ON THE NUMBER OF DISTINGUISHED REPRESENTATIONS OF A GROUP ELEMENT

DAVID JACOBSON AND KENNETH S. WILLIAMS

1. Introduction. Let Δ denote a property which an element of a group may possess. We are interested in the number of representations of an element in a finite group as a product of r elements possessing Δ .

More generally, let D be a nonempty subset of a finite group G and denote by $N_r^D(a) = N_r(a)$ the number of solutions of the equation

(1)
$$x_1 \cdots x_r = a$$

where a is an element of G and x_1, \dots, x_r belong to D. Of course, if a is not in the subgroup generated by D, then $N_r(a) = 0$ for all r.

In Proposition 1 we note that the evaluation of $N_r^p(a)$ reduces to the corresponding question for a certain quotient group of G.

If D itself is a subgroup of G, then trivially $N_r(a) = |D|^{r-1}$ for a in D.

For arbitrary D the calculation of $N_r^p(a)$ seems quite difficult. One of our main results is the explicit determination in Theorem 2 of $N_r^p(a)$ when $G \ D$, the complement of D in G, is a subgroup of G.

As an application of Theorem 2 we obtain in Corollary 5 the number of representations of a given element in an abelian group G as a product of r elements of maximal order in G. In particular, for G cyclic this number agrees with a formula derived by Rearick [3] and is essentially equivalent to an earlier formula of Dixon [1].

In §4 analogous questions for rings are considered.

2. Main results. For D a nonempty subset of G let J(D) = J denote the largest normal subgroup of G such that $xJ \subseteq D$ for all x in D. We say that G is D-reduced if $J = \{1\}$. If $a \in G$, let \bar{a} denote aJ in $\bar{G} = G/J$.

PROPOSITION 1. If
$$\overline{D} = \{\overline{x} \mid x \in D\}$$
, then \overline{G} is \overline{D} -reduced and
(2) $N_r^D(a) = |J|^{r-1} N_r^D(\overline{a}).$

Proof. If $\tilde{K} = K/J$ is the largest normal subgroup of \tilde{G} such that $\bar{x}\tilde{K} \subseteq \bar{D}$ for all \bar{x} in \bar{D} , then clearly $xK \subseteq D$ for all x in D. However, K is a normal subgroup of G and thus K = J, which establishes that \bar{G} is \bar{D} -reduced.

To prove (2) we require the following lemma.

LEMMA. Let G be a finite group and J a normal subgroup of G. If x_1, \dots, x_r belong to G, then the number of r-tuples (y_1, \dots, y_r) satisfying $x_1 \dots x_r = y_1 \dots y_r$ and $y_i \in x_i J$ for $i = 1, \dots, r$ is equal to $|J|^{r-1}$.

Received March 13, 1972.

Proof. The result is trivial for r = 1. Suppose r > 1 and let b_1, \dots, b_{r-1} be arbitrary elements of J. It suffices to show that $b_1x_2 \cdots b_{r-1}x_r$, is equal to $x_2 \cdots x_r b$ where $b \in J$. However, this follows easily from the normality of J, which proves the lemma.

Returning to the proof of Proposition 1 we let S denote the set of solutions (x_1, \dots, x_r) of (1) and introduce an equivalence relation on S by defining $(x_1, \dots, x_r) \sim (y_1, \dots, y_r)$ if $y_i \in x_i J$ for $i = 1, \dots, r$. With each equivalence class $C(x_1, \dots, x_r)$ of S we associate the *r*-tuple $(\bar{x}_1, \dots, \bar{x}_r)$, where $\bar{x}_1 \dots \bar{x}_r = \bar{a}$ in \tilde{G} . Clearly this defines a mapping ψ from the set of equivalence classes of S into \bar{S} , the set of solutions of the equation $\bar{x}_1 \dots \bar{x}_r = \bar{a}$, where $\bar{x}_1, \dots, \bar{x}_r$ belong to \bar{D} .

The mapping ψ is a bijection. It is one-to-one for if $(\bar{x}_1, \dots, \bar{x}_r) = (\bar{y}_1, \dots, \bar{y}_r)$, that is, if $\bar{y}_i = \bar{x}_i$ for $i = 1, \dots, r$, then $(x_1, \dots, x_r) \sim (y_1, \dots, y_r)$ and $C(x_1, \dots, x_r) = C(y_1, \dots, y_r)$. To show that ψ is onto let $\bar{x}_1 \dots \bar{x}_r = \bar{a}$, where $\bar{x}_1, \dots, \bar{x}_r$ belong to \bar{D} . This implies that $x_1 \dots x_r b = a$, where x_1, \dots, x_r belong to D and $b \in J$. Thus $(x_1, \dots, x_r b)$ is a solution of (1) and ψ maps $C(x_1, \dots, x_r b)$ onto $(\bar{x}_1, \dots, \bar{x}_r)$ in \bar{S} .

