of solutions x, y of the congruence

$$
g^{3 x+h}+1 \equiv g^{3 y+k}(\bmod p)
$$

with $0 \leqq x, y<\frac{1}{3}(p-1)$. These numbers are related by the equation

$$
\begin{equation*}
(h, k)_{3}=\sum_{r, s=0}^{2}(h+3 r, k+3 s)_{9} \tag{2.4}
\end{equation*}
$$

(see Dickson [2, equation (2)]. Gauss showed that for any prime $p \equiv 1$ $(\bmod 3)$

$$
9(0,0)_{3}=p-8+L, \quad 18(0,1)_{3}=2 p-4-L+9 M
$$

(2.5) $9(1,2)_{3}=p+1+L, \quad 18(0,2)_{3}=2 p-4-L-9 M$,

$$
(1,0)_{3}=(0,1)_{3}=(2,2)_{3}, \quad(1,1)_{3}=(2,0)_{3}=(0,2)_{3}, \quad(2,1)_{3}=(1,2)_{3},
$$

and Dickson [2] evaluated the ($h, k)_{9}$ implicitly in terms of $L, M, c_{0}, \ldots, c_{5}$. The explicit expressions for the $(h, k)_{9}$ have been given by Baumert and Fredricksen [1, Tables 1 and 2]. From Dickson's work [2, p. 189] we have modulo 3

$$
\begin{aligned}
& c_{1}=(0,1)_{9}+(0,4)_{9}-2(0,7)_{9}+2(1,3)_{9}-4(1,6)_{9}+2(2,5)_{9} \\
& \equiv(0,1)_{9}+(0,4)_{9}+(0,7)_{9}+2(1,3)_{9}+2(1,6)_{9}+2(2,5)_{9} \\
&=(0,1)_{9}+(0,4)_{9}+(0,7)_{9}+(3,1)_{9}+(3,4)_{9}+(3,7)_{9}+ \\
&+(6,1)_{9}+(6,4)_{9}+(6,7)_{9}=(0,1)_{3},
\end{aligned}
$$

by (2.4), so that by (2.5), as $M \equiv 0(\bmod 3)$, we have

$$
\begin{equation*}
18 c_{1} \equiv 2 p-4-L(\bmod 27) \tag{2.6}
\end{equation*}
$$

As $p \equiv 1(\bmod 9), L \equiv 7(\bmod 9)$, we can define integers u and v by $p=$ $9 u+1, L=9 v+7$, so that (2.6) becomes

$$
\begin{equation*}
c_{1} \equiv u+v+1(\bmod 3) \tag{2.7}
\end{equation*}
$$

Finally as $M \equiv 0(\bmod 3)$ we have (see [1, Table 2])

$$
81(3,6)_{9}=p+1+L
$$

so that

$$
\begin{equation*}
u+v+1 \equiv 0(\bmod 9) \tag{2.8}
\end{equation*}
$$

(2.7) and (2.8) show that $c_{1} \equiv 0(\bmod 3)$. This completes the proof of the lemma in view of (2.3).

Lemma 1 enables us to define integers $d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$ by

$$
\begin{equation*}
c_{0}=d_{0}, c_{1}=3 d_{1}, c_{2}=3 d_{2}, c_{3}=3 d_{3}, c_{4}=3 d_{4}, c_{5}=3 d_{5} \tag{2.9}
\end{equation*}
$$

with (by (2.3))
(2.10)

$$
d_{0} \equiv-1(\bmod 3)
$$

We next relate N to the d_{i} modulo 3 by proving

Lemma 2. $N \equiv d_{3}(\bmod 3)$.

Proof. From [1, Table 2] we have

$$
162(2,5)_{9}=2 p+2-L+27 N+6 d_{0}+18 d_{1}+18 d_{2}-36 d_{3}-36 d_{4}-36 d_{5}
$$ and

