NOTE ON EXTENSIONS OF THE RATIONALS BY SQUARE ROOTS

KENNETH S. WILLIAMS

Carlston University, Ottawa, Canada

Let Q denote the field of rational numbers. In a recent note Roth [4] proved the following theorem.

Theorem. Let $p_1, ..., p_n$ be $n(\ge 1)$ distinct positive primes and let s be a squarefree integer >1 with $p_i \neq s$ (i = 1, ..., n). Then $\sqrt{s} \in Q$ ($\sqrt{p_1}, ..., \sqrt{p_n}$).

Using this theorem we prove

Theorem 1. Let s_1, \ldots, s_n be $n(\geq 1)$ distinct squarefree integers > 1. Then 1, $\sqrt{s_1, \ldots, \sqrt{s_n}}$ are linearly independent over Q.

Theorem 2. Let s_1, \ldots, s_n be $n \ (\ge 1)$ squarefree integers > 1 and let p_1, \ldots, p_m be the $m \ \ge 1$ distinct primes dividing s_1, \ldots, s_n so that for $j = 1, \ldots, n$ we have

$$a_{1j} \qquad a_{mj}$$

where each a_{ij} (i = 1, ..., m; j = 1, ..., n) is 1 or 0 according as p_i divides s_j or not. Regarding the a_{ij} as elements of GF(2)we set

$$r(e_1, \ldots, e_n) = \operatorname{rank}_{\operatorname{GF}(n)}(a_{ij})$$

e general production **H**all there

Then

$$[Q(\sqrt{s_1}, ..., \sqrt{s_n}) : Q] = 2^{r(s_1, ..., s_n)} .$$

Proof of Theorem 1. Let m be the number of distinct primes dividing $s_1 \ldots s_n$. If m = 1, then clearly n = 1, and s_1 is prime. In this case it is well-known that $1, \sqrt{s_1}$ are linearly independent over Q. Thus the theorem is true when m = 1 and we proceed by induction on m, assuming $m \ge 2$.

Let p be any prime dividing $s_1 ldots s_n$. By relabelling $s_1, ldots, s_n$ if necessary we can assume without loss of generality that p^- divides the first r of the s_j (where $1 \le r \le n$) and does not divide the remaining s_j . For $j = 1, \dots, r$ we set $s_j = pt_j$. Now let

(4)
$$\lambda_0 + \lambda_1 \sqrt{s_1} + \ldots + \lambda_n \sqrt{s_n} = 0,$$

where $\lambda_0, ..., \lambda_n \in Q$. In order to prove that $1, \sqrt{s_1}, ..., \sqrt{s_n}$ are linearly independent over Q it suffices to show that (4) implies $\lambda_0 = \lambda_1 = ... = \lambda_n = 0$. Using the notation above we can rewrite (4) as

(5)
$$\sqrt{p}(\lambda_1\sqrt{t_1} + \ldots + \lambda_r\sqrt{t_r}) = -\lambda_0 - \lambda_{r+1}\sqrt{s_{r+1}} - \ldots - \lambda_n\sqrt{s_n}$$

If $\lambda_1 \sqrt{t_1 + \ldots + \lambda_r \sqrt{t_r}} \neq 0$, then (5) implies $\sqrt{p} \in Q(\sqrt{p_1}, \ldots, \sqrt{p_{k-1}})$, where p_1, \ldots, p_{k-1} are the k - 1 (≥ 1) primes $\neq p$ which divide $s_1 \ldots s_n$. This is impossible by Roth's theorem and so we must have

(6)
$$\lambda_1 \sqrt{t_1} + \ldots + \lambda_r \sqrt{t_r} = 0,$$

and so from (5) we deduce

$$\lambda_0 + \lambda_{r+1} \sqrt{s_{r+1}} + \ldots + \lambda_n \sqrt{s_n} = 0.$$

Now at most k - 1 primes (namely those in the set $\{p_1, ..., p_{k-1}\}$)

divide $t_1 ldots t_r$ and $t_1, ldots, t_r$ are distinct square free integers and so $\sqrt{t_1}, ldots, \sqrt{t_r}$ are linearly independent over Q. Hence from (6) we have $\lambda_1 = \dots = \lambda_r = 0$. Similarly at most k - 1 primes divide $s_{r+1} \dots s_n$; and (7) shows that $\lambda_0 = \lambda_{r+1} = \dots = \lambda_n = 0$. This completes the proof of the theorem.