Hence the number of equivalence classes of S is equal to $N_r^{D}(\bar{a})$. However, by the lemma each equivalence class consists of $|J|^{r-1}$ elements and therefore $N_r^{D}(a) = |J|^{r-1} N_r^{D}(\bar{a})$, which completes the proof of Proposition 1.

We remark that if $G \ D$ is a normal subgroup of G, then $J = G \ D$ and thus \overline{D} consists of all elements of \overline{G} except the identity. This case is included in the following more general theorem.

THEOREM 2. Let G be a finite group of order g and D a nonempty subset of G containing d elements. If $H = G \setminus D$ is a subgroup of G, then

(3)
$$N_r(a) = \frac{d^r}{g} \left(1 + \frac{(-1)^r \gamma(a)}{([G:H] - 1)^r} \right)$$

where [G:H] is the index of H in G and $\gamma(a) = -1$ or [G:H] - 1 according as $a \in D$ or $a \notin D$.

Proof. Note that we do not assume that H is normal in G. We begin by remarking that

(4)
$$\sum_{b \in \mathcal{G}} N_r(b) = d^r$$

since the left side merely represents the number of ways of forming all *r*-tuples (x_1, \dots, x_r) with each x_i in D.

Next we observe that

(5)
$$N_{r+1}(a) = \sum_{b^{-1}a \in D} N_r(b)$$

since all the solutions of the equation

$$x_1 \cdots x_r x_{r+1} = a,$$

with each x_i in D, correspond to the solutions of the simultaneous equations

$$x_1 \cdots x_r = b, \qquad x_{r+1} = b^{-1}a$$

in which x_1 , \cdots , x_r and $b^{-1}a$ belong to D.

As H is the complement of D we obtain from (4) and (5) that

(6)
$$N_{r+1}(a) = d^r - \sum_{b^{-1}a \in H} N_r(b).$$

However, $b^{-1}a \in H$ if and only if $b \in aH$. Moreover, if $b \in aH$, then $N_r(a) = N_r(b)$. For suppose b = ac with c in H. If $a \in D$, then $b \in D$ and $N_1(a) = 1 = N_1(b)$. If $a \notin D$, then a and b both belong to H so that $N_1(a) = 0 = N_1(b)$. Now if r > 1 and if $x_1 \cdots x_{r-1}x_r = a$, where each $x_i \in D$, then $x_1 \cdots x_{r-1}(x_rc) = b$ and $x_rc \in D$, which establishes that $N_r(a) = N_r(b)$. Hence from (6) we obtain

(7)
$$N_{r+1}(a) = d^r - hN_r(a)$$

where h denotes the order of H. Applying the recurrence relation (7) successively gives

(8)
$$N_r(a) = d^{r-1} - hd^{r-2} + \cdots + (-1)^{r-2}h^{r-2}d + (-1)^{r-1}h^{r-1}N_1(a).$$

Now the right side of (8) is the sum of a geometric progression with common ratio -h/d which has r or r - 1 terms according as $a \in D$ or $a \notin D$. Hence we obtain (3) since [G:H] - 1 = (g/h) - 1 = d/h.

We note that (3) vanishes if and only if [G:H] = 2 and r is even or odd according as $a \in D$ or $a \notin D$.

We also require the following extension of Formula (3).

Let m_1, \dots, m_r be given integers and denote by $\mathfrak{N}_r^D(a)$ the number of solutions (x_1, \dots, x_r) of the equation

$$(9) x_1^{\mathbf{m}_1} \cdots x_r^{\mathbf{m}_r} = a$$

where $a \in G$ and x_1, \dots, x_r belong to D, a nonempty subset of G.

Consider the following properties which an integer m may possess.

(a) For $x \in D$ the mapping $x \to x^m$ is a bijection of D or

(β) $x^m \in G \setminus D$ for all x in D.