$162(2,6)_{9}=2 p+2-L-27 N+6 d_{0}+18 d_{1}+18 d_{2}+18 d_{3}-36 d_{4}-36 d_{5}$ so that

$$
54 N=54 d_{3}+162\left\{(2,5)_{9}-(2,6)_{9}\right\}
$$

that is

$$
N \equiv d_{3}(\bmod 3)
$$

3. The diophantine system.

Using Lemma 1 and Dickson's Theorem 3 in [2] we obtain
Lemma 3. The triple of diophantine equations

$$
\begin{align*}
& p=w_{0}^{2}+9\left(w_{1}^{2}+w_{2}^{2}+w_{3}^{2}+w_{4}^{2}+w_{5}^{2}\right)-3 w_{0} w_{3}-9 w_{1} w_{4}-9 w_{2} w_{5} \tag{3.1}\\
& w_{0} w_{1}+3 w_{1} w_{2}+3 w_{2} w_{3}+3 w_{3} w_{4}+3 w_{4} w_{5}-w_{0} w_{4}-3 w_{1} w_{5}-w_{0} w_{5}=0 \tag{3.2}\\
& w_{0} w_{2}+3 w_{1} w_{3}+3 w_{2} w_{4}+3 w_{3} w_{5}-w_{0} w_{4}-3 w_{1} w_{5}-w_{0} w_{5}=0 \tag{3.3}
\end{align*}
$$

has exactly six solutions

$$
\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right) \neq\left(\frac{1}{2}(L \pm 9 N), 0,0, \pm 3 N, 0,0\right)
$$

satisfying $w_{0} \equiv-1(\bmod 3)$. If $\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ is one of these six solutions the other five are given by

$$
\left\{\begin{array}{l}
\left(w_{0}-3 w_{3}, w_{5}, w_{1}-w_{4},-w_{3}, w_{2},-w_{4}\right) \tag{3.4}\\
\left(w_{0},-w_{4}, w_{5}-w_{2}, w_{3}, w_{1}-w_{4},-w_{2}\right) \\
\left(w_{0}-3 w_{3},-w_{2},-w_{1},-w_{3}, w_{5}-w_{2}, w_{4}-w_{1}\right), \\
\left(w_{0}, w_{4}-w_{1},-w_{5}, w_{3},-w_{1}, w_{2}-w_{5}\right) \\
\left(w_{0}-3 w_{3}, w_{2}-w_{5}, w_{4},-w_{3},-w_{5}, w_{1}\right)
\end{array}\right.
$$

Moreover $\left(d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)$ is one of these six solutions.
Diagonalizing equation (3.1) by an appropriate linear transformation we obtain the following diophantine system in terms of which the necessary and sufficient condition for 3 to be a ninth power $(\bmod p)$ will be given, namely

$$
\begin{gather*}
8 p=2 x_{1}^{2}+18 x_{2}^{2}+18 x_{3}^{2}+27 x_{4}^{2}+27 x_{5}^{2}+54 x_{6}^{2} \tag{3.5}\\
9 x_{4}^{2}-9 x_{5}^{2}+4 x_{1} x_{3}-6 x_{1} x_{4}+2 x_{1} x_{5}+12 x_{2} x_{3}+6 x_{2} x_{4}+6 x_{2} x_{5}+ \tag{3.6}\\
+24 x_{2} x_{6}-6 x_{3} x_{4}+6 x_{3} x_{5}+12 x_{3} x_{6}+18 x_{4} x_{6}+18 x_{5} x_{6}=0
\end{gather*}
$$

(3.7)

$$
\begin{aligned}
& 2 x_{1} x_{2}-3 x_{1} x_{4}-x_{1} x_{5}+6 x_{2} x_{4}+6 x_{2} x_{5}+6 x_{2} x_{6}-6 x_{3} x_{4}+6 x_{3} x_{5}+ \\
& \quad+12 x_{3} x_{6}+9 x_{4} x_{6}-9 x_{5} x_{6}=0 .
\end{aligned}
$$

Before giving the transformation between the system (3.1)-(3.3) and the system (3.5)-(3.7) we prove some simple congruences for the solutions of the system (3.5)-(3.7) which we will need in order to show that the transformation is a bijection.

Lemma 4. Any solution $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ of (3.5)-(3.7) satisfies

$$
\begin{gathered}
x_{1}+x_{6} \equiv x_{4}+x_{5} \equiv x_{2}+x_{3}+x_{5} \equiv 0(\bmod 2) \\
2 x_{3}+x_{4}+x_{5} \equiv 0(\bmod 4)
\end{gathered}
$$

Proof. Reducing (3.5) modulo 2 we obtain

$$
x_{4}+x_{5} \equiv 0(\bmod 2)
$$

Thus we may define an integer t by

$$
\begin{equation*}
x_{4}=x_{5}+2 t \tag{3.8}
\end{equation*}
$$

Reducing (3.5) modulo 4 we obtain

$$
\begin{equation*}
0 \equiv 2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+3 x_{4}^{2}+3 x_{5}^{2}+2 x_{6}^{2}(\bmod 4) \tag{3.9}
\end{equation*}
$$

