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1. Introduction. Throughout this paper a,, a,, a?, I,, 1, denote &red integers with 
1, 2 2, 1, 2 2. We let 1 = max (l,, I,) and let P be the set of primes p { a,, a,, a,. 
Mordell(4) has shown that for any sufficiently large prime p the congruence 

f (x,, x,) = a , x ~ + a , ~ + a ,  = 0 (modp) (1.1) 

is soluble. Thus there are at  most a h i t e  number of suchp for which (1.1) is insoluble. 
If there is at least one prime p E P for which (1.1) is insoluble, we let p,, denote the 
largest of such p, so that (1.1) is soluble for all p E P with p > p, but not for p = p,. 
Otherwise (1.1) is soluble for all p E P and we let p, = 1. From the work of Mordell(4) 
we have Po < 1112(4+ 1) (12+ I). (l.2) 
For p E P with p > p0 (1.1) is thus always soluble and any such solution (x,, x,) can be 
taken to satisfy 1 < x i < $ )  ( i= 1,2). (1.3) 
Chalk@) has posed the problem of estimating a 'small' solution of (1.1), at least for 
p sufficiently large; that is a solution for whichp in the inequality (1.3) can be replaced 
by something less than p. Smith(5) has shown that for p sufficiently large there is 
always a solution satisfying 1 < xi < pt logp (i = 1,2). It is the purpose of this paper 
to prove the following sharper and more precise result. 

THEOREM. If p ( ~  P) > p0 there is a solution (x,, x,) of (1.1) satisfying 

1,<xi<min(p,3(1+1)pf)  ( i = l , 2 ) .  

We remark that this theorem contains nothing new if p ( ~  P) is such that 

po < p < 34(1 + I)*, 

since for such p we have pi < 3(1+ 1 ), p < 3(1+ 1 ) pf, 

giving min (p, 3(1+ 1)pf) = p. 

Hence in the proof of the theorem we can suppose that p 2 34(1 + The proof uses an 
idea due to Tietiivainen (6) and a recent estimate of Bombieri (1) (see also (3)). 

2. Notation. For any real number u we write 

e(u) = exp (2niu/p) 

so that if r is any integer we have 

1 P - 1  if r = 0 (mod p), - 
e(rs) = (:: if r + 0 (modp). P 8-0 
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We let k = [ , /2(1+l)p*]+l.  
NOW p 2 3'(1+ 1)' so that 

and so we have p > 242(1+ 1)p*+ 3 

2 2[42(1+ 1 ) p q  + 3 

= 2 k + l ,  

For i = 1,2, we let N ( x J  denote the number of solutions (uil, u,,) of 

with 1 <?A,,< k ( j =  1,2). 
Appealing to (2.1) we have 

We also d e h e  for any integer r k 
A ( r )  = X e(r8) 

s=l 

so that A ( 0 )  = k.  
From (2.1), (2.3) and (2.5) we have 

3. Proof of theorem. For i = 1,2 and t = 0 ,  I ,  ...,p- 1, from (2.4) and (2.5), we have 

Hence we have 

1 P-1 
= -  x 1 2 2 z  E e(-81x1-82x2). 

2' &.&=O z1,2,=1 
f(a,z.)=O 

(mod P)  
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In  this sum the terms with (s,, s,) = (0,O) contribute (recall (2.6)) 

1 P k4 
-{A(o)}4 Z I=--N,, 
2' z1.*=1 

f(z1, *)GO 
(mod p) 

where Np denotes the number of (x,, x,) with 1 < xt < p,  i = 1,2, satisfying (1.1). By a 
result of Mordell(4) N, satisfies 

so that N, 2 p - (1 + 1)2p*. 

By a recent result of Bombieri(l), see also(3), as f(x,,x,) is absolutely irreducible 
(modp), for the terms with (s,, s,) + (0,O) we have 

h p  2 34(1+1)4 > 14, we have (12+21-3)p*+12 < (12+21-2)p*, and so 

= (1, + 21 - 2)p4ka, 
using (2.7). 

On the other hand we have 

P 

= 1, Z fl(x,)N(x2), 
zl.*=l 

f(zl.*)GO 
(mod p) 

P 
and so 

k4 
p X N(xJ N(x2) > p (p - (1 + l)2p*) - (P + 21 - 2)p#k2, 

Z,,zl=l 
f(a.z.)=o 

f 2 = 0 (modp) 
- - k4- (I+ 1) 2 p -*k4 - (12 + 21 - 2)p#k2 

> k4- (1 + l)2p#k2 - (12+ 21 - 2)p#k2 (as k < p) 
= k2{k2 - (2Za + 41 - l)p#} 

> k2{2(1+ (212+41- l)p#} (as k > $(1+ 

= 3k2p# 

> 0. 



Hence there exist integers x, and x, ( 1  < x,, x, 6 p )  such that 

and 

The conditions (3.1) imply the existence of integers u,,, u,,, u,, u,, such that 

and %I + u12 = X I ,  uZl + u,, = x, (modp).  
Hence we have 

I ~ 1 - ( ~ 1 1 + ~ 1 2 ) 1  G p - 1 ,  I x ~ - ( u ~ ~ + u ~ ~ ) ~  6 ~ - 1  

and so for i = 1,2  we have 

This proves the theorem, aa 

2[J2(1+ l )p* ]  + 2 6 2  J2(1+ l )p*+  2  6 3(1+ l )p* ,  

since ( 3 - 2  J2)(1+1)p* > +.38(1+l)4 > 2. 

4 .  Conclusion. It would be interesting to know if the exponent Q in the theorem a n  
be replaced by something smaller. 
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