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ELEMENTARY TREATMENT OF A QUADRATIC PARTITION OF PRIMES 
p = 1 (mod 7) 

This paper is dedicated to the memory of the great American math- 
ematician Leonard Eugene Dickson, who was born 100 years ago on 
January 22,1874 in Independence, Iowa, USA., and who served as 
a professor of mathematics at the University of Chicago for 41 years. 

1. Introduction 
Let e be an integer > 1, p a prime congruent to 1 (mod e), and g a primitive 

root (mod p). The cyclotomic number (h, k), is the number of solutions s, 
t of the trinomial congruence ge"+* + 1 = (mod p), where the values of 
s and t are each selected from 0, 1, . . - , f - 1, where f = (p - l)/e. A 
central problem in the theory of cyclotomy is to obtain formulae for the 
numbers (h, k), in terms of the solutions of certain diophantine system. For 
example [I.] when e = 3 the cyclotomic numbers of order 3 can be given in 
terms of the solutions a, b of the single diophantine equation 4p = a2 + 27b2, 
with a = 1 (mod 3)) and when e = 5 the cyclotomic numbers of order 5 can 
be given in te rm of the solutions x, u, v and w of the pair of diophantine equa- 
tions 

16p = xg + 50u2 + 50v2 + 125w2, xw = v2 - 4uv - u2 with x = 1 (mod 5). 

Recently P. A. Leonard and the author [3] evaluated the cyclotomic numbers 
of order 7 in te rm of the solutions (s, a, 23, 2 4 , 5 ,  a )  of the triple of diophan- 
tine equations 

(Another application of this system has been given in [4].) Clearly all solu- 
tions (s, - - , s) of (1.1)- (1.3) satisfy XI = f 1 (mod 7). Moreover if 
(a, - - - , a )  is a solution so is (-a, , -a ) .  Thus without any loss of 

Received December 17, 1973. 
This research was supported by a grant from the National Research Council of 

Canada. The author's sabbatical leave at the University of British Columbia was also 
supported by National Research Council travel grant. 



QUADRATIC PARTITION OF PRIMES 609 

generality we restrict our attention to those solutions satisfying 

The nature of the solutions of the system (1.1)-(1.4) waa obtained from the 
work of Dickson [I.] by P. A. Leonard and the author [5], uaing a number of 
resultrr from algebraic number theory, for example, that the ring ZW, 
{ = exp (2ra77), is a unique factorization domain, the form of the prime 
factorizations of p and certain Jacobi sums in ZB], etc. It is the aim of this 
paper to give a completely elementary, self-contained treatment of the sys- 
tem (1.1 )- (1.4) without reference to the theory of algebraic numbers. 

As p is a prime = 1 (mod 7) there are integers t and u such that p = t2 + 7u2. 
t is uniquely determined if we require t = 1 (mod 7), in which case u is de- 
termined up to sign. Then (-6t, f 2u, f 2u, ;f2u, 0, 0) give two solutions 
of (11)- (1.4). We call these the triuid solutions of (1.1 )- (1.4), any solution 
of the system Merent from these two will be called a non-trivial solution. 
In order to give explicit expressions for the non-trivial solutions of (1.1 )- (1.4) 
it is convenient to introduce the Jacobsthal sums #. (n) defined for any integer 
n bv 

where the symbol (h/p) is the Legendre symbol giving the quadratic charac- 
ter of h with respect to p. 

TFIEOREM 1. There are e W l y  six distinct non-trivicrl solutions (a, . . , x6) 
of (1.1)- (1.4). These are given by 

where i = 1, 2, 3, 4, 5, 6 and z4 denotes the unique integer satisfying iz4 = 1 
(mod 7), 1 I z4 5 6. 

Theorem 1 will be proved by proving two theorem from which it follows 
immediately. 
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TEIEOBEM 3. I f  (21, a, a, 2 4 ,  2 6 ,  3 )  is  a m-trivial solution of (1.1 )- (1.4) 
then aU non-ttivial solutions are given by 

Theorem 2 is proved by using results due to Whiteman [6] and Theorem 3 is 
proved following a method of Dickson [I]. 

2. Cyclotomy and Jacobsthal sums 

We will make use of the following results concerning the cyclotomic numbers 
and Jacobsthal sums of order 7 which we state here for convenience. For 
proofs and references the reader is referred to Whiteman [6]. 