From (3.8) we have $x_{4}{ }^{2} \equiv x_{5}{ }^{2}(\bmod 4)$. Using this in (3.9) gives

$$
0 \equiv 2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2}+2 x_{6}^{2}(\bmod 4)
$$

that is

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}+x_{6} \equiv 0(\bmod 2) \tag{3.10}
\end{equation*}
$$

Next taking (3.6) modulo 8 we obtain

$$
\begin{align*}
x_{4}^{2}- & x_{5}^{2}+4 x_{1} x_{3}+2 x_{1} x_{4}+2 x_{1} x_{5}+4 x_{2} x_{3}-2 x_{2} x_{4}-2 x_{2} x_{5}+ \tag{3.11}\\
& +2 x_{3} x_{4}-2 x_{3} x_{5}+4 x_{3} x_{6}+2 x_{4} x_{6}+2 x_{5} x_{6} \equiv 0(\bmod 8) .
\end{align*}
$$

Using (3.8) in (3.11) we obtain

$$
t\left(x_{1}+x_{2}+x_{3}+x_{5}+x_{6}\right)+t^{2}+\left(x_{1}+x_{2}+x_{6}\right)\left(x_{3}+x_{5}\right) \equiv 0(\bmod 2)
$$

which in view of (3.10) gives

$$
\begin{equation*}
t \equiv x_{3}+x_{5}(\bmod 2) \tag{3.12}
\end{equation*}
$$

that is
(3.13) $\quad \frac{1}{2}\left(x_{4}-x_{5}\right) \equiv x_{3}+x_{5}(\bmod 2), \quad 2 x_{3}+x_{4}+x_{5} \equiv 0(\bmod 4)$.

Finally reducing (3.7) modulo 4 we obtain, using $x_{4} \equiv x_{5}(\bmod 2)$,

$$
\left(x_{1}+x_{6}\right)\left(2 x_{2}+x_{4}-x_{5}\right) \equiv 0(\bmod 4)
$$

that is, by (3.13),

$$
\begin{equation*}
\left(x_{1}+x_{6}\right)\left(x_{2}+x_{3}+x_{5}\right) \equiv 0(\bmod 2) \tag{3.14}
\end{equation*}
$$

By (3.10) and (3.14) we have

$$
x_{1}+x_{6} \equiv x_{2}+x_{3}+x_{5} \equiv 0(\bmod 2)
$$

We are now in a position to relate the two systems (3.1)-(3.3) and (3.5)-(3.7). We prove

Lemma 5. The diophantine system (3.5)-(3.7) has exactly six solutions

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \neq(L, 0,0,0,0, \pm 3 N)
$$

with $x_{1} \equiv 1(\bmod 3)$. If one of these is $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ the other five are

$$
\begin{align*}
& \left(x_{1}, x_{3}, \frac{1}{4}\left(-2 x_{2}+3 x_{4}-3 x_{5}\right), \frac{1}{4}\left(2 x_{2}-x_{4}-3 x_{5}\right), \frac{1}{4}\left(2 x_{2}+3 x_{4}+x_{5}\right),-x_{6}\right), \\
& \left(x_{1}, \frac{1}{4}\left(-2 x_{2}+3 x_{4}-3 x_{5}\right),-\frac{1}{4}\left(2 x_{3}+3 x_{4}+3 x_{5}\right),\right. \\
& \\
& \left.\frac{1}{2}\left(-x_{2}+x_{3}-x_{4}\right), \frac{1}{2}\left(x_{2}+x_{3}-x_{5}\right), x_{6}\right), \tag{3.15}\\
& \left(x_{1},-\frac{1}{4}\left(2 x_{3}+3 x_{4}+3 x_{5}\right),-\frac{1}{4}\left(2 x_{2}+3 x_{4}-3 x_{5}\right),\right. \\
& \left.-\frac{1}{2}\left(x_{2}+x_{3}-x_{4}\right),-\frac{1}{2}\left(x_{2}-x_{3}+x_{5}\right),-x_{6}\right), \\
& \left(x_{1},-\frac{1}{4}\left(2 x_{2}+3 x_{4}-3 x_{5}\right), \frac{1}{4}\left(-2 x_{3}+3 x_{4}+3 x_{5}\right),\right. \\
& \left.\frac{1}{2}\left(x_{2}-x_{3}-x_{4}\right),-\frac{1}{2}\left(x_{2}+x_{3}+x_{5}\right), x_{6}\right), \\
& \left(x_{1}, \frac{1}{4}\left(-2 x_{3}+3 x_{4}+3 x_{5}\right), x_{2}, \frac{1}{4}\left(2 x_{3}-x_{4}+3 x_{5}\right),\right. \\
& \left.-\frac{1}{4}\left(2 x_{3}+3 x_{4}-x_{5}\right),-x_{6}\right) .
\end{align*}
$$