Proof of Theorem 2. We begin by showing that $\sqrt{s_n} \in Q$ $(\sqrt{s_1}, ..., \sqrt{s_{n-1}})$, where $n \ge 2$, if and only if $r(s_1, ..., s_{n-1}) = r$ (s_1, \ldots, s_n) . Let t_1, \ldots, t_h be the distinct maximal squarefree divisors of the products $s_{i_1} \dots s_{i_k}$, where $1 \leq i_1 < \dots < i_k \leq$ n-1 and k = 1, ..., n-1. Then $Q(\sqrt{s_1}, ..., \sqrt{s_{n-1}})$ considered as a vectorspace over Q has $\{1, \sqrt{t_1}, \dots, \sqrt{t_h}\}$ as a Thus $\sqrt{s_n} \in Q(\sqrt{s_1}, ..., \sqrt{s_{n-1}})$ if and only if $\sqrt{s_n}$ is a basis. linear combination of $1, \sqrt{t_1}, \dots, \sqrt{t_h}$ with coefficients in Q. Hence $1, \sqrt{t_1}, \ldots, \sqrt{t_h}, \sqrt{s_n}$ are linearly dependent over Q and since the t_i are distinct, by theorem 1 we must have $s_n = t_j$ for some j. Thus we have $t^2 s_n = s_{i_1} \dots s_{i_k}$ for some $t \neq 0$ and integers k, $i_1, ..., i_k$ with $1 \leq k \leq r-1$ and $1 \leq i_1 < i_k \leq n-1$ Now for l = 1, ..., n - 1 we define

 $x_{l} = \begin{cases} 1, \text{ if } l = i_{r} \text{ for some } r \text{ with } 1 \leq r \leq k, \\ 0, \text{ otherwise,} \end{cases}$

and the condition $t^2s_n = s_{i_1} \dots s_{i_k}$ becomes $t^2 s_n = s_1 x_1 \dots s_{n-1} x_{n-1}$ that is

 $t^{2} = p_{1}^{a_{11}x_{1}} + \dots + a_{1n-1}x_{n-1} - a_{1n} \dots p_{m}^{a_{m1}x_{1}} + \dots + a_{mn-1}x_{n-1} - ar_{mn},$ which is soluble for x_{1}, \dots, x_{n-1} and t if and if only $r(s_{1}, \dots, s_{n-1}) = r(s_{1}, \dots, s_{n}).$

We can now prove the theorem by induction. If n = 1 the result is clearly true as

$$\mathbf{r}(s_1) = \operatorname{rank}_{\mathbf{GF}(2)} \begin{bmatrix} 1\\1\\ \vdots\\1 \end{bmatrix} = 1, [Q(\checkmark s_1) : Q] = 2.$$

For $n \ge 2$ we assume that

$$[Q(\sqrt{s_1}, ..., \sqrt{s_{n-1}}) : Q] = 2^{r(s_1}, ..., s_{n-1})$$

Then we have

$$\begin{bmatrix} Q(\sqrt{s_1}, ..., \sqrt{s_n}) : Q \end{bmatrix} = \begin{bmatrix} Q(\sqrt{s_1}, ..., \sqrt{s_n}) : Q(\sqrt{s_1}, ..., \sqrt{s_{n-1}}) \end{bmatrix} \\ \begin{bmatrix} Q(\sqrt{s_1}, ..., \sqrt{s_{n-1}}) : Q \end{bmatrix}$$

$$= \begin{cases} 2 \cdot 2^{r(s_1, \dots, s_{n-1})}, & \text{if } \sqrt{s_n} \notin Q(\sqrt{s_1}, \dots, \sqrt{s_{n-1}}), \\ 2^{r(s_1, \dots, s_{n-1})}, & \text{if } \sqrt{s_n} \in Q(\sqrt{s_1}, \dots, \sqrt{s_{n-1}}), \end{cases}$$

$$=\begin{cases} 2^{r(s_1, \ldots, s_{n-1})+1}, \text{ if } r(s_1, \ldots, s_{n-1}) \neq r(s_1, \ldots, s_n), \\ 2^{r(s_1, \ldots, s_{n-1})}, \text{ if } r(s_1, \ldots, s_{n-1}) = r(s_1), \ldots, s_n), \\ \rightarrow 2^{r(s_1, \ldots, s_n)} \end{cases}$$

as $r(s_1, ..., s_n) = r(s_1, ..., s_{n-1}) + 1$ when $r(s_1, ..., s_{n-1})$ $\neq (s_1, ..., s_n).$

The theorem now follows by induction.

We remark that the results of this note are well known (see for example [2]). More general results have been given by A. S. Besicovich [1] and L.J. Mordell [3].

· (---

Acknowledgement

I would like to thank Dr. J. D. Dixon for his simplifications of my original proofs of theorems 1 and 2, and also Dr. R. Fischler and Mr. J. W. Lawrence for helpful discussions in connection with the preparation of this note.

REFERENCES

- A. S. Besicovich, On the linear independence of fractional powers of integers, Jour. Lond. Math. Soc. 15 (1940), 3-6.
- 2. L. Gaal. Classical Galois Theory, Markham Publishing Co., 1971.
- 3. L. J. Mordell. On the linear independence of fractional powers of integers, Pacific J. Math. 3 (1953), 625.
- 4. R. L. Roth, On extensions of Q by square-roots, Amer'. Math. Monthly 78 (1971), 392--393.