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ON THE NUMBER OF DISTINGUISHED 
REPRESENTATIONS OF A GROUP ELEMENT 

DAVID JACOBSON AND KENNETH S. WILLIAMS 

1. Introduction. Let A denote a property which an element of a group may 
possess. We are interested in the number of representations of an element 
in a finite group as a product of r elements possessing A. 

More generally, let D be a nonempty subset of a finite group G and denote 
by N:(a) = N,(a) the number of solutions of the equation 

where a is an element of G and x, , - - - , x, belong to D. Of course, if a is not 
in the subgroup generated by Dl then N,(a)  = 0 for all r .  

In Proposition 1 we note that the evaluation of N t ( a )  reduces to the corre- 
sponding question for a certain quotient group of G. 

If D itself is a subgroup of GI then trivially N,(a)  = JDIr-' for a in D. 
For arbitrary D the calculation of N t ( a )  seems quite difficult. One of our 

main results is the explicit determination in Theorem 2 of N:(a) when G \ D ,  
the complement of D in G, is a subgroup of G. 

As an application of Theorem 2 we obtain in Corollary 5 the number of 
representations of a given element in an abelian group G as a product of r 
elements of maximal order in G. In particular, for G cyclic this number agrees 
with a formula derived by Rearick [3] and is essentially equivalent to an earlier 
formula of Dixon [I]. 

In $4 analogous questions for rings are considered. 

2. Main results. For D a nonempty subset of G let J ( D )  = J denote the 
largest normal subgroup of G such that xJ G D for all x in D. We say that 
G is D-reduced if J = ( 1 } . If a e GI let d denote aJ in d = G/ J .  

PROPO~ITION 1. I f  D = (3 1 x e D } ,  then e is D-reduced and 

(2)  N:(a) = I ~ l ' - 'N'j(6) .  
Proof. If R = K / J  is the largest normal subgroup of d such that 3 R  G D 

for all 5 in d, then clearly xK C D for all x in D. However, K is a normal 
subgroup of G and thus K = J ,  which establishes that 0 is D-reduced. 

To prove (2)  we require the following lemma. 

LEMMA. Let G be a jinite group and J a normal 8ubgroup of G. I f  x1 , . . . , z, 
belong to GI then the number of r-tuples ( y ,  , - - , y,) satisfying z ,  - - . z, = y, - - . y, 
and yi t z i J  for i = 1, . . . , r is equal to I JIr-I. 
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Proof. The result is trivial for r = 1. Suppose r > 1 and let b, , - , b,-, be 
arbitrary elements of J .  It sufEces to show that blxa . b,-,z, is equal to 
xa - - z,b where b e J.  However, this follows easily from the normality of J ,  
which proves the lemma. 

Returning to the proof of Proposition 1 we let S denote the set of solutions 
( X I  , . . - , x,) of (1) and introduce an equivalence relation on S by defining 
(x,  , . , x,) - (yl , . , y,) if y, e x ,  J for i = 1, - . , r. With each equivalence 
class C(xl , . . . , 2,) of S we associate the r-tuple (5, , . . , f , ) ,  where 5,  . . . 3, = 
d in G. Clearly this defines a mapping y5 from the set of equivalence classes 
of S into fi, the set of solutions of the equation f , . . 5, = d ,  where f , , . , 2, 
belong to D. 

The mapping y5 is a bijection. It is one-to-one for if (Z, ,  . . . ,Z,) = (Q,, - - . , Q,), 
that is, if Q, = f i  for i = 1, . - - , r, then (x,  , - - - , x,) - (y ,  , - . . , y,) and 
C(z1 , • - . , 2,) = C(YI , ' 1- , y,). To show that y5 is onto let 2, . . 5, = d ,  
where 5,  , . . , f ,  belong to D. This implies that x, . x,b = a, where xl , . . . , x, 
belong to D and b e J .  Thus (xl , . . . , x,b) is a solution of (1) and y5 maps 
C(xl , -.. , x,b) onto (2, , - - a  , 3,) in 8. 