COROLLARY 3. Suppose that D is a nonempty subset of a finite group G and that $H = G \setminus D$ is a subgroup of G. Let $G^* = G \cdot G_0$ be the direct product of G and any group G_0 and let $D^* = D \cdot G_0$. For $a^* \in G^*$ let $a^* = aa_0$ with $a \in G$ and $a_0 \in G_0$. If m_1, \dots, m_r are integers such that for some i the m_i -th power map is a bijection of G_0 , then

(10)
$$\mathfrak{N}_{r}^{D^{*}}(a^{*}) = [G^{*}:G]^{r-1}\mathfrak{N}_{r}^{D}(a).$$

Further if m_1, \dots, m_r satisfy either (a) or (b) and at least one satisfies (a), then

(11)
$$\mathfrak{N}_r^p(a) = \frac{d^r}{g} \left(1 + \frac{\gamma(a)\rho(m_1)\cdots\rho(m_r)}{([G:H]-1)^r} \right)$$

where $\gamma(a) = -1$ or [G:H] - 1 according as $a \in D$ or $a \notin D$ and where $\rho(m_i) = -1$ or [G:H] - 1 according as m_i satisfies (α) or (β).

Proof. If $z_1^{\mathbf{m}_1} \cdots z_r^{\mathbf{m}_r} = a^*$ for z_1, \cdots, z_r in D^* , then $x_1^{\mathbf{m}_1} \cdots x_r^{\mathbf{m}_r} = a$ and $b_1^{\mathbf{m}_1} \cdots b_r^{\mathbf{m}_r} = a_0$, where x_1, \cdots, x_r belong to D and b_1, \cdots, b_r belong to G_0 . Since some m_i induces a bijection on G_0 , the number of r-tuples (b_1, \cdots, b_r) of G_0 for which $b_1^{\mathbf{m}_1} \cdots b_r^{\mathbf{m}_r} = a_0$ is $|G_0|^{r-1}$ and as $D^* = D \cdot G_0$ we obtain (10).

Now let $k \ge 1$ be the number of m_i which satisfy (α). Then for any solution (x_1, \dots, x_r) of (9) the terms of $x_1^{m_1} \cdots x_r^{m_r}$ can be appropriately grouped to give a product $y_1 \cdots y_k = a$, where y_1, \dots, y_k belong to D. However, to each such product there correspond d^{r-k} distinct solutions of (9) and hence by (3)

$$\mathfrak{N}_{r}^{D}(a) = d^{r-k}N_{k}^{D}(a) = \frac{d^{r}}{g}\left(1 + \frac{(-1)^{k}\gamma(a)}{([G:H]-1)^{k}}\right)$$

which by the definition of $\rho(m_i)$ is Formula (11).

If $m_1 = \cdots = m_r = 1$, then (10) holds and (11) reduces to (3).

Suppose that G is a direct product of groups G_1, \dots, G_n and let $D = D_1 \dots D_n$, where D_i is a nonempty subset of G_i for $i = 1, \dots, n$. For $a \in G$ let $a = a_1 \dots a_n$ with a_i in G_i . If m_1, \dots, m_n are integers, then a standard argument shows that

(12)
$$\mathfrak{N}_r^D(a) = \prod_{i=1}^n \mathfrak{N}_r^{D_i}(a_i).$$

Also suppose that $H_i = G_i \setminus D_i$ is a subgroup of G_i for $i = 1, \dots, n$. If m_1, \dots, m_r satisfy either (α) or (β) and at least one satisfies (α) with respect to each group G_i and subset D_i , then (11) and (12) yield

(13)
$$\mathfrak{N}_r^D(a) = \frac{d^r}{g} \prod_{i=1}^n \left(1 + \frac{\gamma(a_i)\rho(m_1)\cdots\rho(m_r)}{([G_i:H_i]-1)^r}\right).$$

3. Applications.

(a) Let Δ be the property that an element of a group is non-central. Since the central elements of a group form a subgroup, the formula for $N_r(a)$ in Theorem 2 applies when G is a finite non-abelian group, D is the set of non-central elements of G, and H is the center of G.

(b) Let Δ be the property that an element of a group is a generator. (Recall that an element x of a group G is a generator if there exists a subset T of G such that $\langle T, x \rangle = G$ but $\langle T \rangle \neq G$.) Since the set H of non-generators is the Frattini subgroup of G, the formula for $N_r(a)$ is given by (3).

(c) Let Δ be the property that an element of a finite group has maximal order and let D be the set of elements of maximal order in a group G. If G is a direct product of groups G_1, \dots, G_n whose orders are pairwise relatively prime, then $D = D_1 \cdots D_n$, where D_i is the set of elements of maximal order in G_i . Thus by (12) in order to evaluate $N_r^p(a)$ for a nilpotent group G we may assume G is a p-group. Let \mathfrak{M} denote the class of *p*-groups *G* for which *H*, the elements not of maximal order, form a subgroup of *G*. Clearly \mathfrak{M} contains the class of abelian *p*-groups and indeed the class of regular *p*-groups [2; 185, Theorem 12.4.3].

