ON THE NUMBER OF DISTINGUISHED REPRESENTATIONS OF A GROUP ELEMENT

DAVID JACOBSON AND KENNETH S. WILLIAMS

1. Introduction. Let Δ denote a property which an element of a group may possess. We are interested in the number of representations of an element in a finite group as a product of r elements possessing Δ.

More generally, let D be a nonempty subset of a finite group G and denote by $N_{r}^{D}(a)=N_{r}(a)$ the number of solutions of the equation

$$
\begin{equation*}
x_{1} \cdots x_{r}=a \tag{1}
\end{equation*}
$$

where a is an element of G and x_{1}, \cdots, x_{r} belong to D. Of course, if a is not in the subgroup generated by D, then $N_{r}(a)=0$ for all r.

In Proposition 1 we note that the evaluation of $N_{r}^{D}(a)$ reduces to the corresponding question for a certain quotient group of G.

If D itself is a subgroup of G, then trivially $N_{r}(a)=|D|^{r-1}$ for a in D.
For arbitrary D the calculation of $N_{r}^{D}(a)$ seems quite difficult. One of our main results is the explicit determination in Theorem 2 of $N_{r}^{D}(a)$ when $G \backslash D$, the complement of D in G, is a subgroup of G.

As an application of Theorem 2 we obtain in Corollary 5 the number of representations of a given element in an abelian group G as a product of r elements of maximal order in G. In particular, for G cyclic this number agrees with a formula derived by Rearick [3] and is essentially equivalent to an earlier formula of Dixon [1].
In $\S 4$ analogous questions for rings are considered.
2. Main results. For D a nonempty subset of G let $J(D)=J$ denote the largest normal subgroup of G such that $x J \subseteq D$ for all x in D. We say that G is D-reduced if $J=\{1\}$. If $a \varepsilon G$, let \bar{a} denote $a J$ in $\bar{G}=G / J$.

Proposition 1. If $\bar{D}=\{\bar{x} \mid x \in D\}$, then \bar{G} is \bar{D}-reduced and

$$
\begin{equation*}
N_{r}^{D}(a)=|J|^{r-1} N_{r}^{D}(\bar{a}) . \tag{2}
\end{equation*}
$$

Proof. If $\bar{K}=K / J$ is the largest normal subgroup of \bar{G} such that $\bar{x} \bar{K} \subseteq \bar{D}$ for all \bar{x} in \bar{D}, then clearly $x K \subseteq D$ for all x in D. However, K is a normal subgroup of G and thus $K=J$, which establishes that \bar{G} is \bar{D}-reduced.

To prove (2) we require the following lemma.
Lemma. Let G be a finite group and J a normal subgroup of G. If $x_{1}, \cdots, x_{\text {r }}$ belong to G, then the number of r-tuples (y_{1}, \cdots, y_{r}) satisfying $x_{1} \cdots x_{r}=y_{1} \cdots y_{r}$ and $y_{i} \varepsilon x_{i} J$ for $i=1, \cdots, r$ is equal to $|J|^{r-1}$.

Received March 13, 1972.

Proof. The result is trivial for $r=1$. Suppose $r>1$ and let b_{1}, \cdots, b_{r-1} be arbitrary elements of J. It suffices to show that $b_{1} x_{2} \cdots b_{r-1} x_{r}$ is equal to $x_{2} \cdots x_{r} b$ where b e J. However, this follows easily from the normality of J, which proves the lemma.

Returning to the proof of Proposition 1 we let S denote the set of solutions (x_{1}, \cdots, x_{r}) of (1) and introduce an equivalence relation on S by defining $\left(x_{1}, \cdots, x_{r}\right) \sim\left(y_{1}, \cdots, y_{r}\right)$ if $y_{1} \varepsilon x_{i} J$ for $i=1, \cdots, r$. With each equivalence class $C\left(x_{1}, \cdots, x_{r}\right)$ of S we associate the r-tuple ($\bar{x}_{1}, \cdots, \bar{x}_{r}$), where $\bar{x}_{1} \cdots \bar{x}_{r}=$ \bar{a} in \bar{G}. Clearly this defines a mapping ψ from the set of equivalence classes of S into \bar{S}, the set of solutions of the equation $\bar{x}_{1} \cdots \bar{x}_{r}=\bar{a}$, where $\bar{x}_{1}, \cdots, \bar{x}_{r}$ belong to \bar{D}.

