ON THE SOLUTION OF LINEAR G.C.D. EQUATIONS

DAVID JACOBSON AND KENNETH S. WILLIAMS

Let Z denote the domain of ordinary integers and let $m(\geq 1)$, $n(\geq 1)$, $l_i (i=1, \cdots, m)$, $l_{ij} (i=1, \cdots, m; j=1, \cdots, n) \in Z$. We consider the solutions $x \in Z^n$ of

(1) G.C.D.
$$(l_{11}x_1 + \cdots + l_{1n}x_n + l_1, \cdots, l_{m1}x_1 + \cdots + l_{mn}x_n + l_m, c) = d$$
,

where $c(\neq 0)$, $d(\geq 1) \in Z$ and G.C.D. denotes "greatest common divisor". Necessary and sufficient conditions for solvability are proved. An integer t is called a solution modulus if whenever x is a solution of (1), x + ty is also a solution of (1) for all $y \in Z^n$. The positive generator of the ideal in Z of all such solution moduli is called the minimum modulus of (1). This minimum modulus is calculated and the number of solutions modulo it is derived.

1. Introduction. Let Z denote the domain of ordinary integers and let $m(\geq 1)$, $n(\geq 1)$, $l_i(i=1,\cdots,m)$, $l_{ij}(i=1,\cdots,m;j=1,\cdots,n) \in Z$. We write $l=(l_1,\cdots,l_m)$ and for each $i=1,\cdots,m$ we write $l_i=(l_{i1},\cdots,l_{in})$ and $l_i'=(l_{i1},\cdots,l_{in},l_i)$ so that $l\in Z^m$, each $l_i\in Z^n$, and each $l_i'\in Z^{n+1}$. If $x=(x_1,\cdots,x_n)\in Z^n$ we write in the usual way $l_i\cdot x$ for the linear expression $l_{i1}x_1+\cdots+l_{in}x_n$. We let L denote the $m\times n$ matrix whose ith row is l_i and L' denote the $m\times (n+1)$ matrix whose ith row is l_i' .

Henceforth in this paper we will write the abbreviation G.C.D. for "greatest common divisor" of a finite sequence of integers, not all zero, and consider the solutions $x \in \mathbb{Z}^n$ of

(1.1) G.C.D.
$$(l_1 \cdot x + l_1, \dots, l_m \cdot x + l_m, c) = d$$
,

where $c(\neq 0)$, $d(\geq 1) \in \mathbb{Z}$. A number of authors have either used or proved results concerning special cases of this equation (see for example [1], [5]) so that it is of interest to give a general treatment. This equation is clearly connected with the system

(1.2)
$$l_i \cdot x + l_i \equiv 0 \pmod{d} \ (i = 1, \dots, m)$$
.

If we denote the number of incongruent solutions modulo d of (1.2) by N(d, L'), then N(d, L') > 0 is a necessary condition for the solvability of (1.1). A complete treatment of the system (1.2) has been given by Smith [4]. Let D_i = greatest common divisor of the determinants of all the $i \times i$ submatrices in L ($i = 1, \dots, \min(m, n)$), D'_i = greatest common divisor of the determinants of all the $i \times i$ sub-

matrices in L' $(i=1, \dots, \min(m, n+1))$, $\gamma_i = \text{greatest common divisor}$ of d and $\frac{D_i}{D_{i-1}}$, $i=1, \dots, \min(m, n)$, where $D_0=1$, and $\gamma_i' = \text{greatest}$

common divisor of d and $\frac{D'_i}{D'_{i-1}}$, $i=1,\cdots,\min(m,n)$, where $D'_0=1$. Smith has shown that (1.2) is solvable if and only if

$$\prod_{i=1}^{\min(m,\ n)} \gamma_i = \prod_{i=1}^{\min(m,\ n)} \gamma_i'$$

and

$$\frac{D'_{n+1}}{D'_n} \equiv 0 \pmod{d}, \text{ if } m > n.$$

When solvable he shows that

$$N(d, L') = \gamma d^{\max(n-m, 0)}$$
,

where

$$\gamma = \prod_{i=1}^{\min(m,\ n)} \gamma_i$$
 .

We show in Theorem 1 that the conditions

(1.3)
$$d \mid c, N(d, L') > 0$$
, G.C.D. $(l_1, \dots, l_m, d) = \text{G.C.D.}(l'_1, \dots, l'_m, c)$

are both necessary and sufficient for solvability of (1.1). When (1.1) is solvable, (1.3) shows that the quantity g = G.C.D. (l_1, \dots, l_m, d) is a factor of l_i , l_i $(i = 1, \dots, m)$, c and d. Cancelling this factor throughout we obtain the equation

G.C.D.
$$(\boldsymbol{l}_1/g \cdot \boldsymbol{x} + l_1/g, \cdots, \boldsymbol{l}_m/g \cdot \boldsymbol{x} + l_m/g, c/g) = d/g$$
.

This equation is equivalent to (1.1) in the sense that every solution of this equation is a solution of (1.1) and vice-versa. Thus we can suppose without loss of generality that

G.C.D.
$$(l_1, \dots, l_m, d) = 1$$
.