Hence the number of equivalence classes of S is equal to ~ f ( d ) .  However, 
by the lemma each equivalence class consists of IJJr-' elements and therefore 
N f ( a )  = I J ( ' - 'N:(~),  which completes the proof of Proposition 1. 

We remark that if +D is a normal subgroup of G, then J = f i D  and thus 
consists of all elements of except the identity. This case is included in the 

following more general theorem. 

THEOREM 2. Let G be a finite group of order g and D a nonempty subaet of G 
contuining d elements. I f  H = +D is a subgroup of G, then 

d' 
N,(a) = - ( l  + (-l)r'(a) ) 

g ([G : H] - 1)' 

where [G:H] is the index of H i n  G and ' ( a )  = -1 or [G:H] - 1 u c d i n g  os 
a e D o r a # D .  

Proof. Note that we do not assume that H is normal in G. We begin by 
remarking that 

since the left side merely represents the number of ways of forming dl r-tuples 
(x ,  , . . . , x,) with each xi in D. 

Next we observe that 

since all the solutions of the equation 
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with each z ,  in Dl correspond to the solutions of the simultaneous equations 

in which x1 , . . . , z ,  and b-'a belong to D. 
As H is the complement of D we obtain from (4) and (5) that 

However, b-'a e H if and only if b e aH. Moreover, if b e aH, then N,(a) = N,(b). 
For suppose b = ac with c in H. If a e D, then b e D and N,(a) = 1 = Nl(b). 
If a # Dl then a and b both belong to H so that N,(a) = 0 = Nl(b). Now if 
r > 1 and if x,  . . . x,-,x, = a, where each xi e D, then xl . . z,-,(x,c) = b and 
x,c e Dl which establishes that N,(a) = N,(b). Hence from (6) we obtain 

where h denotes the order of H. Applying the recurrence relation (7) succea- 
sively gives 

Now the right aide of (8) is the sum of a geometric progression with common ratio 
-hid which has r or r - 1 terms according as a e D or a +! D. Hence we obtain 
(3) since [G:H] - 1 = (g/h) - 1 = d/h. 

We note that (3) vanishes if and only if [G:H] = 2 and r is even or odd ac- 
cordingasaeDora+!D. 

We also require the following extension of Formula (3). 
Let m, , . - , m, be given integers and denote by %:(a) the number of solutions 

(2, , . . , 2,) of the equation 

where a e G and z ,  , . . , x, belong to Dl a nonempty subset of G. 
Consider the following properties which an integer m may possess. 
(a) For x e D the mapping z -+ xm is a bijection of D or 
@) 'z" e G \ D  for all x in D. 

C O R O ~ A B Y  3. Suppose that D ia a mnempty subset of a finite group O and 
that H = W D  zk a subgroup of G, Let G* = G.Go be the direct product of G 
andanygroupOoandIdD* = D-Go. Fora*eG*Ida* = aa,urithatGand 
a, e Go . If m, , . . , m, are integers such that for some i the m,-th power map zk 
a bijection of Go , then 

(10) %:'(a*) = [G*: a'-'%:(a). 

Furthm if ml , . . , m, satisfgl either (a) or @) and at least one satisfies (a), then 
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where ~ ( a )  = - 1 or [G: HI - 1 aceording us a e D or a # D and where p(mi) = - 1 
or [G: HI - 1 according us mi satisfies (a) or (8). 

Proof. If Z? • . . Z? = a* for z, , . . . , Z, in D*, then 2:' 3' = a and 
br' . . by = a, , where XI , . . , x, belong to D and b, , . . . , b, belong to Go . 
Since some mi induces a bijection on Go , the number of r-tuples (b, , - .  - , b,) 
of Go for which by' . . . b? = a, is (Go('-' and as D* = D-Go we obtain (10). 