The mapping ψ is a bijection. It is one-to-one for if $\left(\bar{x}_{1}, \cdots, \bar{x}_{r}\right)=\left(\bar{y}_{1}, \cdots, \bar{y}_{r}\right)$, that is, if $\bar{y}_{i}=\bar{x}_{i}$ for $i=1, \cdots, r$, then $\left(x_{1}, \cdots, x_{r}\right) \sim\left(y_{1}, \cdots, y_{r}\right)$ and $C\left(x_{1}, \cdots, x_{r}\right)=C\left(y_{1}, \cdots, y_{r}\right)$. To show that ψ is onto let $\bar{x}_{1} \cdots \bar{x}_{r}=\bar{a}$, where $\bar{x}_{1}, \cdots, \bar{x}_{\mathrm{r}}$ belong to \bar{D}. This implies that $x_{1} \cdots x_{\mathrm{r}} b=a$, where $x_{1}, \cdots, x_{\mathrm{r}}$ belong to D and $b \in J$. Thus (x_{1}, \cdots, x, b) is a solution of (1) and ψ maps $C\left(x_{1}, \cdots, x_{r} b\right)$ onto ($\bar{x}_{1}, \cdots, \bar{x}_{r}$) in \bar{S}.

Hence the number of equivalence classes of S is equal to $N_{r}^{D}(\bar{a})$. However, by the lemma each equivalence class consists of $|J|^{r^{-1}}$ elements and therefore $N_{r}^{D}(a)=|J|^{r-1} N_{r}^{D}(\bar{a})$, which completes the proof of Proposition 1.

We remark that if $G \backslash D$ is a normal subgroup of G, then $J=G \backslash D$ and thus \bar{D} consists of all elements of \bar{G} except the identity. This case is included in the following more general theorem.

Theorem 2. Let G be a finite group of order g and D a nonempty subset of G containing d elements. If $H=G \backslash D$ is a subgroup of G, then

$$
\begin{equation*}
N_{r}(a)=\frac{d^{r}}{g}\left(1+\frac{(-1)^{r} \gamma(a)}{([G: H]-1)^{r}}\right) \tag{3}
\end{equation*}
$$

where $[G: H]$ is the index of H in G and $\gamma(a)=-1$ or $[G: H]-1$ according as $a \varepsilon D$ or $a \neq D$.

Proof. Note that we do not assume that H is normal in G. We begin by remarking that

$$
\begin{equation*}
\sum_{b=G} N_{r}(b)=d^{r} \tag{4}
\end{equation*}
$$

since the left side merely represents the number of ways of forming all r-tuples (x_{1}, \cdots, x_{r}) with each x_{i} in D.

Next we observe that

$$
\begin{equation*}
N_{r+1}(a)=\sum_{b-\frac{1}{2} \geq D} N_{r}(b) \tag{5}
\end{equation*}
$$

since all the solutions of the equation

$$
x_{1} \cdots x_{r} x_{r+1}=a
$$

with each x_{i} in D, correspond to the solutions of the simultaneous equations

$$
x_{1} \cdots x_{r}=b, \quad x_{r+1}=b^{-1} a
$$

in which $x_{1}, \cdots, x_{\mathrm{r}}$ and $b^{-1} a$ belong to D.
As H is the complement of D we obtain from (4) and (5) that

$$
\begin{equation*}
N_{r+1}(a)=d^{r}-\sum_{b-\lambda_{a} \in H} N_{r}(b) . \tag{6}
\end{equation*}
$$

However, $b^{-1} a_{\varepsilon} H$ if and only if $b_{\varepsilon} a H$. Moreover, if $b_{\varepsilon} a H$, then $N_{r}(a)=N_{r}(b)$. For suppose $b=a c$ with c in H. If $a \varepsilon D$, then $b \varepsilon D$ and $N_{1}(a)=1=N_{1}(b)$. If $a \ddagger D$, then a and b both belong to H so that $N_{1}(a)=0=N_{1}(b)$. Now if $r>1$ and if $x_{1} \cdots x_{r-1} x_{r}=a$, where each $x_{i} \& D$, then $x_{1} \cdots x_{r-1}\left(x_{r} c\right)=b$ and $x_{r} c$ e D, which establishes that $N_{r}(a)=N_{r}(b)$. Hence from (6) we obtain

$$
\begin{equation*}
N_{r+1}(a)=d^{r}-h N_{r}(a) \tag{7}
\end{equation*}
$$

where h denotes the order of H. Applying the recurrence relation (7) successively gives

$$
\begin{equation*}
N_{r}(a)=d^{r-1}-h d^{r-2}+\cdots+(-1)^{r-2} h^{r-2} d+(-1)^{r-1} h^{r-1} N_{1}(a) . \tag{8}
\end{equation*}
$$

Now the right side of (8) is the sum of a geometric progression with common ratio $-h / d$ which has r or $r-1$ terms according as $a \varepsilon D$ or $a \notin D$. Hence we obtain (3) since $[G: H]-1=(g / h)-1=d / h$.

