Small solutions of the congruence

$$
a_{1} x_{1}^{l_{1}}+a_{2} x_{2}^{l_{2}}+a_{0} \equiv 0(\bmod p)
$$

By KENNETH S. WILLIAMS \dagger
Carleton University, Ottawa, Canada

(Received 12 January 1971)

1. Introduction. Throughout this paper $a_{0}, a_{1}, a_{2}, l_{1}, l_{2}$ denote fixed integers with $l_{1} \geqslant 2, l_{2} \geqslant 2$. We let $l=\max \left(l_{1}, l_{2}\right)$ and let P be the set of primes $p \nmid a_{0}, a_{1}, a_{2}$. Mordell(4) has shown that for any sufficiently large prime p the congruence

$$
f\left(x_{1}, x_{2}\right)=a_{1} x_{1}^{l_{1}}+a_{2} x_{2}^{x_{2}}+a_{0} \equiv 0 \quad(\bmod p)
$$

is soluble. Thus there are at most a finite number of $\operatorname{such} p$ for which $(l \cdot 1)$ is insoluble. If there is at least one prime $p \in P$ for which ($1 \cdot 1$) is insoluble, we let p_{0} denote the largest of such p, so that ($1 \cdot 1$) is soluble for all $p \in P$ with $p>p_{0}$ but not for $p=p_{0}$. Otherwise ($1 \cdot 1$) is soluble for all $p \in P$ and we let $p_{0}=1$. From the work of Mordell (4) we have

$$
p_{0} \leqslant l_{1} l_{2}\left(l_{1}+1\right)\left(l_{2}+1\right) .
$$

For $p \in P$ with $p>p_{0}(1 \cdot 1)$ is thus always soluble and any such solution $\left(x_{1}, x_{2}\right)$ can be taken to satisfy

$$
\begin{equation*}
1 \leqslant x_{i} \leqslant p \quad(i=1,2) . \tag{1-3}
\end{equation*}
$$

Chalk (2) has posed the problem of estimating a 'small' solution of ($1 \cdot 1$), at least for p sufficiently large; that is a solution for which p in the inequality ($1 \cdot 3$) can be replaced by something less than p. Smith (5) has shown that for p sufficiently large there is always a solution satisfying $1 \leqslant x_{i} \ll p^{\frac{2}{2}} \log p(i=1,2)$. It is the purpose of this paper to prove the following sharper and more precise result.

Theorem. If $p(\in P)>p_{0}$ there is a solution (x_{1}, x_{2}) of $(1 \cdot 1)$ satisfying

$$
1 \leqslant x_{i} \leqslant \min \left(p, 3(l+1) p^{\frac{3}{2}}\right) \quad(i=1,2) .
$$

We remark that this theorem contains nothing new if $p(\in P)$ is such that

$$
p_{0}<p<3^{4}(l+1)^{4}
$$

since for such p we have $\quad p^{\frac{1}{4}}<3(l+1), \quad p<3(l+1) p^{\frac{1}{2}}$,
giving $\quad \min \left(p, 3(l+1) p^{\frac{2}{4}}\right)=p$.
Hence in the proof of the theorem we can suppose that $p \geqslant 3^{4}(l+1)^{4}$. The proof uses an idea due to Tietäväinen (6) and a recent estimate of Bombieri(1) (see also (3)).
2. Notation. For any real number u we write

$$
e(u)=\exp (2 \pi i u / p)
$$

so that if r is any integer we have

$$
\frac{1}{p} \sum_{s=0}^{p-1} e(r s)=\left\{\begin{array}{llll}
1, & \text { if } & r \equiv 0 & (\bmod p) \\
0, & \text { if } & r \neq 0 & (\bmod p)
\end{array}\right\}
$$

\dagger This research wes supported by a National Research Council of Canada grant (No. A-7233).

