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REPRESENTABILITY OF BINARY QUADRATIC FORMS 
OVER A BEZOUT DOMAIN 

PHILIP A. LEONARD AND KENNETH S. WILLIAMS 

1. Introduction. By a form we shall mean a binary quadratic form in in- 
determinate~ X and Y with coefficients in a BBzout domain R ,  that is, an integral 
domain in which every finitely-generated ideal is principal. Such a form lXa  + 
m X Y  + n Y 2  will be called primitive if (1,  m, n) = R.  A will denote a nonsquare 
element of R which is the discriminant of some binary quadratic form in R.  
If the characteristic of R is 2, no such A exists; so we assume throughout that 
char (R) # 2. 

If f (X,  Y) = a x 2  + b X Y  + cY2 is a given form and g(X,  Y) is a form of 
discriminant A, we say that f (X,  Y) is representable by g(X,  Y) if there exist 
elements p, q, r, s  E R with ps - qr # 0 such that f (X,  Y )  = g(pX + qY,  
rX + sY) .  If such elements p, q, r  and s  exist, we call (p ,  q, r, s) a representation 
of f by g. Clearly a necessary condition for the representability of f by g is 

discrim ( f ( X ,  Y ) )  = discrim (g(pX + qY,  rX + s Y ) )  

= (ps - qr)' discrim (g(X,  Y ) )  

where k is a nonzero element of R. From now on we assume that f (X,  Y )  = 
a x 2  + b X Y  + cY2 is a given form of discriminant ~ k ' ,  where k is a fixed nonzero 
element of R ,  and that g(X,  Y )  = 1X2 + m X Y  + n Y 2  denotes an arbitrary 
primitive form of discriminant A. A representation ( p ,  q, r,  s) of f ( X ,  Y )  by 
the form g(X,  Y )  will be called proper if ps - qr = k and improper if ps - qr = 

-k. 
In the classical case R = Z (the domain of rational integers) for discriminants 

given by 
- A  = 3 , 4 , 7 ,  8, 11, 19,43, 67, 163 

one of us [7], extending results of Mordell [4] (see also [5]) and Pall [6] (see 
also [8]),  has determined necessary and sufficient conditions for a positivedefinite 
form of discriminant ~ k '  to be representable by a positivedefinite form of 
discriminant A, as well as the number of such representations. Later the authors 
of this paper extended these results to all field discriminants A, replacing the 
use of unique factorization in the ring of integers of Q(6) by a relationship 
between certain ideals of this ring and representations of f(X, Y) by forms 
of discriminant A. In the present paper we replace the use of these ideals by 
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using the concept of a pair introduced by Kaplansky [3]. We let d denote a 
fixed element of R such that (a, b, c) = (d), and our main result (Theorem 4.2) 
shows that when d I k there is a oneto-one correspondence between equivalence 
classes of proper representations of the form a x a  + bXY + cY2 of discriminant 
~ k '  by a representative set of inequivalent primitive forms gi(X, Y), i E I, of 
discriminant A and classes of associate solutions (as defined in Section 2) of 
d = gi(x, Y), i E I. 

2. Notation and preliminary remarks. Throughout this paper K denotes the 
quotient field of R and L = ~(fi), where 6 is arbitrarily fixed once and 
for all. For any element z = x + y 6 of L we let z' = x - y 6 denote 
its conjugate and N (z) = zz' its norm. Let A be a two-dimensional free R- 
submodule of L. We define the norm of A, written N (A), to be the fractional 
ideal of R generated by the elements N (z), where z E A. For a basis (3, y)  
of A we define the discriminant of A (relative to this basis) to be D (A) = 
(xy' - x'~) '  E K. A change of basis will affect D (A) only by multiplying it 
by the square of a unit in R. A pair [A, a] consists of a two-dimensional free 
R-submodule A of L and a nonzero element a of K, with norm and discriminant 
defined by 

N [A, a] = N (A)/a, D [A, a] = D (A)/aZ. 

A pair [A, a] is called primitive if its norm is R. Two pairs [A, a] and [B, @] 
are said to be equivalent if there exists a nonzero element z E L with B = zA, 
/3 = a N (2). One easily checks that primitivity, norms and discriminants 
(the last up to the square of units in R) are well-defined on equivalence classes 
of pairs. 

We shall be concerned with pairs [A, a] of discriminant A and binary quadratic 
forms of the same discriminant. An admissible basis for such a pair [A, a] is 
a basis (x, y)  of A such that xy' - x'y = a fi. (Such a basis always exists 
[3; 551.) Any two admissible bases are related by a strictly unimodular trans- 
formation. Relative to a given admissible basis (x, y)  the pair [A, a] gives rise 
to the binary quadratic form (xX + yY)(x'X + y'Y)/a E K[X, Y] of dis- 
criminant A. If 1X2 + mXY + nY2 is of discriminant A, we note that the pair 
[(l, (m - 6 ) / 2 ) ,  11 gives rise to this form in the above manner. Kaplansky [3] 
has proved the following result [3; Theorem 1 and remarks a t  beginning of $61. 