The solution set of (1.1) is denoted by $\mathcal{S}_d^c \equiv \mathcal{S}_d^c(L')$ that is,

$$(1.4) \quad \mathscr{S}_d^c \equiv \mathscr{S}_d^c(L') = \{ \boldsymbol{x} \in Z^n | \text{G.C.D.} (\boldsymbol{l}_1 \cdot \boldsymbol{x} + \boldsymbol{l}_1, \, \cdots, \, \boldsymbol{l}_m \cdot \boldsymbol{x} + \boldsymbol{l}_m, \, c) = d \}.$$

Moreover when $\mathcal{S}_d^c \neq \emptyset$, we have

$$d | c, N(d, L') > 0$$
, G.C.D. $(l'_1, \dots, l'_m, c) = 1$,

and we write e for the integer c/d.

If $t \in \mathbb{Z}$, $a = (a_1, \dots, a_n) \in \mathbb{Z}^n$ and $b = (b_1, \dots, b_n) \in \mathbb{Z}^n$, we say that

a and b are congruent modulo t (writing $a \equiv b \pmod{t}$) if and only if $a_i \equiv b_i \pmod{t}$ for each $i = 1, \dots, n$. This congruence \equiv is an equivalence relationship on Z^n . If $\mathscr{S}_a{}^c \neq \varnothing$, any integer t for which this equivalence relationship is preserved on $\mathscr{S}_a{}^c \subseteq Z^n$ is called a solution modulus of (1.1). Thus a solution modulus t has the property that if $x \in \mathscr{S}_a{}^c$ then $x + ty \in \mathscr{S}_a{}^c$ for all $y \in Z^n$. Clearly 0 and $\pm c$ are solution moduli. In Theorem 2 it is shown that the set of all solution moduli with respect to $\mathscr{S}_a{}^c$ viz.,

$$\mathfrak{M}_d^c \equiv \mathfrak{M}_d^c(L') = \{t \in Z \mid x + ty \in \mathscr{S}_d^c \text{ for all } x \in \mathscr{S}_d^c \text{ and all } y \in Z^n\}$$

is a principal ideal of Z. The positive generator of this ideal is denoted by $M_d^c(L')$ and called the *minimum modulus* of the equation (1.1). We show

(1.5)
$$M_d^c \equiv M_d^c(L') = d \prod_{p \mid e, N(pd, L') > 0} p$$
.

(Here and throughout this paper the empty product is to be taken as 1). The product in (1.5) is taken over precisely those primes $p \mid e$ for which the system of congruences $l_i \cdot x + l_i \equiv 0 \pmod{pd}$ $(i = 1, \dots, m)$ is solvable.

In § 5 we consider the problem of evaluating $\mathfrak{R}_d^{\mathfrak{c}} \equiv \mathfrak{R}_d^{\mathfrak{c}}(L')$, the number of incongruent solutions x of (1.1) modulo the minimum modulus $M_d^{\mathfrak{c}}$, from which the number of solutions modulo a given modulus can be determined. In Theorem 4 we derive a technical formula which allows the evaluation of $\mathfrak{R}_d^{\mathfrak{c}}$ in some important cases (see § 6). In particular we prove that if G.C.D. (d,e)=1 then

(1.6)
$$\mathfrak{R}_{d}^{c} = N(d, L') \prod_{p \mid e, N(pd, L') > 0} p^{n} \left(1 - \frac{1}{p^{r(p,L)}} \right),$$

where r(p, L) is the rank of the matrix $L^{(p)}$ obtained from L by replacing each entry l_{ij} by its residue class modulo p in the finite field Z_p .

Finally in § 7 an alternative approach is given which enables us to generalize a recent result of Stevens [6].

2. A necessary and sufficient condition for $\mathcal{S}_d^c \neq \emptyset$. We begin by dealing with the case d=1. We prove

Lemma 1. $\mathcal{S}_{1}^{c} \neq \emptyset$ if and only if

(2.1) G.C.D.
$$(l'_1, \dots, l'_m, c) = 1$$
.

Proof. The necessity of (2.1) is obvious. Thus to complete the proof it suffices to show that if (2.1) holds then $\mathcal{S}_1^c \neq \emptyset$. In view of (2.1) for each prime $p \mid c$ there must be some l_i or $l_{ij} \not\equiv 0 \pmod{p}$.

If some $l_i \not\equiv 0 \pmod{p}$ we let $\mathbf{x}^{\dagger}(p) = \mathbf{0}$, otherwise we have some $l_{ij} \not\equiv 0 \pmod{p}$ and we let $\mathbf{x}^{\dagger}(p) = (0, \dots, 0, x_j, 0, \dots, 0)$, where the j^{th} entry x_j is any solution of $l_{ij}x_j \equiv 1 \pmod{p}$, so that in both cases we have

G.C.D.
$$(l_1 \cdot \mathbf{x}^{\dagger}(p) + l_1, \dots, l_m \cdot \mathbf{x}^{\dagger}(p) + l_m, p) = 1$$
.

We now determine x by the Chinese remainder theorem so that $x \equiv x^{\dagger}(p) \pmod{p}$, for all $p \mid c$. Hence we have

G.C.D.
$$(\boldsymbol{l}_1 \cdot \boldsymbol{x} + l_1, \dots, \boldsymbol{l}_m \cdot \boldsymbol{x} + l_m, \prod_{p \mid c} p)$$

$$= \prod_{p \mid c} \text{G.C.D.} (\boldsymbol{l}_1 \cdot \boldsymbol{x} + l_1, \dots, \boldsymbol{l}_m \cdot \boldsymbol{x} + l_m, p)$$

$$= \prod_{p \mid c} \text{G.C.D.} (\boldsymbol{l}_1 \cdot \boldsymbol{x}^{\dagger}(p) + l_1, \dots, \boldsymbol{l}_m \cdot \boldsymbol{x}^{\dagger}(p) + l_m, p)$$

$$= 1,$$

proving that $x \in \mathcal{S}_1^{\circ}$.

