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ON THE NUMBER OF DISTINGUISHED
REPRESENTATIONS OF A GROUP ELEMENT

DAVID JACOBSON AND KENNETH S. WILLIAMS

1. Introduction. Let A denote a property which an element of a group may
possess. We are interested in the number of representations of an element
in a finite group as a product of r elements possessing A.

More generally, let D be a nonempty subset of a finite group @ and denote
by N2(a) = N,(a) the number of solutions of the equation

¢y T ceex, = a

where q is an element of G and z, , --- , z, belong to D. Of course, if a is not
in the subgroup generated by D, then N,(a) = O for all r.

In Proposition 1 we note that the evaluation of N2(a) reduces to the corre-
sponding question for a certain quotient group of G.

If D itself is a subgroup of G, then trivially N,(a) = |D|"™" for a in D.

For arbitrary D the calculation of N2(a) seems quite difficult. One of our
main results is the explicit determination in Theorem 2 of N2(a) when G\ D,
the complement of D in G, is a subgroup of G.

As an application of Theorem 2 we obtain in Corollary 5 the number of
representations of a given element in an abelian group G as a product of r
elements of maximal order in G. In particular, for G cyclic this number agrees
with a formula derived by Rearick [3] and is essentially equivalent to an earlier
formula of Dixon [1].

In §4 analogous questions for rings are considered.

2. Main results. For D a nonempty subset of G let J(D) = J denote the
largest normal subgroup of G such that zJ & D for all z in D. We say that
G i8 D-reduced if J = {1}. If ae @, let @ denote aJ in G = G/J.

Prorosrrion 1. If D = {Z | z e D}, then G is D-reduced and
) N2(@) = |J|"7'N2(@).

Proof. If K = K/J is the largest normal subgroup of G such that K € D
for all # in D, then clearly zK C D for all z in D. However, K is a normal

subgroup of G and thus K = J, which establishes that G is D-reduced.
To prove (2) we require the following lemma.

LeMMA. Let G be a finite group and J a normal subgroup of G. Ifzy, -, 2,
belong to G, then the number of r-tuples (y,, - - - , y,) satisfyingz, - -+ z, =y, - -+ ¥,
andy; ez, J fori =1, -+, risequal to |J|"".
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Proof. The result is trivial forr = 1. Supposer > landletd,, ---,b,., be
arbitrary elements of J. It suffices to show that bz, --- b,_1z, is equal to
Z3 --- 2,b where b e J. However, this follows easily from the normality of J,
which proves the lemma.

Returning to the proof of Proposition 1 we let S denote the set of solutions

(., ++- , z,) of (1) and introduce an equivalence relation on S by defining
@, ,z)~W, Yy )yify,ex,Jfori =1, .-, r. With each equivalence
class C(z,, - - - , z,) of S we associate the r-tuple (&,, ' -+ , %,), where &, --- T, =
d@ in G. Clearly this defines a mapping ¢ from the set of equivalence classes
of S into S, the set of solutions of the equation %, - - - , = 4, where %, , - - , %,
belong to D.

The mapping ¢ is & bijection. It is one-to-one for if (%, --,%,) = (F1,-- -, ¥.),
that is, if 5, = Z; fori =1, --- , r,then (z,, --- , 2,) ~ (1, -** , ¥,) and
Clxy, -+ ,2)=C., - -, Y). Toshow that ¢ is onto let £, --- £, = 4,
where Z,, - - - , &, belong to D. This implies that z, - - - z,b = a, where z,, - -+ ,z,
belong to D and be J. Thus (z,, -+ , z,b) is a solution of (1) and ¥ maps
C(z,, - ,zb)onto (%, -, %) in §.

Hence the number of equivalence classes of S is equal to N2(@). However,
by the lemma each equivalence class consists of |J|"~* elements and therefore
N2(a) = |J|""'N®(a), which completes the proof of Proposition 1.

We remark that if G\ D is a normal subgroup of G, then J = G\ D and thus
D consists of all elements of G except the identity. This case is included in the
following more general theorem.