We note that (3) vanishes if and only if $[G: H]=2$ and r is even or odd according as $a \in D$ or $a \notin D$.

We also require the following extension of Formula (3).
Let m_{1}, \cdots, m_{r} be given integers and denote by $\mathfrak{T}_{r}^{D}(a)$ the number of solutions (x_{1}, \cdots, x_{r}) of the equation

$$
\begin{equation*}
x_{1}^{m_{1}} \cdots x_{r}^{m_{r}}=a \tag{9}
\end{equation*}
$$

where $a \varepsilon G$ and x_{1}, \cdots, x_{r} belong to D, a nonempty subset of G.
Consider the following properties which an integer m may possess.
(α) For $x \& D$ the mapping $x \rightarrow x^{m}$ is a bijection of D or
(β) $x^{\prime \prime} \varepsilon G \backslash D$ for all x in D.
Coroluary 3. Suppose that D is a nonempty subset of a finite group G and that $H=G \backslash D$ is a subgroup of G. Let $G^{*}=G \cdot G_{0}$ be the direct product of G and any group G_{0} and let $D^{*}=D \cdot G_{0}$. For $a^{*} \varepsilon G^{*}$ let $a^{*}=a a_{0}$ with $a \varepsilon G$ and $a_{0} \& G_{0}$. If m_{1}, \cdots, m_{r} are integers such that for some i the m_{i}-th power map is a bijection of G_{0}, then

$$
\begin{equation*}
\mathfrak{N r}_{r}^{D^{*}}\left(a^{*}\right)=\left[G^{*}: G\right]^{r^{-1}} \Re_{r}^{D}(a) . \tag{10}
\end{equation*}
$$

Further if m_{1}, \cdots, m_{r} satisfy either (α) or (β) and at least one satisfies (α), then

$$
\begin{equation*}
\Re_{r}^{D}(a)=\frac{d^{r}}{g}\left(1+\frac{\gamma(a) \rho\left(m_{1}\right) \cdots \rho\left(m_{r}\right)}{([G: H]-1)^{r}}\right) \tag{11}
\end{equation*}
$$

where $\gamma(a)=-1$ or $[G: H]-1$ according as $a \varepsilon D$ or $a \notin D$ and where $\rho\left(m_{i}\right)=-1$ or $[G: H]-1$ according as m_{i} satisfies (α) or (β).

Proof. If $z_{1}^{m_{1}} \cdots z_{r}^{m r}=a^{*}$ for z_{1}, \cdots, z_{r} in D^{*}, then $x_{1}^{m_{1}} \cdots x_{r}^{m r}=a$ and $b_{1}^{m_{1}} \cdots b_{r}^{m_{r}}=a_{0}$, where x_{1}, \cdots, x_{r} belong to D and b_{1}, \cdots, b_{r} belong to G_{0}. Since some m_{i} induces a bijection on G_{0}, the number of r-tuples (b_{1}, \cdots, b_{r}) of G_{0} for which $b_{1}^{m_{1}} \cdots b_{r}^{m_{r}}=a_{0}$ is $\left|G_{0}\right|^{r^{-1}}$ and as $D^{*}=D \cdot G_{0}$ we obtain (10).