Now we use Lemma 1 to handle the general case $d \ge 1$. We prove

THEOREM 1. $\mathcal{S}_d^c \neq \emptyset$ if and only if

(2.2)
$$d | c, N(d, L') > 0$$
, G.C.D. $(l_1, \dots, l_m, d) = G.C.D. (l'_1, \dots, l'_m, c)$.

Proof. The necessity is obvious. Thus to complete the proof we must show that if (2.2) holds then $\mathcal{S}_d^c \neq \emptyset$. As N(d, L') > 0 there exists $k \in \mathbb{Z}^n$ and $h = (h_1, \dots, h_m) \in \mathbb{Z}^m$ such that

(2.3)
$$l_i \cdot k + l_i = dh_i, i = 1, \dots, m$$
.

We write $d_1 = d/g$, $g_i = l_i/g \in Z^n$, $g_i' = l_i'/g \in Z^{n+1}$, $g_i = l_i/g \in Z$ $(i = 1, \dots, m)$ where $g = \text{G.C.D.}(l_1, \dots, l_m, d)$ and suppose that

(2.4) G.C.D.
$$(g_1, \dots, g_m, h, e) > 1$$
,

where e = c/d. Then there exists a prime p such that

(2.5)
$$g_i \equiv 0 \ (i = 1, \dots, m), h \equiv 0, e \equiv 0 \ (\text{mod } p)$$
.

Now from (2.3) we have

$$\mathbf{g}_i \cdot \mathbf{k} + g_i = d_1 h_i, i = 1, \dots, m$$

and so appealing to (2.5) we deduce $g_i \equiv 0 \pmod{p}$ $(i = 1, \dots, m)$, giving $g_i' \equiv 0 \pmod{p}$ $(i = 1, \dots, m)$. Thus we have G.C.D. $(g_1', \dots, g_m', d_1e) \equiv 0 \pmod{p}$, which contradicts G.C.D. $(g_1', \dots, g_m', d_1e) = 1$. Hence our assumption (2.4) is incorrect and we have G.C.D. $(g_1, \dots, g_m, h, e) = 1$. Thus by Lemma 1 there exists $h \in Z_n$ such that

G.C.D.
$$(\boldsymbol{g}_1 \cdot \boldsymbol{\lambda} + h_1, \dots, \boldsymbol{g}_m \cdot \boldsymbol{\lambda} + h_m, e) = 1$$

and so $\mathbf{x} = d_1 \mathbf{\lambda} + \mathbf{k} \in \mathcal{S}_d^c$.

3. Throughout the rest of this paper we suppose that $\mathcal{S}_d{}^c \neq \emptyset$ and G.C.D. $(l_1, \dots, l_m, d) = 1$. Thus by Theorem 1 we have $d \mid c, N(d, L') > 0$ and G.C.D. $(l'_1, \dots, l'_m, c) = 1$. Also throughout this paper corresponding to any $x \in \mathcal{S}_d{}^c$ we define $u \in Z^m$ by $u = (u_1, \dots, u_m)$, where $l_i \cdot x + l_i = du_i (i = 1, \dots, m)$, so that G.C.D. (u, e) = 1. The following lemmas will be needed later.

LEMMA 2. (i) If $x \in \mathcal{S}_d^c$ and p is a prime dividing e for which the system of simultaneous congruences

$$(3.1) l_i \cdot z + u_i \equiv 0 \pmod{p}, i = 1, \cdots, m,$$

is solvable then N(pd, L') > 0.

(ii) Conversely if p is a prime dividing e for which N(pd, L') > 0 then there exists $\mathbf{x} \in \mathcal{S}_d^c$ such that (3.1) is solvable.

Proof. (i) For $x \in \mathcal{S}_d^c$ and z a solution of (3.1) we let w = x + dz. Then for $i = 1, \dots, m$ we have

$$egin{aligned} egin{aligned} m{l_i \cdot w} + m{l_i} &= (m{l_i \cdot x} + m{l_i}) + dm{l_i \cdot z} \ &= d(u_i + m{l_i \cdot z}) \ &\equiv 0 (m{mod} \ pd) \ , \end{aligned}$$

showing that N(pd, L') > 0.

(ii) We define v_i by $l_i \cdot w + l_i = p dv_i$ $(i = 1, \dots, m)$ and claim that

(3.2) G.C.D.
$$(l_1, \dots, l_m, pv_1, \dots, pv_m, e) = 1$$
.

For if not there is a prime p'|e such that

$$l_i \equiv 0, pv_i \equiv 0 \pmod{p'} \ (i = 1, \dots, m)$$
.

Thus from $l_i \cdot w + l_i = d \ pv_i$ we have $l_i \equiv 0 \pmod{p'}$ $(i = 1, \dots, m)$, giving $l_i' \equiv 0 \pmod{p'}$ $(i = 1, \dots, m)$, which contradicts G.C.D. $(l_1', \dots, l_m', de) = 1$. Hence (3.2) is valid and so by Lemma 1 we can find $t \in \mathbb{Z}^n$ such that

G.C.D.
$$(l_1 \cdot t + pv_1, \dots, l_m \cdot t + pv_m, e) = 1$$
.