(2.4) C L 1 h ( 4 8 )  = -7, 
(2.5 C L  { h ( 4 8 ) 1 2  = 421) + 7 ,  

(2.6 C L h ( 4 8 ) h ( 4 d + " )  = - 7 ~  + 7 (8 = 1 , 2 , 3 ) ,  

(2.7 +, ( 4 8  ) f / 7  = Cs tindo (dl-3) 

where { = exp (2&/7) and ind,(a) (a f 0 (mod p ) )  denotes the unique 
integer b such that a = gb (mod p) ,  0 5 b 5 p - 2. 

3. Existence of non-trivial solutions-proof of Theorem 2 
By (2.1) the 49 cyclotomic numbers (h, k ) ~  (h, k = 0,  1, 2,3,  4, 5,  6 )  re- 

duce to the 12 cyclotomic numbers 
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Hence by (2.2) we have 

(3.2 #,(4) = 7 ( A  + 2H + 2 J +  2L - f ) ,  

(3.3 #,(4g) = 7{2B + D + 21 + 2L - f l y  
(3.4) #,@$I = 7I2C + G + 21 + 2J - f ] ,  

(3.8) #,(4g') = 7 { E  + 2G+ 2K + 2L - f ] .  

Using (3.3)- (3.8) we obtain 

#,(4g) - #,(4$) - h(4gb) + #,(4g6) 
(3.9) 

= 7 ( B V 2 C +  D + E - 2 F + G V 4 J + U )  
and 

#,(4g) + #,(4$) - &(4ga) - &(%'I + #,(4g6) + #,(4g6) 
(3.10) 

= 7{3B - 3 0  - 3E + 3G - 8H + 4J + 4). 

Now from (2.3) we have (taking k = 1, 2, 3 )  : 

(3.11) B + G + 2 H + 1 + J + K = f Y  

(3.12) C + F + H + I + K + 2 L = f ,  

(3.13) D + E + 1 + 2 J + K + L = f ,  

so that forming (3.11) - 2(3.12) + (3.13) and 3 (3.11) - 3 (3.13) we obtain 

and 

(3.15) 3B - 3 0  - 3E + 36 + 6H - 3J - 3L = 0. 

Using (3.14) and (3.15) in (3.9) and (3.10) we deduce 

and 
#,(4g) + #,(4g2) - &(4g" - *(4g4) + #,(4g6) + #,(4g6) 

(3.17) 
= 49(-2H + J + L ) .  



Equations (3.2)-(3.8), (3.16) and (3.17) ahow that we can define integers 
a, , z s b y  

s = 1 +&@I,  

721 = h ( 4 9 )  - h(4g6) ,  

4 9 s  = h ( 4 9 )  +h(4Q8) - %(4g") - %(4g4) + h(4g6)  + h(4g8) ,  

493% = h ( 4 8 )  - h(4g2)  - h(4g6)  + h(4g6) ,  

with a = 1 (mod 7 ) .  Now from (2.4) and (3.18) we obtain 

h ( 4 )  = -1 + a, 
1% (4g) = - 12 - 2x1 + 42% + 49x6 + 1472s, 

1% (G) = - 12 - 2x1 + 425 + 49x6 - 1 4 7 ~ ,  

(3.19) 1*(4g8) = - 12 - 2x1 + 42x4 - 98x6, 

1%(4g4) = -12 - 2x1 - 42x4 - 98x6, 

1%(4g6) = -12 - 2x1 - 425 + 49x5 - 14726, 

1!2tfq(4g8) = -12 - 2x1 - 422, + 49x6 + 1 4 7 ~ ,  

and substituting these value8 into (2.5) and (2.6), the latter in the form 

C L h ( 4 g k ) ( h ( 4 g k + ' )  - 6(4d+')J = 0, 

h ( 4 8 > b  (4s"') - h (4gk*)} = 0, 

we obtain (1.1), (1.2), (1.3), ahowing that (3.18) gives a mlution of the 
diophantine system. All that remains to be done, is to show that the mlu- 
tion given by (3.18) is a non-trivial solution. Suppose not; then 

a =  -6t, a =  &2u, 3 8  = f 2 u ,  x4 = =!=2u, 5 = 0, Q = 0, 

and (3.19) gives 

h ( 4 )  = -1 -- 6t, 

We define a seventh power character x by 

x (3) = tindn") if x f 0 (mod p),  

= 0 if x = 0 (modp).  
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For any integers m, n we define the Jacobi and Gauas suma by 

(3.22) J (m,  n )  = CzG xm(z )xn  (1 - z ) ,  G ( m )  = Czz x m ( z ) r .  