Proof. For any solution $\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ with $w_{0} \equiv-1(\bmod 3)$ of (3.1)-(3.3) we obtain a solution $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ of (3.5)-(3.7) by setting

$$
\left\{\begin{array}{l}
x_{1}=2 w_{0}-3 w_{3}, \quad x_{2}=2 w_{2}-w_{5}, \quad x_{3}=2 w_{1}-w_{4}, \tag{3.16}\\
x_{4}=w_{4}+w_{5}, \quad x_{5}=w_{4}-w_{5}, \quad x_{6}=w_{3},
\end{array}\right.
$$

with $x_{1} \equiv 1(\bmod 3)$.
Conversely if $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ is a solution of (3.5)-(3.7) with $x_{1} \equiv 1$ $(\bmod 3)$ we may define, by Lemma 4, a solution $\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of (3.5)-(3.7) by setting

$$
\left\{\begin{array}{l}
2 w_{0}=x_{1}+3 x_{6}, \quad 4 w_{1}=2 x_{3}+x_{4}+x_{5}, \tag{3.17}\\
4 w_{2}=2 x_{2}+x_{4}-x_{5}, \quad w_{3}=x_{6}, \\
2 w_{4}=x_{4}+x_{5}, \quad 2 w_{5}=x_{4}-x_{5},
\end{array}\right.
$$

which satisfies

$$
w_{0} \equiv-1(\bmod 3)
$$

Finally it is easy to check that the excluded solutions correspond to one another and that (3.4) gives rise to (3.15).

For example when $p=73$ the six solutions of (3.5)-(3.7), with $x_{1} \equiv 1$ $(\bmod 3)$, different from $(7,0,0,0,0, \pm 3)$, are

$$
\begin{array}{rll}
(-2,-2,2,2,2,2), & (-2,2,1,-3,1,-2), & (-2,1,-4,1,-1,2) \\
(-2,-4,1,1,1,-2), & (-2,1,2,-3,-1,2), & (-2,2,-2,2,-2,-2) .
\end{array}
$$

4. Index of $\mathbf{3}$ modulo 9 .

In this section we assume only that $p \equiv 1(\bmod 9)$. The cyclotomic polynomial of degree $\varphi(9)=6$ modulo p is

$$
f(x)=\prod_{(v=1}^{v=1)=1} 9\left(x-g^{v f}\right),
$$

where $f=\frac{1}{9}(p-1)$ is even. It is well-known that $F(1) \equiv 3(\bmod p)$ so that

$$
\begin{equation*}
3 \equiv \prod_{\substack{v=1 \\ v, 3)=1}}^{9}\left(1-g^{v f}\right)(\bmod p) \tag{4.1}
\end{equation*}
$$

The congruence

$$
x^{f}-g^{v f} \equiv 0(\bmod p)
$$

has the f roots $x \equiv g^{9 i+v}(\bmod p)(1 \leqq i \leqq f)$ so that

$$
\begin{equation*}
x^{f}-g^{v f} \equiv \prod_{i=1}^{f}\left(x-g^{9 i+v}\right)(\bmod p) \tag{4.2}
\end{equation*}
$$

Taking $x=+1$ in (4.2) we obtain

$$
\begin{equation*}
1-g^{v f} \equiv \prod_{i=1}^{f}\left(1-g^{9 i+v}\right)(\bmod p) \tag{4.3}
\end{equation*}
$$

Putting (4.1) and (4.3) together we obtain

$$
3 \equiv \prod_{\substack{v=1 \\ v, 3)=1}} \prod_{i=1}^{f}\left(1-g^{9 i+v}\right)(\bmod p)
$$

so that

$$
\begin{equation*}
\operatorname{ind}(3) \equiv \sum_{\substack{v=1 \\(v, 3)=1}}^{9} \sum_{i=1}^{f} \operatorname{ind}\left(1-g^{9 i+v}\right)(\bmod 9) \tag{4.4}
\end{equation*}
$$