We set x = w + dt so that for $i = 1, \dots, m$ we have

$$l_i \cdot x + l_i = d(l_i \cdot t + pv_i)$$
,

giving

G.C.D.
$$(\boldsymbol{l}_1 \cdot \boldsymbol{x} + \boldsymbol{l}_1, \, \cdots, \, \boldsymbol{l}_m \cdot \boldsymbol{x} + \boldsymbol{l}_m, \, c)$$

= d G.C.D. $(\boldsymbol{l}_1 \cdot \boldsymbol{t} + p v_1, \, \cdots, \, \boldsymbol{l}_m \cdot \boldsymbol{t} + p v_m, \, e)$
= d ,

so that $x \in \mathcal{S}_d^{\circ}$. Finally taking z = -t we see that the system

$$l_i \cdot z + u_i \equiv 0 \pmod{p} \ (i = 1, \dots, m)$$

is solvable, as $u_i = l_i \cdot t + pv_i$.

LEMMA 3. Let t be a positive integer, A a subset of Z^n which consists of A(t) distinct congruence classes modulo t. Now if t' is a positive integer such that $t \mid t'$ then A consists of $(t'/t)^n A(t)$ congruence classes modulo t'.

Proof. It suffices to prove that a congruence class C modulo t of A consists of $(t'/t)^n$ classes modulo t'. This is clear for if $x \in C$ then so does $x + ty_i$, $(i = 1, \dots, (t'/t)^n)$, where the y_i are incongruent modulo t'/t, moreover the $x + ty_i$ are incongruent modulo t' and every member of C is congruent modulo t' to one of them.

4. The minimum modulus. In this section we determine the minimum modulus M_d^c . We prove

THEOREM 2. If $\mathscr{S}_d{}^{\circ} \neq \emptyset$ and G.C.D. $(\boldsymbol{l}_1, \dots, \boldsymbol{l}_m, d) = 1$ the minimum modulus M_d° with respect to $\mathscr{S}_d{}^{\circ}$ is given by

$$M_d^e = d \prod_{p \mid e, N(pd, L') > 0} p.$$

Proof. As $\mathscr{S}_{a}{}^{c} \neq \varnothing$, \mathfrak{M}_{a}^{c} —the set of all solution moduli with respect to $\mathscr{S}_{a}{}^{c}$ —is well-defined and moreover $\mathfrak{M}_{a}{}^{c}$ is non-empty as 0 and $\pm c$ belong to $\mathfrak{M}_{a}{}^{c}$. The proof will be accomplished by showing that $\mathfrak{M}_{a}{}^{c}$ is a principal ideal of Z generated by $d\prod_{a|a} p$.

(i) We begin by showing that \mathfrak{M}_d^c is an ideal of Z. It suffices to prove that if $t_1 \in \mathfrak{M}_d^c$ and $t_2 \in \mathfrak{M}_d^c$ then $t_1 - t_2 \in \mathfrak{M}_d^c$. For any $\mathbf{x} \in \mathscr{S}_d^c$ and any $\mathbf{y} \in Z^n$ we have $\mathbf{x} + t_1 \mathbf{y} \in \mathscr{S}_d^c$, as $t_1 \in \mathfrak{M}_d^c$. Hence as $t_2 \in \mathfrak{M}_d^c$ we have

$$(\boldsymbol{x}+t_{\scriptscriptstyle 1}\boldsymbol{y})+t_{\scriptscriptstyle 2}(-\ \boldsymbol{y})\in\mathscr{S}_{\scriptscriptstyle d}^{\ c}$$
 ,

that is

$$\mathbf{x} + (t_1 - t_2) \mathbf{y} \in \mathcal{S}_d^c$$

so that

$$t_1 - t_1 \in \mathfrak{M}_d^c$$
.

(ii) Next we show that $k=d\prod_{p\mid e,N(pd,L')>0}p\in\mathfrak{M}_d^e$. For $\boldsymbol{x}\in\mathscr{S}_d^e$ and any $\boldsymbol{y}\in Z^n$ we have

G.C.D.
$$(\boldsymbol{l}_1 \cdot (\boldsymbol{x} + k\boldsymbol{y}) + \boldsymbol{l}_1, \dots, \boldsymbol{l}_m \cdot (\boldsymbol{x} + k\boldsymbol{y}) + \boldsymbol{l}_m, c)$$

= G.C.D. $(\boldsymbol{l}_1 \cdot \boldsymbol{x} + \boldsymbol{l}_1 + k(\boldsymbol{l}_1 \cdot \boldsymbol{y}), \dots, \boldsymbol{l}_m \cdot \boldsymbol{x} + \boldsymbol{l}_m + k(\boldsymbol{l}_m \cdot \boldsymbol{y}), de)$
= d G.C.D. $(u_1 + k_1 (\boldsymbol{l}_1 \cdot \boldsymbol{y}), \dots, u_m + k_1 (\boldsymbol{l}_m \cdot \boldsymbol{y}), e)$,

where $k_1 = k/d$. To complete the proof we must show that for all $y \in Z^n$ we have

G.C.D.
$$(u_1 + k_1 (l_1 \cdot y), \dots, u_m + k_1 (l_m \cdot y), e) = 1$$
.