These sum have the following simple propertie8 (see for example [2]):  

Hence from (3.23) we have 

G(1)G(2)  = G(l)G(Z)G(4)  PJ(1,2) = G(3)G(4) G(3) 

that is 

(3.24) pJ(1, 2 )  = J ( l ,  1 )J (2 ,  2 ) J ( 4 ,  4) .  

From (2.7), (3.20), (3.21), (3.22) we have 
9-1 indo(+(l-z)) J ( 1 , l )  = CzG X ( X ) X ( ~  - z )  = Csa f 

= C:4&(4g')f ' /7 = t f u 4 -  7 ,  

and similarly J(2 ,  2 )  = J(4 ,  4 )  = t f u 4 -  7. Thus from (3.24) and 
p = t2 + 7u2 we obtain 

Clearly 4t8/p, &u/p are not rational integers so that J ( I ,  2 )  is not aninteger 
o f Q ( 4 - 7 ) .  ThisisacontradictionasJ(1,2),beinganelementofQ(~-7) 
and aninteger of QCf)  I> Q ( 4 - 7 ) ,  must beaninteger of Q ( 4 - 7 ) .  

4. Neceuary and sufficient conditions for trivial solutions 
In this section we derive convenient conditions for identifying trivial solu- 

tions of (1.1 b(1.4).  Condition ( E )  of Lemma 2 will be used in the proof of 
Theorem 2. 

LEMMA 1. The only integral solution ( z ,  y )  of the diophantine equation 

(4.1 ) z8 + 9z2y - a$ - y8 = 0 

( 2 , ~ )  = (0,O). 

Proof. Let (z ,  y )  be an integral solution of (4.1). If y = 0 then clearly 
(4.1 ) implies z = 0. If y # 0 we can define a rational number z by 

h m  (4.1 ) we deduce th t  z satisfies z8 - 72 + 7 = 0. This is a contradic- 
tion aa, by Eisentein's criteria, d - 72 + 7 is irreducible over the rationale. 
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LEMMA 2. The solution (21, zz, a, 24, 26, a )  of (1.1)- (1.4) is one of the two 
ttivialsolutiom (-6t, f 2u, f 214, F2u, 0,O), where p = t2 + 7u2 and t E 1 
(mod 7), ij and only ij any one of the joUowing is satisfied: 

(A) a =  a = o ,  
(B) zs = 2, = -24, 

(C) = -6t, 22 + - ~4 = f 6u, 
(Dl z: + 7(22 + z8 - z4I2 = 0 (modp), 
(E) 42% = m{-2x1 + 7x6 - 63a) (modp), 

42s  = m{ -221 - 3526 + 2 1 4  (mod p), 
43a = m{221 - 28x6 - 42%) (mod p ), 

where E = f l  and w is afixed soluth ojw2 = -7 (mod p). 

Proof. Clearly if (21, zz, a, z4, 26, a )  is trivial then (A), (B), (C), (D), 
(E ) are satisfied. 

(A) Ifz6 = a = Othen (1.2)and (1.3)give 

Subtracting (4.3) from (4.2) we obtain 

Using this in (4.2) we obtain after some simplification 

If & + 9 4  z8 - 22%; - z: = 0, by Lemma 1, we must have 22 = z8 = 0, 
and hence 

% = % 8 = a = z i j = a = O ,  

so that (1.1 ) givea 72p = 22:, which is impossible. 
Hence we must have zs 3 28 and so from (4.3) we obtain zs = z8 = -24. 

Then (1.1 ) givea 36p = z: + 63$ implying that s = - 6t, zs = f2u. This 
proves that (21, a, z8, 24, 26, a) is the trivial solution (-a, f 2 u ,  f2u, r 2 u ,  
0,O). 

(B) Next,ifzs = 28 = -athen (1.3) - (1.2)and (1.2)give 

so that 
zs(-32; - 22626 + 9 d )  = ZI(Z; - 182626 - 3 ~ : ) ~  

2 2 which reducea to d + 92: zs - a zs - zs = 0. Hence by Lemma 1 we have 
zs = a = 0 and (A) shows that (21, - , a )  is the trivial solution. 