Now let $k \geq 1$ be the number of m_{i} which satisfy (α). Then for any solution (x_{1}, \cdots, x_{r}) of (9) the terms of $x_{1}^{\boldsymbol{m}_{1}} \cdots x_{r}^{m_{r}}$ can be appropriately grouped to give a product $y_{1} \cdots y_{k}=a$, where y_{1}, \cdots, y_{k} belong to D. However, to each such product there correspond d^{r-k} distinct solutions of (9) and hence by (3)

$$
\mathfrak{N}_{r}^{D}(a)=d^{r-k} N_{k}^{D}(a)=\frac{d^{r}}{g}\left(1+\frac{(-1)^{k} \gamma(a)}{([G: H]-1)^{k}}\right)
$$

which by the definition of $\rho\left(m_{i}\right)$ is Formula (11).
If $m_{1}=\cdots=m_{r}=1$, then (10) holds and (11) reduces to (3).
Suppose that G is a direct product of groups G_{1}, \cdots, G_{n} and let $D=D_{1} \cdots D_{n}$, where D_{i} is a nonempty subset of G_{i} for $i=1, \cdots, n$. For $a \varepsilon G$ let $a=a_{1} \cdots a_{n}$ with a_{i} in G_{i}. If m_{1}, \cdots, m_{r} are integers, then a standard argument shows that

$$
\begin{equation*}
\mathfrak{N}_{r}^{D}(a)=\prod_{i=1}^{n} \mathfrak{N}_{r}^{D_{i}}\left(a_{i}\right) \tag{12}
\end{equation*}
$$

Also suppose that $H_{i}=G_{i} \backslash D_{i}$ is a subgroup of G_{i} for $i=1, \cdots, n$. If m_{1}, \cdots, m_{r} satisfy either (α) or (β) and at least one satisfies (α) with respect to each group G_{i} and subset D_{i}, then (11) and (12) yield

$$
\begin{equation*}
\mathfrak{N}_{r}^{D}(a)=\frac{d^{r}}{g} \prod_{i=1}^{n}\left(1+\frac{\gamma\left(a_{i}\right) \rho\left(m_{1}\right) \cdots \rho\left(m_{r}\right)}{\left(\left[G_{i}: H_{i}\right]-1\right)^{r}}\right) \tag{13}
\end{equation*}
$$

3. Applications.

(a) Let Δ be the property that an element of a group is non-central. Since the central elements of a group form a subgroup, the formula for $N_{r}(a)$ in Theorem 2 applies when G is a finite non-abelian group, D is the set of noncentral elements of G, and H is the center of G.
(b) Let Δ be the property that an element of a group is a generator. (Recall that an element x of a group G is a generator if there exists a subset T of G such that $\langle T, x\rangle=G$ but $\langle T\rangle \neq G$.) Since the set H of non-generators is the Frattini subgroup of G, the formula for $N_{r}(a)$ is given by (3).
(c) Let Δ be the property that an element of a finite group has maximal order and let D be the set of elements of maximal order in a group G. If G is a direct product of groups G_{1}, \cdots, G_{n} whose orders are pairwise relatively prime, then $D=D_{1} \cdots D_{n}$, where D_{i} is the set of elements of maximal order in G_{i}. Thus by (12) in order to evaluate $N_{r}^{D}(a)$ for a nilpotent group G we may assume G is a p-group.

Let $\mathfrak{I r}$ denote the class of p-groups G for which H, the elements not of maximal order, form a subgroup of G. Clearly \mathfrak{N} contains the class of abelian p-groups and indeed the class of regular p-groups [2; 185, Theorem 12.4.3].

We note that if G e \mathfrak{N}, then H is a fully invariant subgroup of G and G / H is of exponent p.

If m is an integer relatively prime to p, then m satisfies (α) since the mapping $x \rightarrow x^{m}$ is an order preserving bijection of any p-group. On the other hand, if $p \mid m$, then m satisfies (β). Thus if $G \varepsilon \mathfrak{T c}$ and m_{1}, \cdots, m_{r} are integers whose greatest common divisor is prime with p, then $\Re_{r}^{D}(a)$ is given by (11).

It is now easy to determine $\mathfrak{r}_{r}^{D}(a)$ for any integers m_{1}, \cdots, m_{r} if G is a p-abelian p-group, that is, $(a b)^{p}=a^{p} b^{p}$ for all elements a, b in $G[4]$. For suppose p^{*} is the highest power of p dividing m_{1}, \cdots, m_{r} and let $m_{i} / p^{d}=m_{i}^{\prime}$ for $i=$ $1, \cdots, r$. If $x_{1}^{m_{1}} \cdots x_{r}^{m+}=a$, then $\left(x_{1}^{m_{1}^{\prime}} \cdots x_{r^{m_{r}^{\prime}}}\right)^{p^{\prime}}=a$ since G is p-abelian. For b in G let $\mathfrak{x}_{r}^{\prime D}(b)$ denote the number of solutions of $x_{1}^{m_{1}^{\prime}} \cdots x_{r^{m^{\prime}}}=b$, where x_{1}, \cdots, x_{r} belong to D. Then clearly

$$
\begin{equation*}
\mathfrak{K}_{r}^{D}(a)=\sum_{b^{p}=a} \mathfrak{K}_{r}^{D}(b) . \tag{14}
\end{equation*}
$$

