ON THE NUMBER OF DISTINGUISHED REPRESENTATIONS OF A GROUP ELEMENT

DAVID JACOBSON AND KENNETH S. WILLIAMS

1. Introduction. Let Δ denote a property which an element of a group may possess. We are interested in the number of representations of an element in a finite group as a product of r elements possessing Δ.

More generally, let D be a nonempty subset of a finite group G and denote by $N_r^D(a) = N_r(a)$ the number of solutions of the equation

(1) \[x_1 \cdots x_r = a \]

where a is an element of G and x_1, \ldots, x_r belong to D. Of course, if a is not in the subgroup generated by D, then $N_r(a) = 0$ for all r.

In Proposition 1 we note that the evaluation of $N_r^D(a)$ reduces to the corresponding question for a certain quotient group of G.

If D itself is a subgroup of G, then trivially $N_r(a) = |D|^{r-1}$ for a in D.

For arbitrary D the calculation of $N_r^D(a)$ seems quite difficult. One of our main results is the explicit determination in Theorem 2 of $N_r^D(a)$ when $G \setminus D$, the complement of D in G, is a subgroup of G.

As an application of Theorem 2 we obtain in Corollary 5 the number of representations of a given element in an abelian group G as a product of r elements of maximal order in G. In particular, for G cyclic this number agrees with a formula derived by Rearick [3] and is essentially equivalent to an earlier formula of Dixon [1].

In §4 analogous questions for rings are considered.

2. Main results. For D a nonempty subset of G let $J(D) = J$ denote the largest normal subgroup of G such that $xJ \subseteq D$ for all x in D. We say that G is D-reduced if $J = \{1\}$. If $a \in G$, let \bar{a} denote aJ in $\bar{G} = G/J$.

Proposition 1. If $\bar{D} = \{\bar{x} \mid x \in D\}$, then \bar{G} is \bar{D}-reduced and

(2) \[N_r^\bar{D}(a) = |J|^{r-1}N_r^\bar{G}(\bar{a}). \]

Proof. If $K = K/J$ is the largest normal subgroup of \bar{G} such that $\bar{x}K \subseteq \bar{D}$ for all \bar{x} in \bar{D}, then clearly $xK \subseteq D$ for all x in D. However, K is a normal subgroup of G and thus $K = J$, which establishes that \bar{G} is \bar{D}-reduced.

To prove (2) we require the following lemma.

Lemma. Let G be a finite group and J a normal subgroup of G. If x_1, \ldots, x_r belong to G, then the number of r-tuples (y_1, \ldots, y_r) satisfying $x_1 \cdots x_r = y_1 \cdots y_r$ and $y_i \in x_i J$ for $i = 1, \ldots, r$ is equal to $|J|^{r-1}$.

Received March 13, 1972.
Proof. The result is trivial for \(r = 1 \). Suppose \(r > 1 \) and let \(b_1, \ldots, b_{r-1} \) be arbitrary elements of \(J \). It suffices to show that \(b_1x_2 \cdots b_{r-1}x_r \) is equal to \(x_2 \cdots x_r b \) where \(b \in J \). However, this follows easily from the normality of \(J \), which proves the lemma.

Returning to the proof of Proposition 1 we let \(S \) denote the set of solutions \((x_1, \ldots, x_r)\) of (1) and introduce an equivalence relation on \(S \) by defining \((x_1, \ldots, x_r) \sim (y_1, \ldots, y_r)\) if \(y_i x_i J \) for \(i = 1, \ldots, r \). With each equivalence class \(C(x_1, \ldots, x_r) \) of \(S \) we associate the \(r \)-tuple \((\xi_1, \ldots, \xi_r)\), where \(\xi_1 \cdots \xi_r = \xi \) in \(\bar{G} \). Clearly this defines a mapping \(\psi \) from the set of equivalence classes of \(S \) into \(\bar{S} \), the set of solutions of the equation \(\bar{x}_1 \cdots \bar{x}_r = \bar{a} \), where \(\bar{x}_1, \ldots, \bar{x}_r \) belong to \(\bar{D} \).