(C) Nowi fa  = -6t, zz + a - z4 = f 6 u ,  
then (1.1 ) givea 
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that is 

so that 
2 2  = 28 = f 224, 2 4  = f 224, 2 8  = 2 6  = 0, 

and the solution is trivial by (A) or (B). 
(D) If 2: + 7 ( a  + 28  - a) '  0 (modp! 

we define an integer h by 2: + 7 ( a  + z8 - 24) = hp. Now in view of the 
trivial inequality a2 + b2 1 &2ab, for any real numbers a and b, we have 

so that 0 5 h < 36. Now from (1.1) we have that 2: + 32; is even so that 
2: + 32; = 0 (mod 4), giving 

0 = z i + z g +  x i +  d (mod2), 

so that 2: + 7 ( a  + z8 - x4l2 is even and hence 

2: + 7 (22 + 28 - ~ 4 ) ~  = 0 (mod 4). 

Thus we may set h = 4g, with 0 5 g 5 9, and we have, with y = q + 5 - a, 

(4-4 ) 2; + 7y2 = 4gp. 

We now &ow that none of the possibilities g = 0, 1, . .,. , 8 can occur. If 
g = 0 then zl = 0 and (1.1) implies that 72p = 0 (mod 7) which is impossi- 
ble. If g = 1, 4, 7, 8 then (4.4) gives 2: = 0, 2, or 4 (mod 7), which is im- 
possible.aa s = 1 (mod 7). If g = 2 then (4.4) gives n = f (t f 7u). 
Substituting thie value into (1.1 ) we obtain t = 0 (mod 7 ) which is clearly 
impossible. g = 3,5 and 6 are impossible for o t h e d  2: + 7y2 would have 
a prime q, such that ( -7/q) = - 1, dividing it to the first power. Hence 
we must have g = 9 and so 2; + 7 ( a  + 28 - 24)' = 36p, giving 

fay21 = - 6 t , q + 5  - 2 4  = 6u,withp = tS+7u9 
(C) then proves that the solution (21, z2, 28, a, 5 , ~ )  is trivial. 
(E) Finally, if we have 

4229 = m(-2z1 + 726 - 6326) (mod p), 

422, = m ( - 2 ~ 1  - 35x6 + 2126) (modp), 

4224 -= m(2z1 - 28x6 - 42261 (mod p), 



616 KENNETH 6. WILLIAMS 

then 42(xs + q - z4) = -6nux1 (mod p), that is 

a = m ( a  + xa - 34) (modp), 
or 

z:+7(zs+za - z4)*=O (modp), 

and the triviality of the solution (XI, a, X S , X ~ ,  5, a )   follow^ from (D). 

5. Congruence conditicms for non-trivial solutions 

Let r be an integer of exponent 7 (mod p), that is, r' = 1 (mod p), r f 1 
(mod p), so that 

We set 

Appealing to (5.1) we see that R, S, T satisfy 

where all congruences (here and, unless stated otherwise, thereafter) are 
taken modulo p. We prove 

LEMMA 3. If (XI, 22, xa, 24, 5, a )  i8 a n u n - t M  solution of (1.1)-(1.4) 
then it satiqfiea one of the siz triples of c o m a :  
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2942: .= mu( (- 2R + 6 5  + 10T)z1+ (49R + 1475 + 49T)zs 

+ (-147R + 1475 - 147T)~6) ,  

294x4 E mu( (-1OR + 2 5  - 6 T ) ~ l  + (98R + 9 8 5 ) ~ ~  + 294T)p} ,  

where E = f 1 and w is afized solutwn ojwa = -7 (mod p). 