Now let f denote the endomorphism of G defined by $f(c)=c^{p 0}$ for c in G. We may assume that a e $\operatorname{Im} f$ for otherwise $\mathscr{T}_{r}^{D}(a)=0$. If $a=b_{0}^{p^{*}}$ for b_{0} in G, then $f(b)=a$ if and only if $b \in b_{0}(\operatorname{Ker} f)$. If $p^{*} \geq \operatorname{exponent} G$, then $\mathfrak{t}_{r}^{D}(a)=d^{r}$. Suppose that $p^{0}<$ exponent G. Then Ker $f \subseteq G \backslash D=H$ and since G is p-abelian, H is a subgroup of G. However, ($\left.m_{1}^{\prime}, \cdots, m_{r}^{\prime}, p\right)=1$ and hence (11) shows that $\mathscr{\varkappa}_{r}^{\prime D}(b)$ depends only on whether b e D or b e H. Therefore, $\mathfrak{T}_{r}^{\prime D}(b)=$ $\mathfrak{Y}_{r}^{D}\left(b_{0}\right)$ for all b in $b_{0}(\operatorname{Ker} f)$ and from (14) we obtain

$$
\begin{equation*}
\Re_{r}^{D}(a)=|\operatorname{Ker} f| \mathfrak{N}_{r}^{\prime D}\left(b_{0}\right) \quad \text { where } a=b_{0}^{p_{0}^{2}} . \tag{15}
\end{equation*}
$$

Proposition 4. Let G be the direct product of p-groups G_{1} and G_{2}.
(i) If exponent $G_{1}=$ exponent G_{2}, then $G \varepsilon \mathfrak{T r}$ if and only if $G_{i} \varepsilon \mathfrak{F r}$ for $i=1,2$.
(ii) If exponent $G_{1}>$ exponent G_{2}, then $G \varepsilon \mathfrak{T}$ if and only if $G_{1} \varepsilon \mathfrak{T}$.

Proof. Let D_{i} be the set of elements of maximal order in G_{i} and let $H_{i}=$ $G_{i} \backslash D_{i}$ for $i=1,2$. Let D and H denote the corresponding sets for G.

If exponent $G_{1}=$ exponent G_{2}, then $H=H_{1} \cdot H_{2}$ and thus H is a subgroup of G if and only if H_{i} is a subgroup of G_{i} for $i=1,2$, which proves (i).

If exponent $G_{1}>$ exponent G_{2}, then $D=D_{1} \cdot G_{2}$ and $H=H_{1} \cdot G_{2}$, which by the above argument proves (ii).

It is of interest to calculate $\mathfrak{r}_{r}^{D}(a)$ for an abelian p-group.
Corollary 5. Let G be an abelian group of order p^{n} and let D denote the set of elements of maximal order in G. If the exponent of G appears exactly k times in the set of invariants of G and if m_{1}, \cdots, m_{r} are integers such that (m_{1}, \cdots, $\left.m_{r}, p\right)=1$, then

$$
\begin{equation*}
\mathfrak{N}_{r}^{D}(a)=\frac{\left(p^{n}-p^{n-k}\right)^{r}}{p^{n}}\left(1+\frac{\gamma(a) \rho\left(m_{1}\right) \cdots \rho\left(m_{r}\right)}{\left(p^{k}-1\right)^{r}}\right) \tag{16}
\end{equation*}
$$

where $\gamma(a)=-1$ or $p^{k}-1$ according as $a \& D$ or $a \notin D$ and where $\rho\left(m_{i}\right)=-1$ or $p^{k}-1$ according $a s\left(p, m_{i}\right)=1$ or $p \mid m_{1}$.

Proof. Since the index of the subgroup of elements not of maximal order in a cyclic p-group is p, (16) follows from Proposition 4 and Formulas (10) and (11) of Corollary 3.

Setting $k=1$ in (16) yields $\mathfrak{K}_{r}^{D}(a)$ for a cyclic group of order p^{*}.
In view of (15) the reader may provide the slight modification needed in Corollary 5 to express $\mathfrak{N}_{r}^{D}(a)$ for arbitrary integers m_{1}, \cdots, m_{r}.