The mapping \(\psi \) is a bijection. It is one-to-one if for \((\bar{x}_1, \ldots, \bar{x}_r) = (\bar{y}_1, \ldots, \bar{y}_r)\), that is, if \(\bar{y}_i = \bar{x}_i \) for \(i = 1, \ldots, r \), then \((x_1, \ldots, x_r) \sim (y_1, \ldots, y_r)\) and \(C(x_1, \ldots, x_r) = C(y_1, \ldots, y_r) \). To show that \(\psi \) is onto let \(\bar{x}_1 \cdots \bar{x}_r = \bar{a} \), where \(\bar{x}_1, \ldots, \bar{x}_r \) belong to \(\bar{D} \). This implies that \(x_1 \cdots x_r b = a \), where \(x_1, \ldots, x_r \) belong to \(D \) and \(b \in J \). Thus \((x_1, \ldots, x_r, b)\) is a solution of (1) and \(\psi \) maps \(C(x_1, \ldots, x_r, b) \) onto \((\bar{x}_1, \ldots, \bar{x}_r)\) in \(\bar{S} \).

Hence the number of equivalence classes of \(S \) is equal to \(N_r'(a) \). However, by the lemma each equivalence class consists of \(|J|^{-1} \) elements and therefore \(N_r'(a) = |J|^{-1} N_r(a) \), which completes the proof of Proposition 1.

We remark that if \(G \setminus D \) is a normal subgroup of \(G \), then \(J = G \setminus D \) and thus \(\bar{D} \) consists of all elements of \(\bar{G} \) except the identity. This case is included in the following more general theorem.

Theorem 2. Let \(G \) be a finite group of order \(g \) and \(D \) a nonempty subset of \(G \) containing \(d \) elements. If \(H = G \setminus D \) is a subgroup of \(G \), then

\[
N_r(a) = \frac{d^r}{g} \left(1 + \frac{(-1)^r \gamma(a)}{[G:H] + 1} \right)
\]

where \([G:H]\) is the index of \(H \) in \(G \) and \(\gamma(a) = -1 \) or \([G:H] - 1 \) according as \(a \in D \) or \(a \notin D \).

Proof. Note that we do not assume that \(H \) is normal in \(G \). We begin by remarking that

\[
\sum_{d \in D} N_r(b) = d^r
\]

since the left side merely represents the number of ways of forming all \(r \)-tuples \((x_1, \ldots, x_r)\) with each \(x_i \) in \(D \).

Next we observe that

\[
N_{r+1}(a) = \sum_{b \in D} N_r(b)
\]

since all the solutions of the equation

\[
x_1 \cdots x_r x_{r+1} = a,
\]
with each \(x_i \) in \(D \), correspond to the solutions of the simultaneous equations

\[
x_1 \cdots x_r = b, \quad x_{r+1} = b^{-1}a
\]

in which \(x_1, \ldots, x_r \) and \(b^{-1}a \) belong to \(D \).

As \(H \) is the complement of \(D \) we obtain from (4) and (5) that

\[
N_{r+1}(a) = d^r - \sum_{b^{-1}a \in H} N_r(b).
\]

However, \(b^{-1}a \in H \) if and only if \(b \in aH \). Moreover, if \(b \in aH \), then \(N_r(a) = N_r(b) \).

For suppose \(b = ac \) with \(c \) in \(H \). If \(a \in D \), then \(b \in D \) and \(N_1(a) = 1 = N_1(b) \).

