Delta 3 (1972), 35-37.

PRODUCTS OF POLYNOMIALS OVER A FINITE FIELD

KENNETH S. WILLLAMS

(Carleton University, Canada)
The numbers $1,2, \ldots, m^{2}$ include exactly $[m / p]$ multiples of the prime $p,\left[m / p^{2}\right]$ multiples of p^{2}, and so on. Hence we have the well-known result (see for example [2], page 342)

$$
m!=\prod_{p} p^{\alpha(m, p)}
$$

where

$$
\alpha(m, p)=\sum_{s \geqslant 1}\left[m / p^{s}\right]
$$

It is perhaps not so well-known that one can do a similar thing for polynomials over the finite field $G F(q)$. We consider M, where the product is over all monic polynomials M $\operatorname{dog} 2 \pi=m$
over $G F(q)$ of degree m. For any (monic) irreducible polynomial I over $G F(q), \prod_{\operatorname{dog} \lambda=m} M$ contains exactly $q^{m \text {-deg } I}$ multiples of I, $q^{m-2 \operatorname{dog} I}$ multiples of I^{2}, and so on. Hence we have

$$
\begin{equation*}
\prod_{\operatorname{dog}} M I=\prod_{I} I^{\beta(m, I)}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta(m, I)=\sum_{\cdot \geq 1} q^{m-\operatorname{deg} I} \tag{2}
\end{equation*}
$$

Since $\beta(m, I)$ depends only on m and deg I, writing

$$
\begin{equation*}
\gamma(m, i)=\sum_{i=1}^{[n / i]} q^{m-11}(i=1,2, \ldots) \tag{3}
\end{equation*}
$$

we can rewrite (1) as

$$
\begin{equation*}
\prod_{\operatorname{deg}} M=m=\prod_{i=1}^{m}\left\{\prod_{\operatorname{dog} I-i} I\right\}^{\gamma(m, i)} \tag{4}
\end{equation*}
$$

This formula leads quickly to the well-known expression (see for example [1]) for the number $\pi(m)$ of monic irreducible polynomials of degree m over $G F(q)$. Equating degrees on both sides of (4) and using (3) we have

$$
\begin{equation*}
m q^{m}=\sum_{i=1}^{m} \sum_{i=1}^{[m / i]} g^{m^{\prime}-a} i \pi_{a}(i) . \tag{5}
\end{equation*}
$$

Collecting together the terms in (5) with the same value j for $8 i$ we obtain

$$
m q^{m}=\sum_{j=1}^{m} q^{m-j} \sum_{i / j} i \pi_{s}(i) .
$$

and so

$$
\begin{gathered}
g^{m}=m q^{m}-(m-1) q^{m} \\
=\sum_{j=1}^{m} q^{m-3} \sum_{i / j}^{m} i \pi_{q}(i)-q \sum_{j=1}^{m-1} q^{m-1-j} \sum_{i ; j} i \pi_{-1}(i),
\end{gathered}
$$

that is

$$
\begin{equation*}
q^{m}=\sum_{i / m} i \pi_{0}(i) \tag{6}
\end{equation*}
$$

Applying the Mobius inversion formula (see for example [2], page 236) to (6) we obtain

$$
m \pi_{-}(m)=\sum_{i / m} \mu(m / i) q^{i}
$$

REFERENCES

1. L E. Dickson, Linear groups, Dover, 1958, page 18.
2. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford, 1962 edition.