Prooj. Let (xl, a, a, x4, x6, a )  be a non-trivial solution o f  (1.1)-(1.4). 
Now it is easy to verify &g (5.4) and (5.5) that 

( -6R - 105 - 12T) (22: + 343$ + 1029~:)  

+ ( -75  - 21T) (1472: - 4412: + 56x1 a + 98x6 a )  
+ (145 + 21T) (492: - 1472 + 28x1 xs + 28x1 a + 490x6 a )  

= ( (2R - 2 T ) ~ l +  (35R + 425 + 7 0 T ) ~ s  + (-21R - 845 - 4 2 ~ ) a } '  

and 

-7 ( ( -6R - 105 - 12T) ( -424 - 422: - 422:) 

+ ( -75  - 2 1 ~ ) ( - 1 2 2 :  + 122: - 2423 X: + 2423 z4 - 48a a) 

+ (145 + 21T) (-122: + 122: - 4823 x: - 2421 a - 24x8 x4)} 

= ( (425 + 4 2 T ) a  + (-4% - 425 - 4 2 T ) ~ :  + ( - 4 2 ~ ) a } ' ,  

so that as (xl, a, a, s, x', a )  is a solution o f  (1.1)-(1.3) it must satiafy 

where w is a fixed solution o f  wa = -7 (mod p). Replacing r b y  r2 (or r6)  
(resp., r by  r' (or r 4 ) ) ,  which has the etrect o f  sending R + 5, 5 + T ,  T + R 
(resp., R + T ,  5 + R ,  T + S ) ,  in (5.9), we obtain the system 
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where X = f 1, p = f 1, v = f 1. Note there are 8 = 2' choices for (A, p, 

v) .  We can rule out the two possibilities (A ,  p, v )  = E (1 ,1 ,1) ,  where E = f 1, 
since in this case (5.10) gives (using (5.3, (5.4), (5.5)) 

which is impossible by Lemma 2 (E) as ( X I ,  22, xa, a, xs, a )  is a non-trivial 
solution. Taking (X ,p ,  v )  = ~ ( 1 ,  1, -1 )  ( r e s p . , ~ ( l ,  -1, I ) ,  E(-1,  1, 1 ) )  
in (5.10) and solving the congruences for m, xa, xr using (5.3), (5.4) (5.5), 
we obtain (5.6) (rap., (5.7), (5.8)). We note that (5.7) is obtained from 
(5.6) by the mapping R --, T ,  S --, R ,  T --, S ,  equivalently r --, ra, and (5.8) 
is obtained from (5.6) by the mapping R --, S ,  S --, T ,  T --, R ,  equivalently 

2 
T - T .  

6. Number of non-trivial solutions-proof of Theorem 3 
Let (xl, 22, xs, x4, z6, a )  be any non-trivial solution of (1.1)- (1.4). By 

Lemma 3 it must satisfy (5.6), (5.7) or (5.8). By replacing r by r2 or ra if 
neceeeary we may suppose it satisfies (5.6). Further by replacing ( X I ,  x2, x8, 
x4, a, a )  by the solution ( X I ,  -m, - xa, - x4, X S ,  a )  if necessary we may sup- 
pose it satisfies (5.6) with E = + 1. Now let (yl, y2, ya, y4, Y6, ye) be another 
non-trivial solution of (1.1 )- (1.4). By Lemma 6 it must satisfy one of the six 
triples of congruences given by (5.6), (5.7), and (5.8). We will show that 
if (yl, y2, YS,  y4, 96, ~6 satisfies 

(i) (5.6 with E = + 1 then (YI ,  y2, ya, y4, ys, YO = (21, 2 2 ,  X S ,  2 4 ,  2 6 ,  a 1, 
(ii) (5.6) with E = - 1 then 

( Y I , Y ~ , Y S , Y S ,  y6, ys) = (21, -a, m, -a, - 3 , ( ~ 6  - 3a1,  - $ ( s  + a) ) ,  
(iv) (5.7) with E = - 1 then 

(91, y2, y8, y4, y6, Y O )  = ( ~ 1 ,  x4, - 2 2 ,  2 8 ,  -3 (ZS - 3 a  1, -3 ( 2 6  + a ) ), 

(v) (5.8) with E = +1 then 

completing the proof of the theorem. As cases (i)-(vi) are very similar we 
will only give the details for case (i). In this case we have from (5.6), with 
E = +1, 
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2058 (2x191 + 4 2 ( a y z  + X8y8 + $ 4 ~ 4 )  + 343(~6y6 + 3Pye ) )  

= 4116x1 yl - 7 ( (10R - 2 s  + 6T)x i  + (49R + 4 9 s  - 1 4 7 T ) ~ ~  

+ (147R + 1475 + 147T)a )  ( (10R - 2 s  + 6T)y l  

+ (49R + 4 9 s  - 147T)ys + (147R + 147s + 147T)ya) 