We let

$$
k=\left[\sqrt{2}(l+1) p^{\frac{3}{4}}\right]+1 .
$$

Now $p \geqslant 3^{4}(l+1)^{4}$ so that

$$
\begin{aligned}
p^{\frac{3}{(}\left(p^{\frac{1}{t}}-2 \sqrt{ } 2(l+1)\right)} & \geqslant 3^{3}(l+1)^{3}\{3(l+1)-2 \sqrt{ } 2(l+1)\} \\
& =(3-2 \sqrt{ } 2) 3^{3}(l+1)^{4} \\
& >\frac{1}{3^{2}} \cdot 3^{3} \\
& =3,
\end{aligned}
$$

and so we have

$$
\begin{align*}
p & >2 \sqrt{ } 2(l+1) p^{\frac{3}{2}}+3 \\
& \geqslant 2\left[\sqrt{ } 2(l+1) p^{2}\right]+3 \\
& =2 k+1, \\
& 1 \leqslant k \leqslant \frac{1}{2}(p-1) .
\end{align*}
$$

giving
For $i=1,2$, we let $N\left(x_{i}\right)$ denote the number of solutions ($u_{i 1}, u_{i 2}$) of

$$
\begin{aligned}
& u_{i 1}+u_{i 2} \equiv x_{i} \quad(\bmod p) \\
& 1 \leqslant u_{i j} \leqslant k \quad(j=1,2) .
\end{aligned}
$$

Appealing to (2•1) we have

$$
N\left(x_{i}\right)=\frac{1}{p} \sum_{u_{i 1}, u_{i 1}=1}^{k} \sum_{s_{i}=0}^{p-1} e\left(\left(u_{i 1}+u_{i 2}-x_{i}\right) s_{i}\right) .
$$

We also define for any integer r

$$
\begin{gather*}
A(r)=\sum_{s=1}^{k} e(r s) \\
A(0)=k .
\end{gather*}
$$

so that
From (2.1), (2.3) and (2.5) we have

$$
\begin{equation*}
\sum_{r=0}^{p-1}|A(r)|^{2}=p k \tag{2•7}
\end{equation*}
$$

3. Proof of theorem. For $i=1,2$ and $t=0,1, \ldots, p-1$, from (2•4) and (2.5), we have

$$
\begin{aligned}
\sum_{x_{i}=1}^{p} N\left(x_{i}\right) e\left(a_{i} t x_{i}^{l_{i}}\right) & =\frac{1}{p} \sum_{x_{i}=1}^{p} \sum_{u_{i,}, u_{i}=1}^{k} \sum_{s_{i}=0}^{p-1} e\left(\left(u_{i 1}+u_{i 1}-x_{i}\right) s_{i}+a_{i} t x_{i}^{l_{i}}\right) \\
& =\frac{1}{p} \sum_{s_{i}=0}^{p-1}\left\{A\left(s_{i}\right)\right\}^{p-1} \sum_{x_{i}=1}^{p-1} e\left(a_{i} t x_{i}^{k}-s_{i} x_{i}\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \sum_{t=0}^{p-1} e\left(a_{0} t\right)\left\{\sum_{x_{1}=1}^{p} N\left(x_{1}\right) e\left(a_{1} t x_{1}^{d_{1}}\right)\right\}\left\{\sum_{x_{2}=1}^{p} N\left(x_{2}\right) e\left(a_{2} t x_{2}^{b_{2}}\right)\right\} \\
& =\frac{1}{p^{2}} \sum_{s_{1}, s_{1}=0}^{p-1}\left\{A\left(s_{1}\right)\right\}^{2}\left\{A\left(s_{2}\right)\right\}^{2} \sum_{x_{1}, x_{2}=1}^{p} e\left(-s_{1} x_{1}-s_{2} x_{2}\right) \sum_{i=0}^{p-1} e\left(t\left(a_{1} x_{1}^{l_{1}}+a_{2} x_{2}^{l_{2}}+a_{0}\right)\right) \\
& =\frac{1}{p} \sum_{s_{1}, s_{2}=0}^{p-1}\left\{A\left(s_{1}\right)\right\}^{2}\left\{A\left(s_{2}\right)\right\}^{2} \sum_{\substack{x_{1}, x_{1}=1 \\
\left(x_{1}, x_{1}\right)=0 \\
(\bmod p)}}^{p} e\left(-s_{1} x_{1}-s_{2} x_{2}\right) .
\end{aligned}
$$