THEOREM 2.1. The above procedure gives a one-to-one correspondence between 
all equivalence classes of primitive pairs with discriminant A and all proper equiv- 
alence classes of primitive binary quadratic f o m  with discriminant A. 

If [A, a] and [B, @] are pairs, we define their product by [A, a] [B, /3] = [AB, aP], 
where AB is the product R-submodule of L (It is two-dimensional free as R is 
a BBzout domain.). Of fundamental importance is the fact that primitive pairs 
with discriminant A form a group under this operation. Moreover, the notion 



REPRESENTABILITY OF BINARY QUADBATIC FORMS 535 

of product is also well-defined on equivalence classes of pairs, and this induces 
a group structure on the primitive classes of discriminant A. 

It will be important to relate pairs with representations of f by primitive 
forms of discriminant A and also with representations of d by primitive forms 
of discriminant A. The first is done in Lemma 3.1 and the second is achieved 
by adapting portions of [I; Chapter 21 to our more general situation. It is 
convenient to introduce P, the unique order in L having discriminant A, and 
to call two solutions (zl , y,), (2, , y,) E R X R of d = lza + mzt + nya associate 
if u is a unit in P where u is given by 

With these definitions we have the following analog of [I; p. 143, Theorem 51. 

THEOREM 2.2. There is a one-to-one correspondence between classes of asso- 
ciate solutions of d = g(z, y) = lza + m y  + nya and pairs [M, dl E C-' with 
M G P, where C denotes the class of pairs equivalent to the pair 

3. The main lemma. In this section we consider proper representations of 
f(X, Y) = a x a  + bXY + cYa by a fixed form g(X, Y) = lXa + mXY + nY2 
of discriminant A. Two such representations, (p, q, r, s) and (p', q', r', s',), are 
said to be equivalent if there is a proper automorph a of g such that 

Equivalence classes of proper representations of f by g are related to pairs by 
the following result. 

LEMMA 3.1. There is a one-to-one correspondence between equivalence classes of 
proper representations of f by g and pairs [A, a] of discriminant A satisfying 

(i) (a, h) G A where h = (b - k 6 ) / 2  and 
(ii) [A, a] gives rise (relative to some admissible basis) to the form g(X, Y). 

Proof. (a) If (p, q, r, s) is a proper representation of f by g, let A = (a, , al), 
where al = lp + (r/2)(m + 6 )  and a, = nr + (p/2)(m - 6). Then 
ala: - = a 6 so that the pair [A, a] has discriminant A and {a1 , ~ a )  

as an admissible basis. It is easy to verify that, relative to {al , US) ,  the pair 
[A, a] gives rise to g(X, Y) = lXa + mXY + nYa. Since a = pal + raa and 
h = qa, + 8Ua , the pair [A, a] has all the indicated properties. 

(b) On the other hand, suppose that [A, a] is a pair of the kind described in 
the statement of the lemma, giving rise to g(X, Y) relative to the admissible 
basis {al , as}. From (i) we have a, h E A and so, as {al , US} is a basis for A, 
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there exist unique elements p, q, r and s of R such that a = pa, + ran and 
h = qal + sal . We note that ps - qr # 0, since otherwise rh = as, which is 
impossible as k # 0. Using these representations for a and h, together with 
the equations ala{ = la, alai + a{al = ma and a2ai = nu, we obtain a = 
(l/a)(pal + ra2)(pa: + rai) = lp2 + mpr + nr2, b = h + h' = (l/a)((pal + 
raa)(qa: + sail + (pa: + ra:)(qal + saz)) = 21pq + m(ps + qr) + 2nrs, and 
c = hhf/a = (l/a)(qal + sa2)(qa: + sa:) = lq2 + mqs + ns2. Therefore 
ax1 + bXY + nY2 = l(pX + q n 2  + m(pX + qY)(rX + sY) + n(rX + sY)'. 
Furthermore, (ps - qr)al = sa - rh and (ps - qr)a, = -qa + ph, and so 

(p8 - q r ) " f i  = (ps - qr)2(ff1ff:: - a!ff2) 

= (sa - rh)(- qa + ph') - (sa - rh')(- qa + ph) 

that is, ps - qr = k. Thus the admissible basis (al , a,} for the pair [A, a] leads 
to a proper representation (p, q, r, s) of f by g. 

(c) The representation (p, q, r, s) determined in (b) clearly depends on the 
choice of basis {al , a,] ; on the other hand, its equivalence class does not. For 
let (81 , 8 2 )  be a different admissible basis for [A, a], relative to which this pair 
also gives rise to the form g, and let (pfJ q', r', s') be the proper representation 
of f by g derived from this basis as in (b). Then, on the one hand, = torl + 
V a l  and Ba = ual + waz for t, u, v and w in R, with tw - uv = 1, so that 

that is, t) is a proper automorph of g. On the other hand, 

and since {al , ora] is a basis, (p, q, r, s) and (p', q', r', s') are equivalent. 
(d) Using (b) and (c) we define a function + from pairs [A, a] of the prescribed 

type to classes of proper representations of f by g, and we note that + is surjective 
by (a). The function r$ is also injective, for suppose [A1 , a] and [A, , a] are 



pairs of the stated kind, giving rise via bases (a1 , a,} and (Dl , Ba} respectively, 
to proper representations (p, q, r, s) and (p', q', r', s') in the same class, say 

where G) is a proper automorph of g. This means 

Thus @, 8,) = (al a3 (: :) and the two bases, being related by a strictly 

unimodular transformation, must belong to the same module, and so [Al, a] = 
[A2 , a]. This completes the proof. 

