NOTE ON EXTENSIONS OF THE RATIONALS BY SQUARE ROOTS

FENNETH S. WILLIAMS
Carleton University, Ottawa, Canada

Let Q denote the field of rational numbers. In a recent note Roth [4] proved the following theorem.

Thaoram. Let $p_{1}, \ldots, p_{\#}$ be $n(\geqslant 1)$ distinct positive primes and let s be isquarefree integer >1 with $p_{i} \neq s(i=1, \ldots, n)$. Then $\sqrt{ } \boldsymbol{\varepsilon}$ 年 $Q\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right)$.

Using this theorem we prove
Thearem 1. Let s_{1}, \ldots, a_{n} be $n(>1)$ distinct squarefree integers >1. Then $1, \sqrt{ } s_{1}, \ldots, \sqrt{ } s_{m}$ are linearly independent over Q.
. Theoremp 2. Let β_{1}, \ldots, s_{n} be $n(\geqslant 1)$ squarefree integers >1 and let p_{1}, \ldots, p_{m} be the $m(\geqslant 1)$ distinct primes dividing f_{1}... n_{n} oo that for $j=l_{n}, \ldots, n$ we have

$$
s_{1}=p_{1}^{a_{1}} \ldots p_{m}^{a_{m 1}}
$$

where each $a_{i j}(i==1, \ldots, n ; j=1, \ldots, n)$ is 1 or 0 according as p_{i} divides 8_{j} or not. Regarding the $a_{i j}$ as elements of $G F(2)$. we set

$$
r\left(a_{4}, \ldots, s_{n}\right)=\operatorname{rank}_{\mathrm{a}}{ }^{(m)}\left(a_{d j}\right)
$$

Then

$$
\left[Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n}\right): Q\right]=2^{\eta\left(s_{1}, \ldots, s_{n}\right)}
$$

Proof of Theorem 1. Let m be the number of distinct primes dividing $s_{1} \ldots s_{n}$. If $m=1$, then clearly $n=1$, and s_{1} is prime. In this case it is well-known that $1, \sqrt{ } \varepsilon_{1}$ are linearly independent over Q. Thus the theorem is true when $m=1$ and we proceed by induction on m, assuming $m \geqslant 2$.

Let p be any prime dividing $s_{1} \ldots s_{n}$. By relabelling s_{1}, \ldots, s_{n} if necessary we can assume without loss of generality that p^{-} divides the first r of the s_{j} (where $1 \leqslant r \leqslant n$) and does not divide the remaining s_{j}. For $j=1, \ldots, r$ we set $s_{j}=p t_{j}$. Now let

$$
\begin{equation*}
\lambda_{0}+\lambda_{1} \sqrt{ } s_{1}+\ldots+\lambda_{n} \sqrt{ } s_{n}=0 \tag{4}
\end{equation*}
$$

where $\lambda_{0}, \ldots, \lambda_{n} \in Q$. In order to prove that $1, \sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n}$ are linearly independent over Q it suffices to show that (4) implies $\lambda_{0}=\lambda_{1}=\ldots=\lambda_{n}=0$. Using the notation above we can rewrite (4) as

$$
\begin{equation*}
\sqrt{p}\left(\lambda_{1} \sqrt{ } t_{1}+\ldots+\lambda_{r} \sqrt{ } t_{r}\right)=-\lambda_{0}-\lambda_{r+1} \sqrt{ } s_{r+1} \tag{5}
\end{equation*}
$$ $-\cdots-\lambda_{n} \sqrt{ } s_{n}$.

If $\lambda_{1} \sqrt{ } t_{1}+\ldots+\lambda_{r} \sqrt{ } t_{r} \neq 0$, then (5) implies $\sqrt{p} \in Q\left(\sqrt{ } p_{1} ; \ldots\right.$, $\checkmark p_{k-1}$), where p_{1}, \ldots, p_{k-1} are the $k-1(\geqslant 1)$ primes $\neq p$ which divide $s_{1} \ldots s_{n}$. This is impossible by Roth's theorem and so we must have

$$
\begin{equation*}
\lambda_{1} \sqrt{ } t_{1}+\ldots+\lambda_{r} \sqrt{ } t_{r}=0, \tag{6}
\end{equation*}
$$

and so from (5) we deduce

$$
\lambda_{0}+\lambda_{r+1} \sqrt{ } s_{r+1}+\ldots+\lambda_{n} \sqrt{ } s_{n}=0
$$

Now at most $k-1$ primes (namely those in the set $\left.\left\{p_{1}, \ldots, p_{k-1}\right\}\right)$
divide $t_{1} \ldots t_{r}$ and t_{1}, \ldots, t_{r} are distinct square free integers and so $\sqrt{ } t_{1}, \ldots, \sqrt{ } t_{r}$ are linearly independent over Q. Hence from (6) we have $\lambda_{1}=\ldots=\lambda_{r}=0$. Similarly at most $k-1$ primes divide $s_{r+1} \ldots s_{n}$; and (7) shows that $\lambda_{0}=\lambda_{r+1}=\ldots=\lambda_{n}=0$. This completes the proof of the theorem.