In this sum the terms with $\left(s_{1}, s_{2}\right)=(0,0)$ contribute (recall (2.6))

$$
\frac{1}{p}\{A(0)\}^{4} \sum_{\substack{x_{1}, x_{1}=1 \\ f\left(x_{1}, x_{1}\right)=0 \\(\bmod p)}}^{p} 1=\frac{k^{4}}{p} N_{p},
$$

where N_{p} denotes the number of $\left(x_{1}, x_{2}\right)$ with $1 \leqslant x_{i} \leqslant p, i=1,2$, satisfying ($1 \cdot 1$). By a result of Mordell (4) N_{p} satisfies

$$
\left|N_{p}-p\right| \leqslant p^{\frac{1}{2}}\left\{l_{1}\left(l_{1}+1\right) l_{2}\left(l_{2}+1\right)\right\}^{\frac{1}{2}}
$$

so that

$$
N_{p} \geqslant p-(l+1)^{2} p^{\frac{1}{1}}
$$

By a recent result of $\operatorname{Bombieri}(1)$, see also(3), as $f\left(x_{1}, x_{2}\right)$ is absolutely irreducible $(\bmod p)$, for the terms with $\left(s_{1}, s_{2}\right) \neq(0,0)$ we have

$$
\left|\sum_{\substack{x_{1} x_{1}=1 \\ s_{1}\left(x_{1}, x_{1}=0 \\ \text { mod } p\right)}}^{p} e\left(-s_{1} x_{1}-s_{2} x_{2}\right)\right| \leqslant\left(l^{2}+2 l-3\right) p^{\frac{1}{s}}+l^{2} .
$$

As $p \geqslant 3^{4}(l+1)^{4}>l^{4}$, we have $\left(l^{2}+2 l-3\right) p^{\frac{1}{2}}+l^{2}<\left(l^{2}+2 l-2\right) p^{\frac{1}{2}}$, and so

$$
\left.\begin{aligned}
\left\lvert\, \frac{1}{p} \sum_{\substack{s_{1}, s_{2}=1 \\
\left(s_{2}\right)=(0,0)}}^{p-1}\left\{A\left(s_{1}\right)\right\}^{2}\left\{A\left(s_{2}\right)\right\}^{2}\right. & \sum_{\substack{x_{1}, x_{i}=1 \\
f\left(x_{2}, x_{2}\right)=0 \\
(m o d}}^{p} e\left(-s_{1} x_{1}-s_{2} x_{2}\right)
\end{aligned} \right\rvert\,
$$