TaEOREM 2. Let G be a finite group of order g and D a nonempty subset of G
containing d elements. If H = G\ s a subgroup of G, then

® N.(o) = % (1 + ———([G(:—I?]'”’f’)l).)

where [G:H] i3 the index of H in G and v(a) = —1 or [G:H] — 1 according as
aeDorag¢D.

Proof. Note that we do not assume that H is normal in G. We begin by
remarking that

@ 2 N =d

be @G

since the left side merely represents the number of ways of forming all r-tuples
(z,, -+, z,) with each z; in D.
Next we observe that

®) N..(a) = ZD N.(®)

b~ ae
since all the solutions of the equation

Ty 0t Telpyy = G,
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with each z; in D, correspond to the solutions of the simultaneous equations

Z -z, = b, Z,. = b"a
in which z, , --- , z, and b™a belong to D.
As H is the complement of D we obtain from (4) and (5) that
©) N,oua) =d — b_‘Z: N,(b).

However, b 'ae H if and only if be aH. Moreover, if be aH, then N,(a) = N, (b).
For suppose b = acwithcin H. Ifae D, thenbe D and N,(a) = 1 = N,(b).
If a ¢ D, then a and b both belong to H so that N,{a) = 0 = N,(b). Now if
r>1landifz, -+- z,-,2, = a, where each z; ¢ D, then z, - -- z,_,(z,¢) = b and
z,¢ e D, which establishes that N,(a) = N,.(}). Hence from (6) we obtain

@) N,.i(a) = d" — hN,(a)

where h denotes the order of H. Applying the recurrence relation (7) succes-
sively gives

8 Na)=d'=hd?+ -+ (=1D"d+ (=1)"""""'Ny(a).

Now the right side of (8) is the sum of a geometric progression with common ratio
—h/d which has r or r — 1 terms according asae D or a ¢ D. Hence we obtain
(3) since [G:H] — 1 = (g/h) — 1 = d/h.

We note that (3) vanishes if and only if [G:H] = 2 and r is even or odd ac-
cordingasaeD oragD.

We also require the followmg extension of Formula (3).

Letm,, - - - ,m, begiven integers and denote by 91°(a) the number of solutions
(z,, -« , z,) of the equation

&) It T =0

whereae Gand z,, --- , z, belong to D, a nonempty subset of G.
Consider the following properties which an integer m may possess.
" (@) For z e D the mapping £ — z™ is a bijection of D or
(8 =™ ¢« G\D for all z in D.

CoROLLARY 3. Suppose that D is a nonempty subset of a finite group G and
that H = G\D 1is a subgroup of G. Let G* = G-G, be the direct product of G
and any group G, and let D* = D-G,. For a* e G* let a* = aa, with ae G and

aceGy. Ifmy, --- , m, are integers such that for some i the m,-th power map 18
a bijection of G, , then :

(10) %N, (a%) = [G*:G]7' N (a).

Further if m, , - -+ , m, satisfy etther (a) or (8) and at least one satisfies («), then

. v@p(my) - -- p(m,)
an o) = (1"' (G :H = 1 )
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wherey(a) = —1 or [G:H] — 1 according as ae D or a ¢ D and where p(m;) = —1
or [G:H] — 1 according as m, satisfies (a) or (B).

Proof. If 27 --- 2 = a*forz,, .-+, 2z in D* then 2 - 2’ = a and
byt -+ b = a,, wherez,, --- , 2, belong to D and b,, --- , b, belong to G, .
Since some m; induces a bijection on G, , the number of r-tuples (b, , --- , b,)
of G, for which b --- b™ = a, is |Go|"™" and as D* = D-G, we obtain (10).

Now let ¥ > 1 be the number of m; which satisfy (a). Then for any
solution (z, , --- , z,) of (9) the terms of z™ ... z can be appropriately
grouped to give a product y; - -+ . = a, wherey,, - -+, ¥; belong to D. How-
ever, to each such product there correspond d"* distinct solutions of (9) and
hence by (3)

w0 = a3 = 5 (14 G T )

which by the definition of p(m,) is Formula (11).