- 7 ( (6R + 1 0 s  - 2T)xl  + (147R + 495 + 4 9 T ) a  

+ (147R - 147s - 1 4 7 T ) ~ )  ( (6R + 1 0 s  - 2T)yl 

+ (147R + 4 9 s  + 49T)ys + (147R - 1475 - 147T)yd 

- 7 { (2R - 6 s  - 10T)xl + (98R + 9 8 T ) x ~  + ( 2 9 4 s ) ~ )  

( (2R - 6 s  - 10T)yl + (98R + 98T)ys + (294S)ys) 

+ 705894x6 YK + 2117682~  ya r 0 (mod p ) ,  

appealing to equations (5.3)- (5.5), SO that 

(6.1) A = 2 ~ l y l + 4 2 ( & y z + x 8 y t + ~ 4 y r ) + 3 4 3 ( ~ ~ 2 / a + 3 ~ ~ e / s )  

satisfies 

(6.2 A r O ( m o d p ) ,  say A = Bp. 

Next as X I  = yl = 1 (mod 7 )  we have from (6.1) and (6.2), 

(6.3 B = 2 (mod 7 ) .  

Also taking (1.1 ), (1.2), (1.3) modulo 3 i t  is easy to show that 

xl = -xb (mod 3 )  

(similarly yl = - ys (mod 3 )  ) so that 

(6.4) B = 0 ( m o d 3 ) .  

Again from (1.1 ), (1.2), (1.3) working modulo 8 we find 

x1 = a + xa + x4 (mod 2 ) ,  X K  = 2 2  + 3x8 + 2x4 ( m o d 4 ) ,  

with similar congruences for yl, yb, ye in terms o f  y2, y4, y4, so that 

Equations (6.3), (6.4), (6.5) give B = 72 (mod 84) ,  say B = 840 + 72. 
Finally the inequality 
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gives 
1 A 1 5 72p, 1 B 1 = 1 84C + 72 1 72, 

so that C = 0, or - 1, that is, A = 72p or A = - 12p. We next rule out the 
possibility A = -12p. To do this we consider a number of cases depending 
on the residue of p (mod 49) and on the residues of zs - 5% and ya - 5y4 
(mod 7). In view of the symmetry in the Xi and yi there are 7 X 28 = 196 
cases. We give just one of these. Suppose that p = 43 (mod 49) and 
22 - 5% = 2 (mod 7), y2 - 5y4 = 4 (mod 7). Then, as (a, - - .  , 26) and 
(yl, - , ye) are solutions of (1.1 )- (1.4) we have 

zs + 2 s  + 3 4  = 0 (mod7), ya + 2ya + 3y4 = 0 (mod 7), 

so that 
s = 3x4 + 6 (mod7), ya = 3y4 + 5 (mod7), 

giving 
a y s  + P pa + 2 4  y4 = 3 (mod 7), 

l;s" + 2: + xi = 5 (mod7), y: + y: + y: = 6 (mod7). 

Then from (1.1 ) we deduce 

21 = 36 (mod 49), yl = 1 (mod 49), zl yl = 36 (mod 49), 

so that A = 2 (mod 49). Generally we find that 

A = 9,16,23,44 (mod 49) if p = 1 (mod 49), 

A = 9,23,30,37 (mod 49) if p = 8 (mod 49), 

A = 2,23,37,44 (mod 49) if p = 15 (mod 49), 

A = 2,9,16,37 (mod 49) if p = 22 (mod 49), 

A = 16,30,37,44 (mod 49) if p = 36 (mod 49), 

A r 2,9,30,44 (mod 49) if p = 43 (mod 49), 
so that as 

respectively, we cannot have A = - 12p. 
Thus A = 72p and the identity 
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then gives XI yz - xz yl = . . = xs ye - ZI y6 = 0. Now as 

XI = yl = 1 (mod 7) we have XI # 0, yl # 0, 
so that 

Hence from ( 1.1 ) we have 

so that xi = y:. As XI = yl = 1 (mod 7) we must have XI = yl and so from 
(6.6) we a h  have xi = yi (i = 2, 3, 4, 5, 6), proving that 

(XI, --• , ZI) = (y1, * * -  , ya) 
as required. 

This completes the proof of Theorem 2. 
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