Suppose that this is not the case. Then there exists $\mathbf{y}_0 \in \mathbb{Z}^n$ and a prime $p \mid e$ such that $u_i + k_1 (\mathbf{l}_i \cdot \mathbf{y}_0) \equiv 0 \pmod{p}$ for $i = 1, \dots, m$. Let $z = \mathbf{x} + k\mathbf{y}_0$ so that for $i = 1, \dots, m$ we have

$$l_i \cdot z + l_i = l_i \cdot x + l_i + k (l_i \cdot y_0)$$

= $d (u_i + k_i (l_i \cdot y_0))$,

that is,

$$l_i \cdot z + l_i \equiv 0 \pmod{pd}$$
,

so that N(pd, L') > 0. Hence as $p \mid e$ we have $p \mid k_1$ and so $p \mid u_i$ for $i = 1, \dots, m$. This is the required contradiction as G.C.D. $(u_1, \dots, u_m, e) = 1$, since $\mathbf{x} \in \mathcal{S}_d^c$.

(iii) In (i) we showed that \mathfrak{M}_d^c is an ideal of Z and since Z is a principal ideal domain, \mathfrak{M}_d^c is principal. Thus by the definition of the minimum modulus M_d^c we have $\mathfrak{M}_d^c = (M_d^c)$. In (ii) we showed that $k \in \mathfrak{M}_d^c$ so that $M_d^c \mid k$. Hence to show that $M_d^c = k$ we have only to show that $k \mid M_d^c$.

Now for all
$$\boldsymbol{x} \in \mathscr{S}_d{}^c$$
 and all $\boldsymbol{y} \in Z^n$ we have G.C.D. $(\boldsymbol{l}_1 \cdot (\boldsymbol{x} + M_d^c \ \boldsymbol{y}) + \boldsymbol{l}_1, \, \cdots, \, \boldsymbol{l}_m \cdot (\boldsymbol{x} + M_d^c \ \boldsymbol{y}) + \boldsymbol{l}_m, \, c) = d$.

Hence

G.C.D.
$$(du_1 + M_d^c l_1 \cdot \mathbf{y}, \dots, du_m + M_d^c l_m \cdot \mathbf{y}, de) = d$$
,

and so we must have

$$M_d^c l_i \cdot y \equiv 0 \pmod{d}$$
,

for all $y \in Z^n$ and all i $(1 \le i \le m)$. Taking in particular $y = (0, \dots, 0, 1, 0, \dots, 0)$, where the 1 appears in the j^{th} place we must have for $i = 1, \dots, m$ and $j = 1, \dots, n$

$$M_d^c l_{ii} \equiv 0 \pmod{d}$$
,

that is

G.C.D.
$$(M_d^c l_{11}, \dots, M_d^c l_{mn}) \equiv 0 \pmod{d}$$

$$\mathbf{M}_d^c$$
 G.C.D. $(\boldsymbol{l}_1, \dots, \boldsymbol{l}_m) \equiv 0 \pmod{d}$.

But G.C.D. $(l_1 \cdots, l_m, d) = 1$ so we must have $M_d^c \equiv 0 \pmod{d}$. Thus it suffices to prove that

$$k_1|\pi_d^{\mathfrak c}, \ where \ k_1=k/d=\prod\limits_{p|\mathfrak c,N(pd,L')>0} p \ and \ \pi_d^{\mathfrak c}=M_d^{\mathfrak c}/d$$
 .

We suppose that $k_1 \not\mid \pi_d^c$ so that there exists a prime $p \mid e$ for which the system $l_i \cdot w + l_i \equiv 0 \pmod{pd}$ $(i = 1, \dots, m)$ is solvable yet $p \not\mid \pi_d^c$. By Lemma 2 (ii) there exists $z \in Z^n$ such that for some $x \in \mathscr{S}_d^c$ we have

$$l_i \cdot z + u_i \equiv 0 \pmod{p}, i = 1, \dots, m$$
.

As $p \nmid \pi_d^c$ we can define λ by $\pi_d^c \lambda \equiv 1 \pmod{p}$ and let $\mathbf{y} = \lambda \mathbf{z}$ so that for $i = 1, \dots, m$ we have

$$(4.2) u_i + \pi_d^c \, \boldsymbol{l}_i \cdot \boldsymbol{y} \equiv 0 \pmod{p}.$$

But as M_d^c is the minimum modulus and $x \in \mathcal{S}_d^c$ we must have

G.C.D.
$$(l_1 \cdot (\boldsymbol{x} + M_d^c \boldsymbol{y}) + l_1, \dots, l_m \cdot (\boldsymbol{x} + M_d^c \boldsymbol{y}) + l_m, c) = d$$
,

that is

G.C.D.
$$(u_1 + \pi_d^c \boldsymbol{l}_1 \cdot \boldsymbol{y}, \dots, u_m + \pi_d^c \boldsymbol{l}_m \cdot \boldsymbol{y}, e) = 1$$
,

which is contradicted by (4.2). Hence $\pi_d^c = \prod_{p \mid e, N(pd, L') > 0} p$ and this completes the proof.

We note the following important corollary of Theorem 2.

COROLLARY 1. $x \in \mathbb{Z}^n$ is a solution of

(4.3) G.C.D.
$$(l_1 \cdot x + l_1, \dots, l_m \cdot x + l_m, c) = d$$

if and only if

(4.4) G.C.D.
$$(l_1 \cdot x + l_1, \dots, l_m \cdot x + l_m, M_d^c) = d$$
.