If my = --- = m, = 1, then (10) holds and (11) reduces to (3).
Suppose that @ is a direct product of groups G, , - -+ ,G,andlet D = D, - - - D,
where D; is a nonempty subset of G; fori =1, --- ,n. ForaeGleta =a, --- a,

witha,in G;. Ifm,, .-+, m, are integers, then a standard argument shows that
(12) 7% = II 97%a)).
=)

Also suppose that H;, = G\D, is a subgroup of G; forz =1, --- , n. If
m,, +++ , m, satisfy either (a) or (8) and at least one satisfies () with respect
to each group G; and subset D; , then (11) and (12) yield

i3 n

ooy _ & y(a)p(my) --- p(m,))
(13) Xele) =7 U (1 TG HI =) )

3. Applications.

(a) Let A be the property that an element of a group is non-central. Since
the central elements of a group form a subgroup, the formula for N,(a) in
Theorem 2 applies when G is a finite non-abelian group, D is the set of non-
central elements of G, and H is the center of G.

(b) Let A be the property that an element of a group is a generator. (Recall
that an element z of a group G is a generator if there exists a subset T of G such
that (T, z) = G but (T) = G.) Since the set H of non-generators is the Frattini
subgroup of G, the formula for N,(a) is given by (3).

(c) Let A be the property that an element of a finite group has maximal order
and let D be the set of elements of maximal order in a group G. If @ is a direct
product of groups G, , --- , G, whose orders are pairwise relatively prime, then
D = D, --- D, , where D; is the set of elements of maximal order in G; . Thus
by (12) in order to evaluate N2(a) for a nilpotent group G we may assume G is

a p-group.
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Let 917 denote the class of p-groups G for which H, the elements not of max-
imal order, form a subgroup of G. Clearly 9 contains the class of abelian
p-groups and indeed the class of regular p-groups [2; 185, Theorem 12.4.3].

We note that if G e 9, then H is a fully invariant subgroup of G and G/H is
of exponent p.

If m is an integer relatively prime to p, then m satisfies () since the mapping
z — z™ is an order preserving bijection of any p-group. On the other hand, if
p | m, then m satisfies (8). Thus if Ge M and m, , - -+ , m, are integers whose
greatest common divisor is prime with p, then 912(a) is given by (11).

It is now easy to determine 972(a) for any integers m, , --- , m, if G is a
p-abelian p-group, that is, (ab)” = a®b” for all elements a, b in G [4]. For suppose
p° is the highest power of p dividing m, , --- , m, and let m;/p* = m! for ¢ =
1, -+ ,r. Ifzf --- 27 = @, then (z --- 27')*" = a since G is p-abelian.
For b in G let 91, (b) denote the number of solutions of 2" - - z7" = b, where
Zy, +++,z, belong to D. Then clearly -

(19) n(a) = E uP(b).

Now let f denote the endomorphism of G defined by f(c) = ¢* for cin G@. We
may assume that a e Im f for otherwise 9t2(a) = 0. If a = b3’ for b, in G, then
f(b) = a if and only if b e by(Ker f). If p* > exponent G, then 32(a) = d".
Suppose that p* < exponent G. Then Ker f © G\D = H and since G is
p-abelian, H is a subgroup of G. However, (m{, --- ,m!, p) = 1 and hence (11)
shows that 91/ (b) depends only on whether be D or be H. Therefore, %/°(b) =

P (b,) for all b in b,(Ker f) and from (14) we obtain
@15) 9°2(a) = |Ker f| %°(by) where a = b7

ProrosiTiOoN 4. Let G be the direct product of p-groups G, and G, .
(i) If exponent G, = exponent Gy, then Ge M if and only if G, e M fori = 1, 2.
(ii) If exponent G, > exponent G, , then G e I if and only if G, e M.