We note that if $G \in \mathfrak{M}$, then H is a fully invariant subgroup of G and G/H is of exponent p.

If m is an integer relatively prime to p, then m satisfies (α) since the mapping $x \to x^m$ is an order preserving bijection of any p-group. On the other hand, if $p \mid m$, then m satisfies (β). Thus if $G \in \mathfrak{M}$ and m_1, \dots, m_r are integers whose greatest common divisor is prime with p, then $\mathfrak{M}_p^r(a)$ is given by (11).

It is now easy to determine $\mathfrak{N}_{r}^{p}(a)$ for any integers m_{1}, \dots, m_{r} if G is a *p*-abelian *p*-group, that is, $(ab)^{p} = a^{p}b^{p}$ for all elements a, b in G [4]. For suppose p^{a} is the highest power of p dividing m_{1}, \dots, m_{r} and let $m_{i}/p^{a} = m'_{i}$ for $i = 1, \dots, r$. If $x_{1}^{m_{1}} \cdots x_{r}^{m_{r}} = a$, then $(x_{1}^{m_{1}} \cdots x_{r}^{m_{r}})^{p^{a}} = a$ since G is *p*-abelian. For b in G let $\mathfrak{N}_{r}^{r, D}(b)$ denote the number of solutions of $x_{1}^{m_{1}} \cdots x_{r}^{m_{r}} = b$, where x_{1}, \dots, x_{r} belong to D. Then clearly

(14)
$$\mathfrak{N}^{D}_{r}(a) = \sum_{b^{p+a}} \mathfrak{N}^{D}_{r}(b).$$

Now let f denote the endomorphism of G defined by $f(c) = c^{p^*}$ for c in G. We may assume that $a \in \text{Im } f$ for otherwise $\mathfrak{N}_r^p(a) = 0$. If $a = b_0^{p^*}$ for b_0 in G, then f(b) = a if and only if $b \in b_0(\text{Ker } f)$. If $p^* \ge \text{exponent } G$, then $\mathfrak{N}_r^p(a) = d^*$. Suppose that $p^* < \text{exponent } G$. Then Ker $f \subseteq G \setminus D = H$ and since G is p-abelian, H is a subgroup of G. However, $(m'_1, \dots, m'_r, p) = 1$ and hence (11) shows that $\mathfrak{N}_r^{p^*}(b)$ depends only on whether $b \in D$ or $b \in H$. Therefore, $\mathfrak{N}_r^{p^*}(b) = \mathfrak{N}_r^{r^*}(b_0)$ for all b in $b_0(\text{Ker } f)$ and from (14) we obtain

(15)
$$\mathfrak{N}_r^D(a) = |\operatorname{Ker} f| \, \mathfrak{N}_r^{D}(b_0) \quad \text{where} \quad a = b_0^{p^*}.$$

PROPOSITION 4. Let G be the direct product of p-groups G_1 and G_2 .

(i) If exponent G₁ = exponent G₂, then G & M if and only if G_i & M for i = 1, 2.
(ii) If exponent G₁ > exponent G₂, then G & M if and only if G₁ & M.

Proof. Let D_i be the set of elements of maximal order in G_i and let $H_i = G_i \setminus D_i$ for i = 1, 2. Let D and H denote the corresponding sets for G.

If exponent G_1 = exponent G_2 , then $H = H_1 \cdot H_2$ and thus H is a subgroup of G if and only if H_i is a subgroup of G_i for i = 1, 2, which proves (i).

If exponent $G_1 >$ exponent G_2 , then $D = D_1 \cdot G_2$ and $H = H_1 \cdot G_2$, which by the above argument proves (ii).

It is of interest to calculate $\mathfrak{N}_r^p(a)$ for an abelian p-group.

COROLLARY 5. Let G be an abelian group of order p^{*} and let D denote the set of elements of maximal order in G. If the exponent of G appears exactly k times in the set of invariants of G and if m_1, \dots, m_r are integers such that $(m_1, \dots, m_r, p) = 1$, then

(16)
$$\mathfrak{N}_{r}^{D}(a) = \frac{(p^{n} - p^{n^{-k}})^{r}}{p^{n}} \left(1 + \frac{\gamma(a)\rho(m_{1})\cdots\rho(m_{r})}{(p^{k} - 1)^{r}} \right)$$

where $\gamma(a) = -1$ or $p^{*} - 1$ according as a ϵ D or a ϵ D and where $\rho(m_{i}) = -1$ or $p^{*} - 1$ according as $(p, m_{i}) = 1$ or $p \mid m_{i}$.