Proof. (i) Suppose x is a solution of (4.3). Then we can define u_i ($i = 1, \dots, m$) by $l_i \cdot x + l_i = du_i$ and we have

G.C.D.
$$(u_1, \dots, u_m, e) = 1$$
.

Hence we deduce

G.C.D.
$$(u_1, \dots, u_m, \prod_{p \mid e, N (pd, L') > 0} p) = 1$$

and so

G.C.D.
$$(l_1 \cdot x + l_1, \cdots, l_m \cdot x + l_m, d \prod_{v \mid e, N(vd, L') > 0} p) = d$$
,

which by Theorem 2 is

G.C.D.
$$(l_1 \cdot x + l_1, \dots, l_m \cdot x + l_m, M_d^c) = d$$
.

(ii) Conversely suppose x is a solution of (4.4). Then there exist u_i $(i=1,\dots,m)$ such that $l_i\cdot x+l_i=du_i$ and

G. C. D.
$$(u_1, \dots, u_m, \prod_{\substack{p \mid e, N(pd, L') > 0}} p) = 1$$
.

Suppose however that

G.C.D.
$$(u_1, \dots, u_m, e) \neq 1$$
.

Then there exists a prime p such that

$$u_i \equiv 0 \ (i = 1, \dots, m), e \equiv 0 \ (\text{mod } p), N(pd, L') = 0.$$

But for $i = 1, \dots, m$ we have

$$l_i \cdot x + l_i = du_i \equiv 0 \pmod{pd}$$
,

that is N(pd,L')>0, which is the required contradiction. Hence we have

G.C.D.
$$(u_1, \dots, u_m, e) = 1$$

and so

G.C.D.
$$(l_1 \cdot x + l_1, \dots, l_m \cdot x + l_m, c) = d$$
.

5. Number of solutions with respect to the minimum modulus. We begin by evaluating \mathfrak{R}_1^c , that is, the number of solutions of (1.1), when d=1, which are incongruent modulo M_1^c . We prove

THEOREM 3. $\mathfrak{R}_1^c = \prod_{p \mid c, N(p, L') > 0} p^n \left(1 - \frac{1}{p^{r(p,L)}}\right)$, where r(p, L) is the rank of the matrix $L^{(p)}$ obtained from L by replacing each entry l_{ij} by its residue class modulo p in the finite field Z_p .

Proof. By Corollary 1 the required number of solutions $\mathfrak{N}_1^{\mathfrak{o}}$ is just the number of solutions taken modulo $M_1^{\mathfrak{o}}$ of

G.C.D.
$$(l_1 \cdot x + l_1, \dots, l_m \cdot x + l_m, M_1^c) = 1$$
.

Thus as $M_{\scriptscriptstyle 1}^{\,c} = \prod\limits_{p \mid \sigma,\,N(p,L')>0} p$ is a product of distinct primes, a standard

argument involving use of the Chinese remainder theorem shows that this number \mathfrak{N}_1^c is just $\prod_{p \mid M_1^c} \mathfrak{N}(p)$, where $\mathfrak{N}(p)$ is the number of solutions x taken modulo p of

(5.1) G.C.D.
$$(l_1 \cdot x + l_1, \dots, l_m \cdot x + l_m, p) = 1$$
.

Now x is a solution of (5.1) if and only if $x^{(p)}$ is not a solution of the system (T denotes transpose)

$$L^{(p)}x^{(p)^T}+l^{(p)^T}=0^T$$
.

Since N(p, L') > 0, this system is consistent over the field Z_p and has $p^{n-r(p,L)}$ solutions. Thus the number of solutions (modulo p) of (5.1) is $p^n - p^{n-r(p,L)} = p^n \left(1 - \frac{1}{p^{r(p,L)}}\right)$, giving

$$\mathfrak{R}^{\scriptscriptstyle c}_{\scriptscriptstyle
m I} = \prod_{\scriptscriptstyle p\mid c,N(p,L')>0} \, p^{\scriptscriptstyle n} \Big(1 - rac{1}{p^{r(p,L)}}\Big)$$

as required.

In the proof of Theorem 2 we have seen that any solution modulus M of (1.1) is a multiple of M_d^c . As \mathcal{S}_d^c consists of \mathfrak{N}_d^c congruence classes modulo M_d^c , Lemma 3 shows that \mathcal{S}_d^c consists of $(M/M_d^c)^n\mathfrak{N}_d^c$ congruence classes modulo M. Hence by Theorem 3 we have

COROLLARY 2. The number of solutions x of (1.1), with d = 1, determined modulo M—a multiple of M_a^c —is

$$M^{n}\prod_{p\mid c,N(p,L')>0}\left(1-rac{1}{p^{r(p,L)}}
ight)$$
 .

As a consequence of Corollary 2 we have the linear case of a result recently established by Stevens [6]. A generalization of this result is proved in § 7.

COROLLARY 3. (Stevens) The number of solutions of

G.C.D.
$$(a_1x_1 + b_1, \dots, a_nx_n + b_n, c) = 1$$
.

taken modulo c, is

$$c^n\prod_{p\mid c}\left(1-rac{oldsymbol{
u}_{_1}(p)oldsymbol{\dots}oldsymbol{
u}_{_n}(p)}{p^n}
ight)$$
 ,

where $\nu_i(p)(i=1, \dots, n)$ is the number of incongruent solutions modulo p of $a_ix_i + b_i \equiv 0 \pmod{p}$.