If \(a \notin D \), then \(a \) and \(b \) both belong to \(H \) so that \(N_1(a) = 0 = N_1(b) \). Now if \(r > 1 \) and if \(x_1 \cdots x_{r-1}x_r = a \), where each \(x_i \in D \), then \(x_1 \cdots x_{r-1}(x,c) = b \) and \(x,c \in D \), which establishes that \(N_r(a) = N_r(b) \). Hence from (6) we obtain

\[
N_{r+1}(a) = d^r - hN_r(a)
\]

where \(h \) denotes the order of \(H \). Applying the recurrence relation (7) successively gives

\[
N_r(a) = d^{r-1} - hd^{r-2} + \cdots + (-1)^{r-2}h^{r-3}d + (-1)^{r-1}h^{r-2}N_1(a).
\]

Now the right side of (8) is the sum of a geometric progression with common ratio \(-h/d\) which has \(r \) or \(r - 1 \) terms according as \(a \in D \) or \(a \notin D \). Hence we obtain (3) since \([G:H] - 1 = (g/h) - 1 = d/h\).

We note that (3) vanishes if and only if \([G:H] = 2\) and \(r \) is even or odd according as \(a \in D \) or \(a \notin D \).

We also require the following extension of Formula (3).

Let \(m_1, \ldots, m_r \) be given integers and denote by \(\mathfrak{N}_r^D(a) \) the number of solutions \((x_1, \ldots, x_r) \) of the equation

\[
x_1^{m_1} \cdots x_r^{m_r} = a
\]

where \(a \in G \) and \(x_1, \ldots, x_r \), belong to \(D \), a nonempty subset of \(G \).

Consider the following properties which an integer \(m \) may possess.

(a) For \(x \in D \) the mapping \(x \to x^m \) is a bijection of \(D \) or

(b) \(x^m \in G \setminus D \) for all \(x \) in \(D \).

Corollary 3. Suppose that \(D \) is a nonempty subset of a finite group \(G \) and that \(H = G \setminus D \) is a subgroup of \(G \). Let \(G^* = G \cdot G_0 \) be the direct product of \(G \) and any group \(G_0 \) and let \(D^* = D \cdot G_0 \). For \(a^* \in G^* \) let \(a^* = aa_0 \) with \(a \in G \) and \(a_0 \in G_0 \). If \(m_1, \ldots, m_r \) are integers such that for some \(i \) the \(m_i \)-th power map is a bijection of \(G_0 \), then

\[
\mathfrak{N}_{r,D^*}^D(a^*) = [G^*:G]^{-1}\mathfrak{N}_r^D(a).
\]

Further if \(m_1, \ldots, m_r \) satisfy either (a) or (b) and at least one satisfies (a), then

\[
\mathfrak{N}_r^D(a) = \frac{d^r}{g} \left(1 + \frac{\gamma(a)\rho(m_1) \cdots \rho(m_r)}{[G:H] - 1} \right)
\]
where \(\gamma(a) = -1 \) or \([G:H] - 1\) according as \(a \in D \) or \(a \notin D \) and where \(\rho(m_i) = -1 \) or \([G:H] - 1\) according as \(m_i \) satisfies (a) or (b).

Proof. If \(z_1' \cdots z_r' = a^* \) for \(z_1, \cdots, z_r \) in \(D^* \), then \(z_1'' \cdots z_r'' = a \) and \(b_1'' \cdots b_r'' = a_0 \), where \(z_1, \cdots, z_r \) belong to \(D \) and \(b_1, \cdots, b_r \) belong to \(G_0 \). Since some \(m_i \) induces a bijection on \(G_0 \), the number of \(r \)-tuples \((b_1, \cdots, b_r) \) of \(G_0 \) for which \(b_1'' \cdots b_r'' = a_0 \) is \(|G_0|^{-1} \) and as \(D^* = D \cdot G_0 \) we obtain (10).