Now let k 2 1 be the number of mi which satisfy (a). Then for any 
solution (2, , . . - , 2,) of (9) the terms of 21"' . - .  x? can be appropriately 
grouped to give a product y, . . yk = a, where yl , . . . , yk belong to D. How- 
ever, to each such product there correspond dr-' distinct solutions of (9) and 
hence by (3) 

which by the definition of p(mi) is Formula (11). 
If m, = - - - = m, = 1, then (10) holds and (11) reduces to (3). 
Suppose that G is a direct product of groups GI , . - - , G, and let D = Dl . . D,, 

whereDiisanonemptysubsetofGifori = 1, -.. ,n. ForaeGleta  = a, - - .  a, 
with a, in Gi . If m, , . . . , m, are integers, then a standard argument shows that 

Also suppose that H i  = G,\Di is a subgroup of Gi for i = 1, - - , n. If 
m, , . , m, satisfy either (a) or @) and a t  least one satisfies (a) with respect 
to each group Gi and subset Di , then (11) and (12) yield 

3. Applications. 
(a) Let A be the property that an element of a group is non-central. Since 

the central elements of a group form a subgroup, the formula for N,(a) in 
Theorem 2 applies when G is a finite non-abelian group, D is the set of non- 
central elements of G, and H is the center of G. 

(b) Let A be the property that an element of a group is a generator. (Recall 
that an element x of a group G is a generator if there exists a subset T of G such 
that (T, x) = G but (T) # G.) Since the set H of non-generators is the Frattini 
subgroup of G, the formula for N,(a) is given by (3). 

(c) Let A be the property that an element of a finite group has maximal order 
and let D be the set of elements of maximal order in a group G. If G is a direct 
product of groups GI , . . , G, whose orders are pairwise relatively prime, then 
D = Dl - - - D, , where Di is the set of elements of maximal order in Gi . Thus 
by (12) in order to evaluate N:(a) for a nilpotent group G we may assume G is 
a P-group- 
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Let 3n denote the class of p-groups G for which H,  the elements not of max- 
imal order, form a subgroup of G. Clearly 3n contains the class of abelian 
p-groups and indeed the class of regular p-groups [2; 185, Theorem 12.4.31. 

We note that if G e 3n, then H is a fully invariant subgroup of G and G/H is 
of exponent p. 

If m is an integer relatively prime to p, then m satisfies (a) since the mapping 
z + xm is an order preserving bijection of any p-group. On the other hand, if 
p I m, then m satisfies (6). Thus if G e 3n and m, , . - . , m, are integers whose 
greatest common divisor is prime with p, then %:(a) is given by (11). 

It is now easy to determine %:(a) for any integers m, , - , m , i f G i s a  
p-abelian p-group, that is, (ab)" = aRb" for all elements a, b in G [4]. For suppose 
p' is the highest power of p dividing m, , . . , m, and let mi/pa = mi' for i = 
1, . - .  , r .  If x y  ... x:' = a, then (xy" . . . x~")"' = a since G is p-abelian. 
For b in G let %fD(b) denote the number of solutions of xy '  - - - x:" = b, where 
x, , - - - , x, belong to D. Then clearly 

Now let f denote the endomorphism of G defined by f(c) = 8' for c in G. We 
may assume that a e Im f for otherwise %:(a) = 0. If a = b:' for b, in G, then 
f(b) = a if and only if b e b,(Ker f). If p' 2 exponent G, then %:(a) = d'. 
Suppose that p' < exponent G. Then Ker f G G \ D  = H and since G is 
p-abelian, H is a subgroup of G. However, (m: , . - - , m: , p) = 1 and hence (11) 
shows that %LD(b) depends only on whether b e D or b e H. Therefore, %LD(b) = 
%iD(b0) for all b in b,(Ker f) and from (14) we obtain 

(15) X: (a) = IKer f ( %iD (b,) where a = bz'. 

PROPOSITION 4. Let G be the direct product of pqroups G1 and Gp . 
(i) I f  exponent G, = exponent Gp , then G e 3n if and only if Gi e 3n for i = 1, 2. 

(ii) If  exponent G1 > exponent G, , then G e 3n if and only if G1 e 3n. 