Proof. The system

$$a_i x_i + b_i \equiv 0 \pmod{p} (i = 1, \dots, n)$$
,

is solvable if and only if

G.C.D.
$$(a_i, p) | b_i \ (i = 1, \dots, n)$$
,

that is, if and only if

$$p \nmid a_i \text{ or } p \mid G.C.D.$$
 (a_i, b_i) $(i = 1, \dots, n)$.

Hence by Corollary 2 the required number of solutions is

$$(5.2) c^n \prod_{p \mid c} \left(1 - \frac{1}{p^{r(p)}}\right),$$

where the dash (') denotes that the product is taken over all p such that $p \nmid a_i$ or $p \mid G.C.D.$ (a_i, b_i) $(1 \leq i \leq n)$ and r(p) is the number of a_i $(i = 1, \dots, n)$ not divisible by p. As

$$egin{aligned} oldsymbol{
u}_i(p) &= egin{cases} 1, \ p
mid \ a_i, \ p
mid \ a_i, \ p
mid \ b_i \ , \ p, \ p \mid a_i, \ p \mid b_i \ , \end{cases} \end{aligned}$$

for $i = 1, \dots, n, (5.2)$ is just

$$c^n\prod_{p
eq c}\left(1-rac{
u_{_1}(p)\,\cdots\,
u_{_n}(p)}{p^n}
ight)$$
 ,

which is the required result.

We now turn to the general case $d \ge 1$. Let p be a prime and let E denote an equivalence class of \mathscr{S}_d^c consisting of elements of \mathscr{S}_d^c which are congruent modulo d. We assert that if $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)} \in E$ then the system $\boldsymbol{l}_i \cdot \boldsymbol{z}^{(1)} + u_i^{(1)} \equiv 0 \pmod{p}$ $(i = 1, \dots, n)$ is solvable if and only if the system $\boldsymbol{l}_i \cdot \boldsymbol{z}^{(2)} + u_i^{(2)} \equiv 0 \pmod{p}$ $(i = 1, \dots, n)$ is solvable. As $\boldsymbol{x}^{(1)} \equiv \boldsymbol{x}^{(2)} \pmod{p}$ there exists $\boldsymbol{t} \in Z^n$ such that $\boldsymbol{x}^{(2)} = \boldsymbol{x}^{(1)} + d\boldsymbol{t}$. Hence for $i = 1, \dots, n$ we have

$$egin{array}{l} du_i^{\scriptscriptstyle (2)} &= oldsymbol{l_i} oldsymbol{x}^{\scriptscriptstyle (2)} + oldsymbol{l_i} \ &= oldsymbol{l_i} oldsymbol{x}^{\scriptscriptstyle (1)} + oldsymbol{l_i} + oldsymbol{d} oldsymbol{l_i} oldsymbol{t} \ &= du_i^{\scriptscriptstyle (1)} + doldsymbol{l_i} oldsymbol{t} \end{array}$$

giving

$$u_i^{(2)} = u_i^{(1)} + l_i \cdot t$$
.

If there exists $z^{(1)} \in Z^n$ such that $l_i \cdot z^{(1)} + u_i^{(1)} \equiv 0 \pmod{p}$ $(i = 1, \dots, n)$ letting $z^{(2)} = z^{(1)} - t$ we have $l_i \cdot z^{(2)} + u_i^{(2)} = l_i \cdot z^{(1)} - l_i \cdot t + u_i^{(1)} + l_i \cdot t \equiv 0 \pmod{p}$, which completes the proof of the assertion. Hence

the solvability of the system

$$l_i \cdot z + u_i \equiv 0 \pmod{p} \ (i = 1, \dots, n)$$

depends only on the equivalence class E to which x (recall $l_i \cdot x + l_i = du_i$) belongs. Thus we can define a symbol $\delta_p(E)$ as follows:

$$\delta_p(E) = \begin{cases} 1, & ext{if for some } x \in E \text{ (and thus for all } x \in E) \text{ the system } \\ \boldsymbol{l_i \cdot z} + u_i \equiv 0 \pmod{p} & (i = 1, \cdots, m) \text{ is solvable,} \\ 0, & ext{otherwise.} \end{cases}$$

We now prove the following result.

Theorem 4. $\mathfrak{R}^{\circ}_d = \sum\limits_{j=1}^{N(d,L')} \left\{ \prod\limits_{p \mid e,N(pd,L')>0} p^n \left(1 - \frac{1}{p^{r(p,L)}}\right)^{\delta_p(E^{(j)})} \right\}$, where the $E^{(j)}$ denote the N(d,L') congruence classes modulo d in \mathscr{S}°_d .

Proof. We let

$$\mathscr{S} = \{x \in \mathbb{Z}^n | l_i \cdot x + l_i \equiv 0 \pmod{d}, i = 1, \dots, m\}$$

so that we have $\mathscr{L}_{a}^{c} \subseteq \mathscr{S}$. Now \mathscr{S} consists of N(d, L') congruence classes modulo d and if we restrict this equivalence relation modulo d to \mathscr{L}_{a}^{c} , we show that \mathscr{L}_{a}^{c} also contains the same number of classes. We write E(x) (resp. E'(x)) for the equivalence class to which $x \in \mathscr{L}_{a}^{c}$ (resp. $x \in \mathscr{S}$) belongs. From the proof of Theorem 1 we see that for each $x \in \mathscr{S}$ there exists $\lambda \in Z^{n}$ such that $x + d\lambda \in \mathscr{L}_{a}^{c}$. We define a mapping f from the set of equivalence classes of \mathscr{S} into the set of equivalence classes of \mathscr{L}_{a}^{c} as follows: For $x \in \mathscr{S}$

$$f(E'(x)) = E(x + d\lambda)$$
.