Now let \(k \geq 1 \) be the number of \(m_i \) which satisfy (\(\alpha \)). Then for any solution \((x_1, \cdots, x_r) \) of (9) the terms of \(z_1'' \cdots z_r'' \) can be appropriately grouped to give a product \(y_1 \cdots y_k = a \), where \(y_1, \cdots, y_k \) belong to \(D \). However, to each such product there correspond \(\alpha^r - k \) distinct solutions of (9) and hence by (3)

\[
\mathfrak{N}_{r}(a) = \alpha^r \mathfrak{N}_{k}(a) = \frac{\alpha^r}{g} \left(1 + \frac{(-1)^k \gamma(a)}{|G:H| - 1} \right)
\]

which by the definition of \(\rho(m_i) \) is Formula (11).

If \(m_1 = \cdots = m_r = 1 \), then (10) holds and (11) reduces to (3).

Suppose that \(G \) is a direct product of groups \(G_1, \cdots, G_n \) and let \(D = D_1 \cdots D_n \), where \(D_i \) is a nonempty subset of \(G_i \) for \(i = 1, \cdots, n \). For \(a \in G \) let \(a = a_1 \cdots a_n \) with \(a_i \) in \(G_i \). If \(m_1, \cdots, m_r \) are integers, then a standard argument shows that

\[
\mathfrak{N}_{r}^D(a) = \prod_{i=1}^{n} \mathfrak{N}_{r}^{D_i}(a_i).
\]

Also suppose that \(H_i = G_i \setminus D_i \) is a subgroup of \(G_i \) for \(i = 1, \cdots, n \). If \(m_1, \cdots, m_r \) satisfy either (a) or (b) and at least one satisfies (a) with respect to each group \(G_i \) and subset \(D_i \), then (11) and (12) yield

\[
\mathfrak{N}_{r}^{D_i}(a) = \frac{\alpha^r}{g} \prod_{i=1}^{n} \left(1 + \frac{\gamma(a_i) \rho(m_i) \cdots \rho(m_r)}{|G_i:H_i| - 1} \right).
\]

3. Applications.

(a) Let \(\Delta \) be the property that an element of a group is non-central. Since the central elements of a group form a subgroup, the formula for \(\mathfrak{N}_*(a) \) in Theorem 2 applies when \(G \) is a finite non-abelian group, \(D \) is the set of non-central elements of \(G \), and \(H \) is the center of \(G \).

(b) Let \(\Delta \) be the property that an element of a group is a generator. (Recall that an element \(x \) of a group \(G \) is a generator if there exists a subset \(T \) of \(G \) such that \(\langle T, x \rangle = G \) but \(\langle T \rangle \neq G \).) Since the set \(H \) of non-generators is the Frattini subgroup of \(G \), the formula for \(\mathfrak{N}_*(a) \) is given by (3).

(c) Let \(\Delta \) be the property that an element of a finite group has maximal order and let \(D \) be the set of elements of maximal order in a group \(G \). If \(G \) is a direct product of groups \(G_1, \cdots, G_n \) whose orders are pairwise relatively prime, then \(D = D_1 \cdots D_n \), where \(D_i \) is the set of elements of maximal order in \(G_i \). Thus by (12) in order to evaluate \(\mathfrak{N}_r^D(a) \) for a nilpotent group \(G \) we may assume \(G \) is a \(p \)-group.
Let \mathfrak{N} denote the class of p-groups G for which H, the elements not of maximal order, form a subgroup of G. Clearly \mathfrak{N} contains the class of abelian p-groups and indeed the class of regular p-groups [2; 185, Theorem 12.4.3].

We note that if $G \in \mathfrak{N}$, then H is a fully invariant subgroup of G and G/H is of exponent p.

If m is an integer relatively prime to p, then m satisfies (α) since the mapping $x \rightarrow x^m$ is an order preserving bijection of any p-group. On the other hand, if $p \mid m$, then m satisfies (β). Thus if $G \in \mathfrak{N}$ and m_1, \ldots, m_r are integers whose greatest common divisor is prime with p, then $\mathfrak{N}^p(a)$ is given by (11).