Proof of Theorem 2. We begin by showing that $\sqrt{ } s_{n} \in \boldsymbol{Q}$ $\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n-1}\right)$, where $n \geqslant 2$, if and only if $r\left(s_{1}, \ldots, s_{n-1}\right)=r$ $\left(s_{1}, \ldots, s_{n}\right)$. Let t_{1}, \ldots, t_{h} be the distinct maximal squarefree divisors of the products $s_{i_{1}} \ldots s_{i_{k}}^{\prime \prime}$, where $1 \leqslant i_{1}<\ldots<i_{k} \leqslant$ $n-1$ and $k=1, \ldots, n-1$. Then $Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{s_{n-1}}\right)$ considered as a vectorspace over Q has $\left\{1, \sqrt{ } t_{1}, \ldots, \sqrt{t_{n}}\right\}$ as a basis. Thus $\sqrt{ } s_{n} \in Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n-1}\right)$ if and only if $\sqrt{ } s_{n}$ is a linear combination of $1, \sqrt{ } t_{1}, \ldots, \sqrt{ } t_{h}$ with coefficients in Q. Hence $1, \sqrt{ } t_{1}, \ldots, \sqrt{ } t_{n}, \sqrt{ } s_{n}$ are linearly dependent over Q and since the t_{i} are distinct, by theorem 1 we must have $s_{n}=t_{j}$ for some j. Thus we have $t^{2} s_{n}=s_{i_{1}} \ldots s_{i_{k}}$ for some $t \neq 0$ and integers k, i_{1}, \ldots, i_{k} with $1 \leqslant k \leqslant r-1$ and $1 \leqslant i_{1}<i_{k} \leqslant n-1$ Now for $l=1, \ldots, n-1$ we define

$$
x_{l}=\left\{\begin{array}{l}
1, \text { if } l=i_{r} \text { for some } r \text { with } 1 \leqslant r \leqslant k \\
0, \text { otherwise }
\end{array}\right.
$$

and the condition $t^{2} s_{n}=s_{i_{1}} \ldots s_{i_{k}}$ becomes $t^{2} s_{n}=s_{1}{ }^{x_{1}} \ldots s_{n-1}{ }^{x_{n-1}}$ that is

$$
t^{2}=p_{1} a_{11} x_{1}+\ldots+a_{1 n-1} x_{n-1}-a_{1 n} \ldots p_{m} a_{m 1} x_{1}+\ldots+a_{m n-1} x_{n-1}-a r_{m n}
$$ which is soluble for x_{1}, \ldots, x_{n-1} and t if and if only $r\left(s_{1}, \ldots, s_{n-1}\right)$ $=r\left(s_{1}, \ldots, s_{n}\right)$.

We can now prove the theorem by induction. If $n=1$ the result is clearly true as

$$
r\left(s_{1}\right)=\operatorname{rank}_{G F(2)}\left[\begin{array}{c}
1 \\
1 \\
\dot{1}
\end{array}\right]=1,\left[Q\left(\sqrt{s_{1}}\right): Q\right]=2 .
$$

For $n \geqslant 2$ we assume that

$$
\left[Q\left(\sqrt{s_{1}}, \ldots, \sqrt{ } s_{n-1}\right): Q\right]=2^{r\left(s_{1}, \ldots, s_{n-1}\right)}
$$

Then we have

$$
\left.\left.\begin{array}{l}
{\left[Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n}\right): Q\right]=\left[Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n}\right): Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n-1}\right)\right]} \\
{\left[Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n-1}\right): Q\right]}
\end{array}\right] \begin{array}{l}
2.2 r\left(s_{1}, \ldots, s_{n-1}\right), \text { if } \sqrt{ } s_{n} \notin Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n-1}\right), \\
2 r\left(s_{1}, \ldots, s_{n-1}\right), \text { if } \sqrt{ } s_{n} \in Q\left(\sqrt{ } s_{1}, \ldots, \sqrt{ } s_{n-1}\right),
\end{array}\right\} \begin{aligned}
& 2^{r\left(s_{1}, \ldots, s_{n-1}\right)+1, \text { if } r\left(s_{1}, \ldots . s_{n-1}\right) \neq r\left(s_{1}, \ldots, s_{n}\right),} \begin{array}{l}
2 r\left(s_{1}, \ldots, s_{n-1}, \text { if } r\left(s_{1}, \ldots, s_{n-1}\right)=r(s,) \ldots, s_{n}\right),
\end{array} \\
& \quad=2^{r\left(s_{1}, \ldots, s_{n}\right),}
\end{aligned}
$$

as $r\left(s_{1}, \ldots, s_{n}\right)=r\left(s_{1}, \ldots, s_{n-1}\right)+1$ when $r\left(s_{1}, \ldots, s_{n-1}\right)$

$$
\neq\left(s_{1}, \ldots, s_{n}\right) .
$$

The theorem now follows by induction.

We remark that the results of this note are well known (see. for example [2]). More general results have been given by A. S. Besicovich [1] and L.J. Mordell [3].

Acknowledgement

I would like to thank Dr. J. D. Dixon for his simplifications of my original proofs of theorems 1 and 2, and also Dr. R. Fischler and Mr. J. W. Lawrence for helpful discussions in connection with the preparation of this note.

15

REFERENCES

1. A. S. Besicovich, $O n$ the linear independence of fractional powers of integers, Jour. Lond. Math. Soc. 15 (1940), 3-6.
2. L. Gaal. Classical Galois Theory, Markham Publishing Co., 1971.
3. L. J. Mordell. On the linear independence of fractional powers of integers, Pacific J. Math. 3 (1953), 625.
4. R. L. Roth, On extensions of Q by square-roots, Amer'. Math. Monthly 78 (1971), 392-- 393.