Proof. Let Dd be the set of elements of maximal order in Gi and let Hi  = 
Gi\Di for i = 1, 2. Let D and H denote the corresponding sets for G. 

If exponent O, = exponent G, , then H = HI-Ha and thus H is a subgroup 
of G if and only if Hi is a subgroup of Gi for i = 1, 2, which proves (i). 

If exponent G, > exponent G, , then D = Dl .G, and H = H, .G,, which by 
the above argument proves (ii). 

It is of interest to calculate ~ : ( a )  for an abelian p-group. 

COROLLARY 5. Let G be an abelkn group of order p" and let D denote the set 
of elements of mazimal order in G. I f  the exponent of G appears exactly k times 
in the set of invariants of G and if m, , . , m, are integers such that (m, , . . , 
mr P) = 1, then 
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where y(a) = - 1 or pk - 1 according as a e D or a I D and whre p(m,) = - 1 
or pk - 1 according as (p, m,) = 1 or p I m. . 

Proof. Since the index of the subgroup of elements not of maximal order in 
a cyclic p-group is p, (16) follows from Proposition 4 and Formulas (10) and (11) 
of Corollary 3. 

Setting k = 1 in (16) yields e ( a )  for a cyclic group of order p". 
In view of (15) the reader may provide the slight modScation needed in 

Corollary 5 to express 3tD,(a) for arbitrary integers ml , -. , m, . 
We remark that if G is a p-group not in a but Go , the subgroup generated 

by D, belongs to a, then the previous formulas for ND,(a) apply when a t Go . 
If a Go , then ND,(a) = 0 for all r. The dihedral group of order 2.2"" is such 
an example. 

However, an open question is the evaluation of ND,(a) for a p-group G which 
is generated by D but G is not in a. 

4. Analogue for rings. If R is a finite ring and D a nonempty subset of R, 
then the number of solutions of the equation 

z l +  . - .  + z ,  = a for a t R  and z l , . - -  , z ,  in D 

is what has been denoted by ND,(a) with respect to (R, +), the additive group 
of R. 

Note that the analogue of Proposition 1 for a ring R is valid, where J = J(D) 
is taken to be the largest ideal of R such that z + J C D for all z in D. 

In case U = D denotes the set of units in a ring R with identity, then 
J(U) becomes the usual Jacobson radical of R. Thus by (2) the evaluation of 
Ny(a) is reduced to the case where R is semisimple. Then (12) shows that it 
su6ces to determine Ny(a) for F, , the ring of n X n matrices over a finite 
field F. 

One may verify that U generatea F. , that is, every matrix is a sum of inver- 
tible matrices. Moreover, Ny(a) depends only on the rank of the matrix a. 
At present we are not able to compute Ny(a) for F. , where n > 1, even when 
a = 0. 

If F is a field, then U = F \ ( O ]  and Ny(a) is given by (3) of Theorem 2. 
Thus if C denotea the class of rings R for which R/J  is a direct product of 
fields, then Ny(a) can be explicitly determined for any R in C. Note local 
rings, and hence commutative rings, belong to C. 

For positive integral r, n and integral a Rearick determined the number of 
solutions of the linear congruence 

z, + . + z, = a (mod n) 

where 0 5 z, < n and (xi , n) = 1 for i = 1, - - , n. This number is just 
Ny(a) with respect to the ring Z/(n). (In this context an equivalent formula 
for Ny(a) waa given by Dixon [I].) Since U coincides with the set of elements of 
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maximal order in the cyclic group (Z/(n), +), we can apply Corollary 5 to  
obtain the following more general reault. 

Let m, , , m, be integers such that (m, , . . , m,) = 1 and denote by  %,(a) 
the number of solutions of the  congruence 

mlxl + - . + m,z, =, a (mod n) 

where 0 I 2, < n and (2, , n) = 1 for i = 1, . . . , r. If m is an integer and 
p is a prime, define y9(m) = -1 or p - 1 according as (p, m) = 1 or p 1 m. 
Then 

which reducea t o  Rearick's reault when m, = . . - = m, = 1. 
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