It is now easy to determine $\mathfrak{N}^p(a)$ for any integers m_1, \ldots, m_r if G is a p-abelian p-group, that is, $(ab)^p = a^pb^p$ for all elements a, b in G [4]. For suppose p^r is the highest power of p dividing m_1, \ldots, m_r and let $m_i/p^r = m'_i$ for $i = 1, \ldots, r$. If $x_1^{m'_1} \cdot \cdots \cdot x_r^{m'_r} = a$, then $(x_1^{m'_1} \cdot \cdots \cdot x_r^{m'_r})^{p^r} = a$ since G is p-abelian. For b in G let $\mathfrak{N}^p(b)$ denote the number of solutions of $x_1^{m'_1} \cdot \cdots \cdot x_r^{m'_r} = b$, where x_1, \ldots, x_r belong to D. Then clearly

$$\mathfrak{N}^p(a) = \sum_{b^{p^r} = a} \mathfrak{N}^p(b).$$

Now let f denote the endomorphism of G defined by $f(c) = c^a$ for c in G. We may assume that $a \in \text{Im} f$ for otherwise $\mathfrak{N}^p(a) = 0$. If $a = b_0^a$ for b_0 in G, then $f(b) = a$ if and only if $b \in b_0(Ker f)$. If $p^r \leq$ exponent G, then $\mathfrak{N}^p(a) = d^r$. Suppose that $p^r <$ exponent G. Then $\text{Ker} f \subseteq G \setminus D = H$ and since G is p-abelian, H is a subgroup of G. However, $(m'_1, \ldots, m'_r, p) = 1$ and hence (11) shows that $\mathfrak{N}^p(b)$ depends only on whether $b \in D$ or $b \in H$. Therefore, $\mathfrak{N}^p(b) = \mathfrak{N}^p(b_0)$ for all b in $b_0(Ker f)$ and from (14) we obtain

$$\mathfrak{N}^p(a) = |\text{Ker} f| \mathfrak{N}^p(b_0) \quad \text{where} \quad a = b_0^a.$$

PROPOSITION 4. Let G be the direct product of p-groups G_1 and G_2.

(i) If exponent $G_1 = $ exponent G_2, then $G \in \mathfrak{N}$ if and only if $G_i \in \mathfrak{N}$ for $i = 1, 2$.

(ii) If exponent $G_1 > $ exponent G_2, then $G \in \mathfrak{N}$ if and only if $G_1 \in \mathfrak{N}$.

Proof. Let D_i be the set of elements of maximal order in G_i and let $H_i = G_i \setminus D_i$ for $i = 1, 2$. Let D and H denote the corresponding sets for G.

If exponent $G_1 = $ exponent G_2, then $H = H_1 \cdot H_2$ and thus H is a subgroup of G if and only if H_i is a subgroup of G_i for $i = 1, 2$, which proves (i).

If exponent $G_1 > $ exponent G_2, then $D = D_1 \cdot G_2$ and $H = H_1 \cdot G_2$, which by the above argument proves (ii).

It is of interest to calculate $\mathfrak{N}^p(a)$ for an abelian p-group.

COROLLARY 5. Let G be an abelian group of order p^n and let D denote the set of elements of maximal order in G. If the exponent of G appears exactly k times in the set of invariants of G and if m_1, \ldots, m_r are integers such that $(m_1, \ldots, m_r, p) = 1$, then

$$\mathfrak{N}^p(a) = \frac{(p^n - p^{n-k})^r}{p^n} \left(1 + \gamma(a)\rho(m_1) \cdots \rho(m_r) \frac{p^r - 1^r}{p^r - 1} \right).$$
where $\gamma(a) = -1$ or $p^k - 1$ according as $a \in D$ or $a \notin D$ and where $\rho(m_i) = -1$ or $p^k - 1$ according as $(p, m_i) = 1$ or $p \mid m_i$.

Proof. Since the index of the subgroup of elements not of maximal order in a cyclic p-group is p, (16) follows from Proposition 4 and Formulas (10) and (11) of Corollary 3.