Proof. Since the index of the subgroup of elements not of maximal order in a cyclic *p*-group is p, (16) follows from Proposition 4 and Formulas (10) and (11) of Corollary 3.

Setting k = 1 in (16) yields $\mathfrak{N}_r^D(a)$ for a cyclic group of order p^n .

In view of (15) the reader may provide the slight modification needed in Corollary 5 to express $\mathfrak{N}_{r}^{p}(a)$ for arbitrary integers m_{1}, \dots, m_{r} .

We remark that if G is a p-group not in \mathfrak{M} but G_0 , the subgroup generated by D, belongs to \mathfrak{M} , then the previous formulas for $N_r^D(a)$ apply when $a \in G_0$. If $a \notin G_0$, then $N_r^D(a) = 0$ for all r. The dihedral group of order $2 \cdot 2^{n+1}$ is such an example.

However, an open question is the evaluation of $N^{p}_{r}(a)$ for a *p*-group G which is generated by D but G is not in \mathfrak{M} .

4. Analogue for rings. If R is a finite ring and D a nonempty subset of R, then the number of solutions of the equation

 $x_1 + \cdots + x_r = a$ for $a \in R$ and x_1, \cdots, x_r in D

is what has been denoted by $N_r^{D}(a)$ with respect to (R, +), the additive group of R.

Note that the analogue of Proposition 1 for a ring R is valid, where J = J(D) is taken to be the largest ideal of R such that $x + J \subseteq D$ for all x in D.

In case U = D denotes the set of units in a ring R with identity, then J(U) becomes the usual Jacobson radical of R. Thus by (2) the evaluation of $N_r^{U}(a)$ is reduced to the case where R is semisimple. Then (12) shows that it suffices to determine $N_r^{U}(a)$ for F_n , the ring of $n \times n$ matrices over a finite field F.

One may verify that U generates F_n , that is, every matrix is a sum of invertible matrices. Moreover, $N_r^{\nu}(a)$ depends only on the rank of the matrix a. At present we are not able to compute $N_r^{\nu}(a)$ for F_n , where n > 1, even when a = 0.

If F is a field, then $U = F \setminus \{0\}$ and $N_r^{\nu}(a)$ is given by (3) of Theorem 2. Thus if C denotes the class of rings R for which R/J is a direct product of fields, then $N_r^{\nu}(a)$ can be explicitly determined for any R in C. Note local rings, and hence commutative rings, belong to C.

For positive integral r, n and integral a Rearick determined the number of solutions of the linear congruence

$$x_1 + \cdots + x_r \equiv a \pmod{n}$$

where $0 \le x_i < n$ and $(x_i, n) = 1$ for $i = 1, \dots, n$. This number is just $N^{\sigma}_{\tau}(a)$ with respect to the ring Z/(n). (In this context an equivalent formula for $N^{\sigma}_{\tau}(a)$ was given by Dixon [1].) Since U coincides with the set of elements of

maximal order in the cyclic group (Z/(n), +), we can apply Corollary 5 to obtain the following more general result.

Let m_1, \dots, m_r be integers such that $(m_1, \dots, m_r) = 1$ and denote by $\mathfrak{N}_r(a)$ the number of solutions of the congruence

$$m_1x_1 + \cdots + m_rx_r \equiv a \pmod{n}$$

where $0 \le x_i < n$ and $(x_i, n) = 1$ for $i = 1, \dots, r$. If *m* is an integer and *p* is a prime, define $\gamma_p(m) = -1$ or p - 1 according as (p, m) = 1 or $p \mid m$. Then

$$\mathfrak{N}_r(a) = \frac{\phi^r(n)}{n} \prod_{p \mid n} \left(1 + \frac{\gamma_p(a)\gamma_p(m_1)\cdots\gamma_p(m_r)}{(p-1)^r} \right),$$

which reduces to Rearick's result when $m_1 = \cdots = m_r = 1$.

REFERENCES

- J. D. DIXON, A finite analogue of the Goldbach problem, Canad. Math. Bull., vol. 3(1960), pp. 121-126.
- 2. MARSHALL HALL, JR., The Theory of Groups, New York, 1959.
- 3. DAVID REARICK, A linear congruence with side conditions, Amer. Math. Monthly, vol. 70(1963), pp. 837-840.
- 4. PAUL M. WEICHSEL, On *p*-abelian groups, Proc. Amer. Math. Soc., vol. 18(1967), pp. 736-737.

Jacobson: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Williams: Department of Mathematics, Carleton University, Ottawa, Ontabio, Canada