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Let k be an integer > 1 and let I be an integer such that 1 Q 1 f  k, (I, k) = 1. 
An asymptotic formula (valid for large x) is obtained for the product 

generalizing a familiar result of Mertens. 

1. INTRODUCTION 

Let k be an integer 31 and let I be an integer such that 1 < I < k, 
(l, k) = 1. In this paper we obtain an asymptotic formula for 

r-I 
~qc,~-ltrnoiJk~ 

as x + co, where the product is taken over primes p in the specified 
arithmetic progression. Our formula (Section 3, Theorem 1) generalizes 
the familiar result of Mertens, 

II% (1 - 3 = e-Vog x)-l + O((l0g X)-Z), 
\ 

(1.1) 

where c denotes Euler’s constant, and also the recent result of 
Uchiyama [5], 

where 1 = 1, 3 and /I1 = rr, /I3 = &r. 
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2. DIRICHLET SERIES K(s,x) 

For each character x (modulo k) we define a completely multiplicative 
function k,(n) (n = 1,2,...) by setting for primes p 

k,(p) = p 11 - (1 - Y)(l -$-“‘“‘1. 

Now 

(2.1) 

k,(P) = af$ IX(P) 
X(P)(X(P) + 1) *** (X(P) + n - 2) 

(n - I)! 

_ X(P)(X(P) + 1) **. (X(P) + n - 1) 
n. I 1 

= i2 & X(P)MP) + 1) *.* (x(p) +-!” - 2)(n - I)&(p) - 1) 

= I x(p)(x(p) - l) + x(p)(x(p) - 1) 
P 2 

x 2 (X(P) + 1) *** (x(P) + n - 2) 12 - 1 
n=3 pn-‘(n - l)! n ’ 

In the last sum we use the fact that 1 x(k) +j 1 <j + 1 for j = 2,3,... 
and XX(P) - 1)(x(p) + 1)l = I X(P)” - 1 I < 2. Thus 

and so for s = 0 + it we have 

I I k,(p) 
P8 qjA)p’ 

(< 1 for u > 0), 

so that C, tIZ,“g, (MPYP 1 1 8 n converges absolutely for u > 0, as 

(2.2) 
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Hence 

JN1 P -y)-l=jg+gl(yy) 

converges absolutely for u > 0. Thus the Dirichlet series 

IQ, x) = 2 Q$ 
n=1 

converges absolutely for CJ > 0, and K(s, x) = n, (1 - (k&)/pa))-1 for 
u > 0. In particular we have 

K(1, x) = 5 * = k(p) -’ n(1-,-) #O. (2.3) 
?Z=l P 

Moreover from (2.2) we have 

and a standard argument shows that 

k(p) -’ I-I (l-y-1 P<X = m x> + 0 (i). 

The Dirichlet L-series corresponding to x is given by 

(2.4) 

(2.5) 

It is well-known that for x # x0 (the principal character mod k) the 
series in (2.5) converges for u > 0 and that 

L(1, x) = 2 xp = 
?I=1 

n (1 - *)-l # 0 
P 

and (see for example [3, Section 1091) 

rI(l-~)=&+o(&)> as x-+ co. (2.6) 
a@ 
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3. ASYMPTOTIC FORMULA 

We prove 

THEOREM 1. 

p<zrr(k) (1 - j) = (e-c & gc (pJ(z~l’l(x) (log xyX) 

+ O((log x)-l/g(+l), 

where 4(k) is Euler’s totient function, the product on the right-hand side 
is taken over all characters x (module k) diferentfrom the principal character 
x0 (modulo k), and the constant implied by the O-symbol depends only on k. 

Proof. As 

we have 

Now for x # x0 (using (2.1), (2.4), (2.6)) we have 

J-I (1 - m!.)“‘“’ = 
ps;= 

l-J (1 -A$) 17 (1 -+L,-’ 
p<* PG 

= W,x) I L+“(+ )l[m xl + 0 ($1. 

Hence for x # x0, 

J-I (1 -jXCP) = gg + 0 (&-). 
P$Z , 

(3.9 

(3.2) 

Further, from (1.1) we have 

n (l-3*‘” = e-c J& (log N-’ + O((log x)-y. (3.3) 
psx 

The theorem now follows from (3.1), (3.2) and (3.3). 
We remark that the error term in the theorem can be improved if we 

make use of the prime number theorem to improve the error term in (1, I) 
and the prime number theorem for arithmetic progressions to improve 
the error term in (2.6). 
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4. EXAMPLE 

If x is a real character (mod k) then from (2.1) we have 

! 
0, if x(p) = 1 or 0, 

k(P) = 1 
P’ 

if x(p) = -1, 

and so from (2.3) we deduce that 

KU, xl = Jml (1 - -lJ. (4.1) 

All characters (mod k) are real if and only if k is a divisor of 24. Taking 
k = 24 (the other cases can be derived from this) we have 

THEOREM 2. For I = 1, 5, 7, 11, 13, 17, 19,23 we have 

p<r,gl(l) (1 - j) = (w-Y ( p124, (1 - -gy (log x)-1’8 

where 

+ OKlog x)+8), 

rr4 0113 2w, = gc2c3 -, 

c2 
0117 = T' 

8~1~2 
ff19 = c3 , o123 = 8c,c,c, ’ 

Cl = log(l + d?), c2 = log(2 + 1/T), c3 = w5 + 2 6). 

Proof The #(24) - 1 = 7 non-principal characters (mod 24) are 
given by 

Xl@) II = = I ‘_i9 1,7, 13, 19 (24), 
3 n ES 5, 11, 17,23 (24), 

x2(4 = I -+;? n = 1, 5, 13, 17 (24), 
, n = 7, 11, 19,23 (24), 

x3@) = 
I 

n = 1,5,7, 11 (24), 
n = 13, 17, 19,23 (24), 

x4(4 = I II = 1, 11, 13,23 (24) 
n sz 5, 7, 17, 19 (24), 
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x5(4 = I ‘;* 
n = I, 7, 17,23 (24), 

3 n E 5, 11, 13, 19 (24), 

X6(4 = I -y3 n = 1, 5, 19,23 (24), 
, n E 7, 11, 13, 17 (24) 

n = 1, 11, 17, 19 (24), 
n = 5, 7, 13,23 (24), 

and the values of K(1, xi) (1 < i < 7) follow immediately from (4.1). 
From [2, Theorem 2171 we have 

Putting these values in Theorem 1 gives Theorem 2. 

5. APPLICATION 

Rieger [47 has recently proved that if Tis a set of primes such that 

l%P 
c-7 

- 7 log x, as ~-++a, 
sK$L?=r 

where T = ~(7’) > 0, then 

Taking T to be the set of primes =I (modk), so that T = l/$(k), and 
appealing to Theorem 1 we have 
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Professor Paul T, Bateman has indicated to the author that an alternative 
proof of Theorem 3 can be given by using results given in Sections 181 
and 183 of [3]. 
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