Setting $k = 1$ in (16) yields $\mathfrak{P}(a)$ for a cyclic group of order p^n.

In view of (15) the reader may provide the slight modification needed in Corollary 5 to express $\mathfrak{P}(a)$ for arbitrary integers m_1, \ldots, m_*. We remark that if G is a p-group not in \mathfrak{M} but G_0, the subgroup generated by D, belongs to \mathfrak{M}, then the previous formulas for $N^\rho(a)$ apply when $a \in G_0$. If $a \notin G_0$, then $N^\rho(a) = 0$ for all r. The dihedral group of order $2 \cdot 2^{n+1}$ is such an example.

However, an open question is the evaluation of $N^\rho(a)$ for a p-group G which is generated by D but G is not in \mathfrak{M}.

4. Analogue for rings. If R is a finite ring and D a nonempty subset of R, then the number of solutions of the equation

$$x_1 + \cdots + x_r = a \quad \text{for} \quad a \in R \quad \text{and} \quad x_1, \ldots, x_r \in D$$

is what has been denoted by $N^\rho_R(a)$ with respect to $(R, +)$, the additive group of R.

Note that the analogue of Proposition 1 for a ring R is valid, where $J = J(D)$ is taken to be the largest ideal of R such that $x + J \subseteq D$ for all x in D.

In case $U = D$ denotes the set of units in a ring R with identity, then $J(U)$ becomes the usual Jacobson radical of R. Thus by (2) the evaluation of $N^\rho_U(a)$ is reduced to the case where R is semisimple. Then (12) shows that it suffices to determine $N^\rho_U(a)$ for F_*, the ring of $n \times n$ matrices over a finite field F.

One may verify that U generates F_*, that is, every matrix is a sum of invertible matrices. Moreover, $N^\rho_U(a)$ depends only on the rank of the matrix a. At present we are not able to compute $N^\rho_U(a)$ for F_*, where $n > 1$, even when $a = 0$.

If F is a field, then $U = F \setminus \{0\}$ and $N^\rho_U(a)$ is given by (3) of Theorem 2. Thus if C denotes the class of rings R for which R/J is a direct product of fields, then $N^\rho_U(a)$ can be explicitly determined for any R in C. Note local rings, and hence commutative rings, belong to C.

For positive integral r, n and integral a Rearick determined the number of solutions of the linear congruence

$$x_1 + \cdots + x_r = a \pmod{n}$$

where $0 \leq x_i < n$ and $(x_i, n) = 1$ for $i = 1, \ldots, n$. This number is just $N^\rho_U(a)$ with respect to the ring $Z/(n)$. (In this context an equivalent formula for $N^\rho_U(a)$ was given by Dixon [1].) Since U coincides with the set of elements of
maximal order in the cyclic group \((Z/(n), +)\), we can apply Corollary 5 to obtain the following more general result.

Let \(m_1, \ldots, m_r\) be integers such that \((m_1, \ldots, m_r) = 1\) and denote by \(\mathcal{N}_r(a)\) the number of solutions of the congruence

\[
m_1x_1 + \cdots + m_rx_r = a \pmod{n}
\]

where \(0 \leq x_i < n\) and \((x_i, n) = 1\) for \(i = 1, \ldots, r\). If \(m\) is an integer and \(p\) is a prime, define \(\gamma_p(m) = -1\) or \(p - 1\) according as \((p, m) = 1\) or \(p \mid m\). Then

\[
\mathcal{N}_r(a) = \frac{\phi'(n)}{n} \prod_{p \mid n} \left(1 + \frac{\gamma_p(a) \prod_{i=1}^r \gamma_p(m_i)}{(p - 1)^r} \right),
\]

which reduces to Rearick's result when \(m_1 = \cdots = m_r = 1\).

References

Jacobson: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Williams: Department of Mathematics, Carleton University, Ottawa, Ontario, Canada