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NOTE ON IlJCTENSIONS OF THE 
RATIONALS BY SQUARE ROOTS 

Oarkron Vwiuer8i#y, Ottawa, Canads 

Let Q denote the field of rational numbers. In a recent 
pote b t h  141 p v t d  the followkg *eosem. 

Thd9rUIQ. &ct a, .,.,pI be n(> 1) dirtinct posith primta 
let e be ,& eg)rarefree inttgcr > 1 with p& (i a 1, ..,ro). 

Then 4 8  $. Q (+fPl,..*,+fPn). 

Using thicr tbcwm y~ prove 

~ G o t s r n  1. Let 81,....,4, be a()l) diitiact squarefree 
Lrtegers > 1. Then 1, q84,,..,,d8a are linearly independent 
over Q. 

. Thearm 2. Let #A , . . ., 8, bc W 2 1 )4~- i n t w  
> 1 and ,..., Pn be the m( 3 1)  distinct primes dividing 
a .,,em eothat6rg' - 1, ,,,, n w ~ b a w  

where each au (i =: 1, ..., ni ; j =i 1, ..., a) ,) 1 or 0 acawding 
as Pr divides 8j or not. Regarding the aij as elements of GF(2) 
we act 



Then 

Proof of Theorem 1. Let m be the number of distinct 
primes dividing s, ... 8,. I f  rn = 1 ,  then clearly n = 1 ,  and 
s1 is prime. In this case it is well-known that 1 ,  {el are linearly 
independent over Q. Thus the theorem is true when m = 1 
and we proceed by induction on m, assuming m 2 2 .  

Let p be any prime dividing sl ... s,. By relabelling 4, ..., 8, 
if necessary we can assume without loss of generality that p- 
divides the first r of the s j  (where 1 < r < n )  and does not 
divide the remaining 8j. For j = 1 ,  ..., r we set 8, = pt,. Now 
let 

(4)  A, + A1d81 + -.-'+ And& = 0,  
where A,, ..., A, E Q. In order to prove that 1 ,  d s l ,  ..., 4 8 ,  

are linearly independent over Q i t  suffices to show that (4) 
implies A. = Al = . . . = A,  = 0. Using the notation above we 
can rewrite (4) as 

(5)  { ~ ( A l d t l  + ... + Ardtr) = - A0 -- A r + l d ~ r + i  
- ... - An{8,. 

If Aldtl + ...+ Ar{tr # 0 ,  then (5)  implies { p  E Q(dp1, ..., 
{pk-I),  where ply ..., pk-] are the k - 1 ( > 1 ) primes # p 
which divide 8, . . . s,. This is impossible by Roth's theorem 
and so we must have L 

and so From (5)  we deduce 

Now at most k - 1 primes (namely those in the set {pl, ..., I ] ~ - ~ ) )  



divide t1 .. .t, and tl, ..., t,  are distinct square free integers and 
so 4t1 ,  ..., d t ,  are linearly independent over Q. Hence from (6) 
we have Al = ... = A,  = 0. Similarly at most k - 1 primes 
divide s,+, ... s,; and (7)  shows that A, = A,+l =...= A,  = 0. 
This completes the proof of the theorem. 

Proof of Theorem 2. We begin by showing that ds,  E Q 
(4s1,  ..., 4~ , -~) ,  where n >, 2, if and only if r(sl, ..., Sn-,) =r 
(a1 ,..., 8,). Let t,, ..., th be the distinct maximal squarefree 
divisors of the products stl . . . st ,", where 1 6 il < . . . < ik 6 

k 

n -1 and k = 1, ..., n - 1. Then Q(4s1, ..., ds,-l) considered 
as a vectorspace over Q has (1, dtl ,  ..., 4th) as a 
basis. Thus d8, E & ( 4 S 1 ,  ..., 4s,-,) if and only if d s ,  is a 
linear combination of 1, dt,, . .., 4th with coefficients in Q. Hence 
I, 4t1,  . .., fth, 4 8 ,  are linearly dependent over Q and since the 
ti are distinct, by throrem 1 we must have s, = t,  for some j. 
Thus we have tas, = stl ... 8, for some t # 0 and integers 

k 

k,il,  ...,ikwithl G k g r - l a n d 1  <il < i k < n -  1 Now 
for 1 = 1,  ..., n - 1 we define 

1, if 1 = i, for some r with 1 6 r 6 k, 

0, otherwise, 

and the condition taa, = sgl . . . sgk becomes ta 8, =el .8n-1 *,-I 
that is 

ta = pl all*l ++"'+ ("lfl-lXn- .. .p,'".rnl*l + : - + amn-lXn -1 -arm,, 

which is soluble for X I ,  ..., 2,-1 and t if and if pnly r(sl, ..., s, -,) 
=r (81, ..., 8,). 

We can now prove the theorem by induction. If n = 1 the 
result is clearly true as 



, For n 2 2 we assume that 

[Q(4sl, . .., (8, : Q] = 2 f ( 8 1 ~  * e m r  8n-1). . 

Then we have 

1 _ 
e 2+(81...., an), 

. . 
. .  . 

as r(sl, ..., 8,) = r (81, ..., s , - ~ )  + 1 when r(al, ..., a,,,) -rt , 

# (81, . . . a  8"). 

The theorem now follows by induction. 
. - 

i 

We remark that the results of this note are well known (see 
for example [2]). More general results have been given by A. S. 
Besicovich [l] and L. J. Mordell[3]. , . 
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