We remark that if G is a p-group not in \mathfrak{M} but G_{0}, the subgroup generated by D, belongs to \mathfrak{M}, then the previous formulas for $N_{r}^{D}(a)$ apply when $a \varepsilon G_{0}$. If $a \notin G_{0}$, then $N_{r}^{D}(a)=0$ for all r. The dihedral group of order $2 \cdot 2^{n+1}$ is such an example.

However, an open question is the evaluation of $N_{r}^{D}(a)$ for a p-group G which is generated by D but G is not in \mathfrak{N}.
4. Analogue for rings. If R is a finite ring and D a nonempty subset of R, then the number of solutions of the equation

$$
x_{1}+\cdots+x_{r}=a \text { for } a \varepsilon R \text { and } x_{1}, \cdots, x_{r} \text { in } D
$$

is what has been denoted by $N_{r}^{D}(a)$ with respect to $(R,+)$, the additive group of R.

Note that the analogue of Proposition 1 for a ring R is valid, where $J=J(D)$ is taken to be the largest ideal of R such that $x+J \subseteq D$ for all x in D.

In case $U=D$ denotes the set of units in a ring R with identity, then $J(U)$ becomes the usual Jacobson radical of R. Thus by (2) the evaluation of $N_{r}^{U}(a)$ is reduced to the case where R is semisimple. Then (12) shows that it suffices to determine $N_{r}^{U}(a)$ for F_{n}, the ring of $n \times n$ matrices over a finite field F.

One may verify that U generates F_{n}, that is, every matrix is a sum of invertible matrices. Moreover, $N_{r}^{U}(a)$ depends only on the rank of the matrix a. At present we are not able to compute $N_{r}^{U}(a)$ for F_{n}, where $n>1$, even when $a=0$.

If F is a field, then $U=F \backslash\{0\}$ and $N_{r}^{U}(a)$ is given by (3) of Theorem 2. Thus if C denotes the class of rings R for which R / J is a direct product of fields, then $N_{r}^{U}(a)$ can be explicitly determined for any R in C. Note local rings, and hence commutative rings, belong to C.

For positive integral r, n and integral a Rearick determined the number of solutions of the linear congruence

$$
x_{1}+\cdots+x_{r} \equiv a(\bmod n)
$$

where $0 \leq x_{i}<n$ and $\left(x_{i}, n\right)=1$ for $i=1, \cdots, n$. This number is just $N_{r}^{U}(a)$ with respect to the ring $Z /(n)$. (In this context an equivalent formula for $N_{r}^{U}(a)$ was given by Dixon [1].) Since U coincides with the set of elements of
maximal order in the cyclic group $(Z /(n),+$), we can apply Corollary 5 to obtain the following more general result.

Let m_{1}, \cdots, m_{r} be integers such that (m_{1}, \cdots, m_{r}) $=1$ and denote by $\mathscr{I}_{r}(a)$ the number of solutions of the congruence

$$
m_{1} x_{1}+\cdots+m_{r} x_{r}=a(\bmod n)
$$

where $0 \leq x_{i}<n$ and $\left(x_{i}, n\right)=1$ for $i=1, \cdots, r$. If m is an integer and p is a prime, define $\gamma_{p}(m)=-1$ or $p-1$ according as $(p, m)=1$ or $p \mid m$. Then

$$
\Re_{r}(a)=\frac{\phi^{r}(n)}{n} \prod_{p \mid n}\left(1+\frac{\gamma_{p}(a) \gamma_{p}\left(m_{1}\right) \cdots \gamma_{p}\left(m_{r}\right)}{(p-1)^{r}}\right),
$$

which reduces to Rearick's result when $m_{1}=\cdots=m_{r}=1$.

References

1. J. D. Drxon, A finite analogue of the Goldbach problem, Canad. Math. Bull., vol. 3(1960), pp. 121-126.
2. Marshall Hall, Ji., The Theory of Groups, New York, 1959.
3. David Rearicx, a linear congruence with side conditions, Amer. Math. Monthly, vol. 70(1963), pp. 837-840.
4. Padl M. Weichsel, On p-abelian groups, Proc. Amer. Math. Soc., vol. 18(1967), pp. 736-737.

Jacobson: Defartiment of Mathematics, Rutgers University, New Brunswice, New Jrishy 08903

Williams: Drpartment of Mathematics, Carleton University, Ottawa, Ontario, Canada