Collecting together terms in (4.4) for which

$$
1-g^{9 i+v} \equiv-g^{9 j+w}(\bmod p)
$$

we obtain, as $\operatorname{ind}(-1)=9 f / 2 \equiv 0(\bmod 9)$ (recall f even),

Lemma 6.

$$
\operatorname{ind}(3) \equiv \sum_{\substack{v=1 \\(v, 3)=1}}^{9} \sum_{w=0}^{8} w(w, v)_{9}(\bmod 9)
$$

We remark that the right-hand side of the expression in Lemma 6 can be further simplified but this is unnecessary for our purposes.

5. Statement and proof of main result.

We prove
Theorem. Let p be a prime $\equiv 1(\bmod 9)$ such that 3 is a cube $(\bmod p)$. Then 3 is a ninth power $(\bmod p)$ if and only if

$$
\begin{equation*}
x_{2}-x_{3}+x_{6} \equiv 0(\bmod 3) \tag{5.1}
\end{equation*}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \neq(L, 0,0,0,0, \pm 3 N)$ is a solution with $x_{1} \equiv 1$ $(\bmod 3)$ of $(3.5)-(3.7)$.

Note that in view of (3.15) condition (5.1) does not depend upon which of the six solutions of (3.5)-(3.7) is chosen.

Proof. By Lemma 6, 3 is a ninth power $(\bmod p)$ if and only if

$$
\sum_{\substack{v=1 \\(v, 3)=1}}^{9} \sum_{w=0}^{8} w(w, v)_{9} \equiv 0(\bmod 9)
$$

Using Dickson's formulae for the cyclotomic numbers of order nine, when ind $3 \equiv 0(\bmod 3)$, see Baumert and Fredricksen [1] (Tables 1 and 2), this condition becomes

$$
d_{1}-d_{2}+d_{4}-d_{5}+N \equiv 0(\bmod 3)
$$

Appealing to Lemma 2, Lemma 3 and (3.17) this simplifies to

$$
x_{2}-x_{3}+x_{6} \equiv 0(\bmod 3)
$$

6. Application of theorem to primes $p<1000$.

From tables for the values of L, M in the representation $4 p=L^{2}+27 M^{2}$ we see that the only primes $p \equiv 1(\bmod 9), p<1000$, for which 3 is a cube $(\bmod p)$ are

$$
p=73,307,523,577,613,757,919,991
$$

For these primes Mr. Barry Lowe used Carleton University's $\Sigma 9$ computer to calculate a non-trivial solution of the diophantine system (3.5)(3.7). The results are listed in table 1.

Table 1

p	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$x_{2}-x_{3}+x_{6}(\bmod 3)$
73	-2	-2	2	2	2	2	+1
307	7	2	-2	8	4	-1	0
523	-20	4	-7	1	-7	4	0
577	-20	8	10	-4	4	0	+1
613	-2	-2	-1	-11	-7	2	+1
757	16	-8	-7	9	-7	0	-1
919	-11	-14	-10	0	-4	5	+1
991	-20	6	9	-7	-3	8	-1

Thus, by the theorem, of these primes, only $p=307$ and 523 have 3 as a ninth power $(\bmod p)$. Indeed it is easy to check directly that

$$
3 \equiv 298^{9}(\bmod 307), \quad 3 \equiv 65^{9}(\bmod 523)
$$

7. Conclusion.

Baumert and Fredricksen [1] (equation (3.6)) have noted that for primes $p \equiv 1(\bmod 9)$

$$
\begin{equation*}
\operatorname{ind}(3) \equiv-M(\bmod 3), \tag{7.1}
\end{equation*}
$$

and it would be straight-forward to extend the ideas of this paper to obtain a corresponding congruence for $\operatorname{ind}(3)(\bmod 9)$.

REFERENCES

1. L. D. Baumert and H. Fredricksen, The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp. 21 (1967), 204-219.
2. L. E. Dickson, Cyclotomy when e is composite, Trans. Amer. Math. Soc. 38 (1935), 187-200.

CARLETON UNIVERSITY
OTTAWA, ONTARIO
CANADA

[^0]: * Research supported by the National Research Council of Canada under grant no. A-7233.

 Received February 20, 1974.