Proof. Let D, be the set of elements of maximal order in G, and let H; =
GN\UD: fori = 1,2. Let D and H denote the corresponding sets for G.

If exponent G; = exponent G, , then H = H,-H; and thus H is a subgroup
of @ if and only if H, is a subgroup of G for 7 = 1, 2, which proves (i).

If exponent G, > exponent G, , then D = D,-G, and H = H,-G,, which by
the above argument proves (ii).

It is of interest to calculate 972(a) for an abelian p-group.

COROLLARY 5. Let G be an abelian group of order p™ and let D denote the set
of elements of maxtmal order in (. If the exponent of G appears exactly k times
in the set of tnvariants of G and tf m, , - -+ , m, are tniegers such that (m; , -,
m, , p) = 1, then

(16) 9(a) = @ _p,,p ) (1 + ﬁa)Pg::l)_' 1 ;'P("an)
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where y(@) = —1 or p* — 1 according as ae D or a ¢ D and where p(m,) = —1
or p* — 1 according as (p, m;) = lorp|m, .

Proof. Since the index of the subgroup of elements not of maximal order in
a cyclic p-group is p, (16) follows from Proposition 4 and Formulas (10) and (11)
of Corollary 3.

Setting k = 1 in (16) yields 912(a) for a cyclic group of order p".

In view of (15) the reader may provide the slight modification needed in
Corollary 5 to express 912(a) for arbitrary integersm,, --- , m, .

We remark that if G is a p-group not in 9 but G, , the subgroup generated
by D, belongs to 9, then the previous formulas for N2(a) apply when a e G, .
If a ¢ G, , then N2(a) = O for all . The dihedral group of order 2-2*** is such
an example.

However, an open question is the evaluation of N2(a) for a p-group G which
is generated by D but G is not in 9.

4. Analogue for rings. If R is a finite ring and D a nonempty subset of R,
then the number of solutions of the equation

Zy+ -+ +2z, =a for aeR and z,,---,z, In D

is what has been denoted by N2(a) with respect to (B, +), the additive group
of R.

Note that the analogue of Proposition 1 for a ring R is valid, where J = J(D)
is taken to be the largest ideal of R such that 2 + J € D for all z in D.

In case U = D denotes the set of units in a ring R with identity, then
J(U) becomes the usual Jacobson radical of B. Thus by (2) the evaluation of
NY(a) is reduced to the case where R is semisimple. Then (12) shows that it
suffices to determine NY(a) for F, , the ring of n X n matrices over a finite
field F.

One may verify that U generates F, , that is, every matrix is a sum of inver-
tible matrices. Moreover, NY(a) depends only on the rank of the matrix a.
At present we are not able to compute NY(e) for F., where n > 1, even when
a=0.

If F is a field, then U = F\ {0} and NY(a) is given by (3) of Theorem 2.
Thus if C denotes the class of rings R for which R/J is a direct product of
fields, then NY(a) can be explicitly determined for any R in C. Note local
rings, and hence commutative rings, belong to C.

For positive integral r, n and integral a Rearick determined the number of
solutions of the linear congruence

z+ -+ 2, =a (@modn)
where 0 < z; < nand (z; ,n) = 1for7 =1, --- , n. This number is just

NY(a) with respect to the ring Z/(n). (In this context an equivalent formula
for NY(a) was given by Dixon [1].) Since U coincides with the set of elements of
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maximal order in the cyclic group (Z/(n), +), we can apply Corollary 5 to
obtain the following more general result.

Letm,, - - - , m, be integers such that (m,, --- , m,) = 1 and denote by R,(a)
the number of solutions of the congruence

ma, + -+ + ma, = a (mod n)

where 0 < z, < nand (z,,n) = 1fort =1, --- ,r. If mis an integer and
p is a prime, define v,(m) = —1 or p — 1 according as (p, m) = 1 or p | m. ,
Then

¢'(n) ( Ye(@vy(my) - - - v,(m,))

m' = 1 r 1
(@ n H + @—1D
which reduces to Rearick’s result whenm, = --- = m, = 1.
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