using (2•7).
On the other hand we have
and so

$$
\begin{aligned}
& \sum_{=0}^{p-1} e\left(a_{0} t\right)\left\{\sum_{x_{1}=1}^{p} N\left(x_{1}\right) e\left(a_{1} t x_{1}^{l_{1}}\right)\right\}\left\{\sum_{x_{1}=1}^{p} N\left(x_{2}\right) e\left(a_{2} t x_{2}^{l_{2}}\right)\right\} \\
& \quad=\sum_{x_{1}, x_{2}=1}^{p} N\left(x_{1}\right) N\left(x_{2}\right) \sum_{i=0}^{p-1} e\left(\left(a_{1} x_{1}^{l_{1}}+a_{2} x_{2}^{l_{2}}+a_{0}\right) t\right) \\
& \quad=p \sum_{\substack{x_{1}, x_{1}=1 \\
f\left(x_{2}, x_{2}=0 \\
(\operatorname{mos} \dot{p})\right.}}^{p} N\left(x_{1}\right) N\left(x_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right) \equiv 0 \quad(\bmod p) \\
& =k^{4}-(l+1)^{2} p^{-\frac{1}{2}} k^{4}-\left(l^{2}+2 l-2\right) p^{\frac{8}{2}} k^{2} \\
& \left.>k^{4}-(l+1)^{2} p^{\frac{8}{2}} k^{2}-\left(l^{2}+2 l-2\right) p^{\frac{8}{2}} k^{2} \quad \text { (as } k<p\right) \\
& =k^{2}\left\{k^{2}-\left(2 l^{2}+4 l-1\right) p^{\frac{2}{2}}\right\} \\
& >k^{2}\left\{2(l+1)^{2} p^{\frac{2}{2}}-\left(2 l^{2}+4 l-1\right) p^{\frac{8}{2}}\right\} \quad\left(\text { as } k>\sqrt{2}(l+1) p^{\frac{2}{2}}\right) \\
& =3 k^{2} p^{\frac{2}{2}} \\
& >0 \text {. }
\end{aligned}
$$

Hence there exist integers x_{1} and $x_{2}\left(1 \leqslant x_{1}, x_{2} \leqslant p\right)$ such that
and

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right) \equiv 0 \quad(\bmod p) \tag{3•1}
\end{equation*}
$$

$N\left(x_{1}\right)>0, N\left(x_{2}\right)>0$.
The conditions (3.1) imply the existence of integers $u_{11}, u_{12}, u_{21}, u_{22}$ such that

$$
1 \leqslant u_{11}, \quad u_{12}, \quad u_{21}, \quad u_{22} \leqslant k \leqslant \frac{p-1}{2}
$$

and

$$
u_{11}+u_{12} \equiv x_{1}, \quad u_{21}+u_{22} \equiv x_{2} \quad(\bmod p) .
$$

Hence we have

$$
\left|x_{1}-\left(u_{11}+u_{12}\right)\right| \leqslant p-1, \quad\left|x_{2}-\left(u_{21}+u_{22}\right)\right| \leqslant p-1
$$

and so for $i=1,2$ we have

$$
1 \leqslant x_{i}=u_{i 1}+u_{i 2} \leqslant 2 k=2\left[\sqrt{2}(l+1) p^{\frac{2}{i}}\right]+2 .
$$

This proves the theorem, as
since

$$
\begin{gathered}
2\left[\sqrt{ } 2(l+1) p^{\frac{3}{k}}\right]+2 \leqslant 2 \sqrt{ } 2(l+1) p^{\frac{1}{t}}+2 \leqslant 3(l+1) p^{\frac{3}{4}}, \\
(3-2 \sqrt{ } 2)(l+1) p^{\frac{3}{2}}>\frac{1}{9} .3^{3}(l+1)^{4}>2 .
\end{gathered}
$$

4. Conclusion. It would be interesting to know if the exponent $\frac{3}{3}$ in the theorem can be replaced by something smaller.

REFERENCES

(1) Bombieri, E. On exponential sums in finite fields. Amer. J. Math. 88 (1966), 71-105.
(2) Chair, J. H. H. The number of solutions of congruences in incomplete residue systems. Canad. J. Math. 15 (1963), 291-296.
(3) Chatk, J. H. H. and Smith, R. A. On Bombieri's estimate for exponential sums. Acta Arith. (to appear).
(4) Mordell, L. J. The number of solutions of some congruences in two variables. Math. Zeit. 37 (1933), 193-209.
(5) Smith, R. A. The distribution of rational points on hypersurfaces defined over a finite field. Mathematika 17 (1970), 328-332.
(6) Tietäväinen, A. On non-residues of a polynomial. Ann. Univ. Turku., Ser. AI 94 (1966), 3-6.

