REPRESENTATION OF A BINARY QUADRATIC FORM AS A SUM OF TWO SQUARES

KENNETH S. WILLIAMS

ABSTRACT. Let \(\phi(x, y) \) be an integral binary quadratic form. A short proof is given of Pall’s formula for the number of representations of \(\phi(x, y) \) as the sum of squares of two integral linear forms.

Let \(\phi(x, y) \) be an integral binary quadratic form. If \(\phi(x, y) \) is expressible as the sum of squares of two integral linear forms then \(\phi(x, y) \) must be positive definite or semidefinite, have an even coefficient of \(xy \), and be of square determinant. Mordell [1] has proved that a binary quadratic form \(\phi(x, y) = hx^2 + 2kxy + ly^2 \) with these properties is the sum of squares of two integral linear forms if and only if \(r_2(d_1) > 0 \), where \(r_2(d_1) \) denotes the number of representations of \(d_1 = \text{G.C.D.}(h, 2k, l) \) as the sum of two squares. Pall [2], using properties of Hermite-matrices, has shown that when \(\phi(x, y) \) is representable in this way, the number of such representations is \(2r_2(d_1) \), if \(\text{det}(\phi) = hl - k^2 = m^2 \neq 0 \), and is \(r_4(d_1) \), if \(\text{det}(\phi) = hl - k^2 = m^2 = 0 \). In this note we give a very simple proof of this result.

Since \(hx^2 + 2kxy + ly^2 \) can be expressed as the sum of squares of two integral linear forms there exist integers \(a_1, a_2, b_1, b_2 \), such that

\[
(1) \quad hx^2 + 2kxy + ly^2 = (a_1x + b_1y)^2 + (a_2x + b_2y)^2.
\]

If we write \(\alpha, \beta \) for the gaussian integers \(a_1 + ia_2, b_1 + ib_2 \) respectively, (1) becomes

\[
(2) \quad hx^2 + 2kxy + ly^2 = (\alpha x + \beta y)(\bar{\alpha}x + \bar{\beta}y),
\]

so that

\[
(3) \quad h = \alpha \bar{\alpha}, \quad 2k = \alpha \bar{\beta} + \bar{\alpha} \beta, \quad l = \beta \bar{\beta}.
\]

The domain of all gaussian integers is denoted by \(\mathbb{Z}(i) \). It is a unique factorization domain. We let \(\gamma \in \mathbb{Z}(i) \) denote one of the four associated greatest common divisors of \(\alpha \) and \(\beta \) and write \(\alpha = \gamma \alpha_1, \beta = \gamma \beta_1 \), so that the only common factors of \(\alpha_1 \) and \(\beta_1 \) are the units \(\pm 1, \pm i \). Hence from

Received by the editors December 23, 1970.

AMS 1970 subject classifications. Primary 10C05, 10J05; Secondary 10E25.

Key words and phrases. Binary quadratic form, sum of squares.

© American Mathematical Society 1972

368
(2) we have
\[d_1 = \text{G.C.D.}(h, 2k, l) = \text{G.C.D.}(\alpha \tilde{\alpha}, \alpha \beta + \tilde{\alpha} \beta, \beta \tilde{\beta}) \]
that is
\[d_1 = \gamma \tilde{\gamma}, \]
and so (2) becomes
\[h x^2 + 2kxy + l y^2 = d_1(\alpha x + \beta y)(\tilde{\alpha} x + \tilde{\beta} y). \]
Moreover we have
\[m^2 = \det(h x^2 + 2kxy + l y^2) = hl - k^2 \]
\[= (\alpha \tilde{\alpha})(\beta \tilde{\beta}) - \left(\frac{\alpha \beta + \tilde{\alpha} \tilde{\beta}}{2}\right)^2 \quad \text{(from 3)} \]
\[= -\left(\frac{\alpha \beta - \tilde{\alpha} \tilde{\beta}}{2}\right)^2 = -\gamma \tilde{\gamma}^2 \left(\frac{\alpha \beta_1 - \tilde{\alpha} \beta_1}{2}\right)^2 \]
\[= -d_1^2 \left(\frac{\alpha \beta_1 - \tilde{\alpha} \beta_1}{2}\right)^2 \quad \text{(from 4)}, \]
that is,
\[m = \pm d_1 \left(\frac{\alpha \beta_1 - \tilde{\alpha} \beta_1}{2}\right). \]
Now the required number of representations is just the number of distinct 4-tuples of integers \((a_1', a_2', b_1', b_2')\) such that
\[h x^2 + 2kxy + l y^2 = (a_1' x + b_1' y)^2 + (a_2' x + b_2' y)^2, \]
that is, on writing \(\alpha' = a_1' + ib_1' \in \mathbb{Z}(i)\), \(\beta' = a_2' + ib_2' \in \mathbb{Z}(i)\) and using (5), the number of distinct pairs of gaussian integers \((\alpha', \beta')\) such that
\[(\alpha' x + \beta' y)(\tilde{\alpha}' x + \tilde{\beta}' y) = d_1(\alpha x + \beta y)(\tilde{\alpha} x + \tilde{\beta} y). \]
As \(\alpha x + \beta y\) is a primitive irreducible element in the unique factorization domain \(\mathbb{Z}(i)[x, y]\) we have
\[\alpha x + \beta y \mid \alpha' x + \beta' y \quad \text{or} \quad \alpha x + \beta y \mid \tilde{\alpha}' x + \tilde{\beta}' y. \]
If \(\alpha x + \beta y \mid \alpha' x + \beta' y\) then \(\alpha' x + \beta' y = \delta(\alpha x + \beta y)\) for some \(\delta \in \mathbb{Z}(i)\), and so we have
\[(\alpha', \beta') = (\delta \alpha_1, \delta \beta_1), \quad \text{where} \ \delta \delta = d_1. \]
Similarly if \(\alpha x + \beta y \mid \tilde{\alpha}' x + \tilde{\beta}' y\) we have
\[(\alpha', \beta') = (\delta \tilde{\alpha}_1, \delta \tilde{\beta}_1), \quad \text{where} \ \delta' \delta' = d_1. \]
If \(m \neq 0 \), so that from (6) we have \(\alpha_1 \beta_1 \neq \overline{\alpha}_1 \beta_1 \), then \((\delta \alpha_1, \delta \beta_1) \neq (\delta' \overline{\alpha}_1, \delta' \overline{\beta}_1) \) and so (7) and (8) give \(2r_2(d_1) \) distinct pairs \((\alpha', \beta')\) as required. If \(m = 0 \), so that from (6) we have \(\alpha_1 \beta_1 = \overline{\alpha}_1 \beta_1 \), then \(\overline{\alpha}_1 \sim \alpha_1 \), \(\beta_1 \sim \overline{\beta}_1 \) and the set of ordered pairs given by (7) coincides with that given by (8), thus giving only \(r_2(d_1) \) distinct pairs \((\alpha', \beta')\) as required.

References

Department of Mathematics, Carleton University, Ottawa, Ontario, Canada