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1. Introduction. Throughout this paper a,, a,, a,, I;, I, denote fixed integers with

I, >2, l;> 2 We let | = max(l,l,) and let P be the set of primes p{ay,a,, a,.
Mordell (4) has shown that for any sufficiently large prime p the congruence

f(@,@3) = 0,27 + 0,23 +a, =0 (modp) (1-1)

is soluble. Thus there are at most a finite number of such p for which (1-1) is insoluble.

If there is at least one prime p e P for which (1-1) is insoluble, we let p, denote the

largest of such p, so that (1-1) is soluble for all pe P with » > p, but not for p = p,,.

Otherwise (1-1) is soluble for all pe P and we let p, = 1. From the work of Mordell (4)

we have Do < Lilg(l+1) (g +1). (1-2)
For p e P with p > p, (1-1) is thus always soluble and any such solution (z,, z;) can be
taken to satisfy l<a,<p ((=1,2). (1-3)

Chalk (2) has posed the problem of estimating a ‘small’ solution of (1:1), at least for
p sufficiently large; that is a solution for which p in the inequality (1-3) can be replaced
by something less than p. Smith (5) has shown that for p sufficiently large there is
always a solution satisfying 1 < x; < ptlogp (¢ = 1, 2). It is the purpose of this paper
to prove the following sharper and more precise result.
THEOREM. If p(e P) > p, there is a solution (x,, z,) of (1-1) satisfying
1< z; <min(p,3(+1)pt) (@ =1,2).
We remark that this theorem contains nothing new if p(e P) is such that
Dy <P < 3YI+1)4
since for such p we have pt < 3(I+1), p < 3(I+1)pi,
giving min (p, 3(1+1)pt) = p.
Hence in the proof of the theorem we can suppose that p > 3%!+ 1)% The proof uses an
idea due to Tietdviinen (6) and a recent estimate of Bombieri (1) (see also (3)).
2. Notation. For any real number » we write
e(u) = exp (2miu/p)
so that if 7 is any integer we have
191 1, if r=0 (modop),
P20 i T2 (mea)
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We let k=[J2(0+1)p]+1.
Now p > 3%l +1)*s0 that
PRt — 2201+ 1)) > 331+ 13 {3(1+1)— 22(+1)}
= (83—24/2)33(+1)*

> §33
and so we have p>2J2(0+1)pt+3
> 2[42(l+ 1)p*]+3
=2k +1,
giving 1< k< bp—1).

For i = 1,2, we let N(x;) denote the number of solutions (u;,, %,;,) of
Uyt Uy =2; (modp)

with I1<uy<k (j=1,2).

Appealing to (2-1) we have

k
Ne@)=> I ”2 (241 + i — %) ).

.p Ui, unn=1 8;=0

‘We also define for any integer r x
A(r) = X e(rs)
8=1

8o that A(0) =
From (2-1), (2-3) and (2-5) we have

p—1
3 |A(n)]® = pk.
r=0

(2-2)

(23)

(2-4)

(2-5)

(2-6)

(27)

3. Proof of theorem. Fori = 1,2and ¢ = 0,1, ...,p—1, from (2-4) and (2-5), we have

1 » k p—1
E N(z;)e(gtz}) == X > Y e((uyy +up— ;) 8+ aytxl)
z=1 D z=1 upun=1 =0
= Z {A(s,)}? Z e(atzl—s,x;).
8‘- zg=1

Hence we have

% o) { £ Napetwrtab)| $ Ve etastad)

='?%::= {4 (s {A(s)}? P§=le( 8%, — 857,) Z e(t(@ 2P +a, 7% + ay))
2T AP S e(—nm-5,a,).
D s,8,=0 Zy, 2y =1

Sy, 20)=0
(mod )
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In this sum the terms with (s;, s,) = (0, 0) contribute (recall (2-6))

1 P kA
—{A(0)}4 l1=—N_,
p{ (0 z,.§=1 p?
J(z1, ) =0
(mod p)

where N, denotes the number of (x,, z,) with 1 < 2; < p, 1 = 1, 2, satisfying (1-1). By a
result of Mordell (4) N, satisfies

|Np— 2| < pHL(+1) (0 + 1)}
so that N, 2 p—(+1)2pt
By a recent result of Bombieri(1), see also(3), as f(z,,x,) is absolutely irreducible

(mod p), for the terms with (s,, s,) + (0, 0) we have

P
2 e(— 87— 8,7,)
Zy, Ta=1
1@, 23)=0
(mod p)

Asp > 341+ 1) > 14, we have (124 21— 3)pt +12 < (I2+2]—2)p?, and s0
1 »-1 P
I’ X {A(s))? {A(Sz)}z 2 (8% —8,7,)

=0 y Tg=

81,8
(81, 80)+(0, 0) .f(a:; Z)=0

(mod p)
Ry2l—-2
<S5 E o
=(12+2;—2)pik2,

< (B+20-3)pt4 2

using (2-7).
On the other hand we have
p—-1

P p
> e(aon{ > N(xae(altxil)}{ 3 Niws)elatad)|

=0

= Z N(zy) N(z,) Z e((@y 2} + a2l + ay)t)

Ty, T3=1

=p 3 N(xl)N(x2)

Ty, Ty=
fzn, 2= 0
(mod p)

4
and so P }rj N(z,) N(z,) > E— (p—(+1)2p¥) — (124 21— 2)_p*k2,
asa, ?
(mod p)

Sf(@,2,) =0 (modp)
=kA—(I+1)2p—Hkt— (12 + 21— 2) phi2
> k- (+1)2p¥k2— (124 21— 2)p¥k® (as k < p)
= Bk — (2P +4—1)p}}
> k2(0+1)2pt — 2R+ 41— 1) p¥} (ask > J2(1+1)pd)
= 3k%ph
> 0.
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Hence there exist integers z, and z, (1 < =x,, #, < p) such that

f(xy,2,) =0 (modyp)

and N(z;) >0, N(z,)>0. (3-1)
The conditions (3-1) imply the existence of integers u,y, %5, %y, %, such that

1S tuyy, % Uy, Up<k< 1%1
and Up+Up =2y, Uyt Uy =2, (modp).

Hence we have
| 21— (U +1e)| S =1, |2—(Ugy + )| < p—1

and so for ¢ = 1,2 we have
1 < 2y = wupy+uy < 2k = 2[J2(0+ 1) p¥] + 2.
This proves the theorem, as
220+ 1) ¥ +2 < 24200+ 1)pt+2 < 300+ 1) pt,
since (3—-242)(@+1)pt > 1.33(1+1)* > 2.

4. Conclusion. It would be interesting to know if the exponent £ in the theorem can
be replaced by something smaller.
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