4. Main result. In order to arrive at the principal result of this paper, we 
relate the one-to-one correspondences discussed in Sections 2 and 3 by means 
of the group structure enjoyed by the primitive pairs of discriminant A. This 
is done by means of the equation [A, a][M, dl = [(a, h)P, ad]. Unfortunately, 
we require an extra hypothesis to ensure that the pair on the right-hand side 
of this equation is of the right kind. 

LEMMA 4.1. The pair [(a, h) P, ad] is primitive. Its discriminant is A if 
and only if d I k. 

Proof. We use [3; p. 527, Theorem 21, some of the computations contained 
in its proof, and the relationship between norms and discriminants expressed 
by [I; p. 125, Equation (6.3)] which also holds in the more general situation 
considered here. The module (a, h) P has norm (ad), and thus the pair 
[(a, h) P, ad] is indeed primitive. 

Let Q be the order correspon$ng to the module (a, h) so that QP is the order 
corresponding to the module (a, h) P. Let A, denote the discriminant of QP 
so that D ((a, h) P )  =  ad)^, which equals (up to the square of a unit in R) 
 a ad)' if and only if A, = A, that is, if and only if QP = P [3; p. 527, Theorem 
2(a)l. 

Thus the pair [(a, h) P, ad] has discriminant A if and only if QP = P, that is, 
if and only if Q C P (as P is an order). By the computations in [3], 
Q = (1, h/d) and P = (1, (m - 6 ) / 2 ) .  Clearly, then, Q G P if and only if 
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h/d = r + s(m - 6 ) / 2  for some r, s E R. This is equivalent to the conditions 
b/2d = r + m / 2  and k/2d = s/2, and we conclude that Q C P implies d I k. 

On the other hand, suppose d I k so that k/d = s for s in R. Since masa - 
41nsa =  AS^ = - 4-(a/d)(c/d), we have = masa (mod 4) and 
therefore b/d = ms (mod 2) [2; p. 234, Lemma 2.121. Thus there is an element 
r in R such that b/2d = r + sm/2, and since k/2d = s/2 we have Q G P as 
required. 

Let e = {Ci I i E I) denote the collection of equivalence classes of primitive 
pairs of discriminant A. By a representative set of primitive forms of dis- 
criminant A we mean a collection of forms gi(X, Y), one for each i in I, such 
that the equivalence class of g,(X, Y) corresponds (in the sense of Section 2) 
to the pair-class Ci . It is convenient, under the assumption d I k, to let Co 
denote the class of the primitive pair [(a, h) P, ad] and use the group structure 
on (3 to define, for each i in I, a class C,(i, by the equation CoC,,i, = Ci . 
Note that r is just a permutation of the index set I. The principal result of 
the paper can now be established. 

THEOREM 4.2. Let {gi(X, Y) ( i E I) be a representative set of primitive fomzs 
of discriminant A, and let f = f (X, Y) = a x a  + bXY + cYa be given a fonn of 
discriminant ~ k ~ ,  with d I k. For each i in I there is a oneto-one correspondence 
between classes of proper representations of f by gi(X, Y) and classes of associate 
solutions of d = g, ci ,  (z, y). 

Proof. Let i in I be given. For each equivalence class of proper representa- 
tions of f by gi there is exactly one pair [A, a], in the class C4 , with properties 
as given in Lemma 3.1. As the primitive pairs of discriminant A form a group, 
such a pair [A, a] gives rise to a pair [M, dl, defined by 

(4.1) [A, a:I[M, dl = [(a, h) P, ad], 
belonging in the class C;:,, and thus (by Theorem 2.2) to a class of associate 
solutions of d = g,,;,(z, y). This provides the indicated one-to-one corre- 
spondence as Theorem 2.2 and Lemma 3.1 concern one-to-one correspondences, 
and (4.1) shows that pairs [A, a] and [M, 4 of the required types are also in 
one-to-one correspondence. 

5. Final remarks. We remark that when A is such that P (the unique order 
with discriminant A) is maximal, then this ensures that d ( k. This occurs in 
the classical case R = 2, K = Q and L = ~ ( 6 )  if discrim L = A. Moreover, 
in this case every form of discriminant A is primitive and the number of classes 
of inequivalent forms of discriminant A is h i t e  so that our main result Theorem 
4.2 becomes in this case the following theorem. 

THEOREM 5.1. The number of classes of proper representations of the form 
a x a  + bXY + cya of discriminant ~k~ by a representative set of inequivalent fonns 
of disoriminant A ia equal to the number of classes of representations of d by a 
representative set of inequivalent forms of discriminant A. 
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