This mapping is well-defined for if $x' \in \mathcal{S}$ is such that E'(x') = E'(x) then $E(x' + d\lambda') = E(x + d\lambda)$. f is onto for if $x \in \mathcal{S}_d^c$ then f(E'(x)) = E(x) and is also one-to-one, for if f(E'(x)) = f(E'(y)), then $E(x + d\lambda) = E(y + d\lambda')$, that is $x \equiv y \pmod{d}$, giving E'(x) = E'(y). Thus the number of equivalence classes of \mathcal{S}_d^c is the same as the number of equivalence classes of \mathcal{S} , that is N(d, L').

Since $d \mid M_d^c$, each equivalence class E of \mathcal{S}_d^c , consists of a certain number of distinct classes in \mathcal{S}_d^c modulo M_d^c . We now determine this number. If $x \in E$, x + dt also belongs in E if and only if it belongs in \mathcal{S}_d^c , that is, if and only if,

G.C.D.
$$(l_1 \cdot (x + dt) + l_1, \dots, l_m \cdot (x + dt) + l_m, c) = d$$

that is, if and only if,

(5.3) G.C.D.
$$(u_1 + l_1 \cdot t, \dots, u_m + l_m \cdot t, e) = 1$$
.

Thus the number of distinct classes modulo M_d^c contained in E is just the number of distinct classes modulo $\pi_d^c = M_d^c/d$ which satisfy (5.3). But the minimum modulus of (5.3) is $\prod_{p|e} p^{\delta_p(E)}$. By lemma 2 (i) $\delta_p(E) = 1$ implies N(pd, L') > 0, so that $\prod_{p|e} p^{\delta_p(E)}$ divides $\prod_{p|e,N(pd,L')>0} p = \pi_d^c$. Writing $\prod_{p|e}^+$ for $\prod_{p|e,N(pd,L')>0}$ and $\prod_{p|e}^0$ for $\prod_{p|e,N(pd,L')=0}$, the required number of classes is by Corollary 2

$$\begin{split} &= \prod_{p \mid e}^{+} p^{n} \cdot \prod_{p \mid e} \left(1 - \frac{1}{p^{r(p,L)}}\right)^{\delta_{p}(E)} \\ &= \prod_{p \mid e}^{+} p^{n} \left(1 - \frac{1}{p^{r(p,L)}}\right)^{\delta_{p}(E)} \cdot \prod_{p \mid e}^{0} \left(1 - \frac{1}{p^{r(p,L)}}\right)^{\delta_{p}(E)} \\ &= \prod_{p \mid e}^{+} p^{n} \left(1 - \frac{1}{p^{r(p,L)}}\right)^{\delta_{p}(E)}, \end{split}$$

as N(pd, L') = 0 implies $\delta_{\nu}(E) = 0$.

Finally letting $E^{(1)}, \dots, E^{(h)}$ denote the h = N(d, L') distinct equivalence classes in \mathcal{S}_d^c we deduce that the total number of incongruent solutions modulo M_d^c of (1.1) is

$$\sum_{j=1}^{N(d,L')} \left\{ \prod_{p \mid e, N(pd,L') > 0} p^n \left(1 - \frac{1}{p^{r(p,L)}} \right)^{\delta_p(E^{(j)})} \right\}.$$

We remark that $r(p, L) \neq 0$, for $p \mid e$ and $\delta_p(E) = 1$. Otherwise, if r(p, L) = 0, $l_i \equiv 0 \pmod{p}$ $(i = 1, \dots, m)$. But as $\delta_p(E) = 1$ then for $x \in E$ the system $l_i \cdot z + u_i \equiv 0 \pmod{p}$ $(i = 1, \dots, m)$ is solvable contradicting G.C.D. $(u_1, \dots, u_m, e) = 1$.

6. Some special cases. We note a number of interesting cases of our results.

COROLLARY 4. If G.C.D. (d, e) = 1 then the number \mathfrak{R}_d^c of solutions of (1.1) modulo M_d^c is

$$\mathfrak{R}^{\epsilon}_d=N(d,\,L')\prod_{p\mid e,\,N(pd,\,L')>0}p^n\left(1-rac{1}{p^{r(p,\,L)}}
ight)$$
 .

Proof. By Theorem 4 it suffices to show that if G.C.D. (d, e) = 1, $p \mid e$, N(pd, L') > 0 then for all $\mathbf{x} \in \mathscr{S}_d^e$ we have $\delta_p(E) = 1$, that is the system $\mathbf{l}_i \cdot \mathbf{z} + u_i \equiv 0 \pmod{p}$ is solvable. Let \mathbf{w} be a solution of $\mathbf{l}_i \cdot \mathbf{w} + l_i \equiv 0 \pmod{pd}$, say $\mathbf{l}_i \cdot \mathbf{w} + l_i = pdv_i$ $(i = 1, \dots, m)$. As $p \nmid d$ we can define $\mathbf{z} = d^{-1}(\mathbf{w} - \mathbf{x})$, where $dd^{-1} \equiv 1 \pmod{p}$ so that for $i = 1, \dots, m$ we have

$$egin{aligned} m{l_i \cdot z} + u_i &= d^{-1}(m{l_i \cdot w} - m{l_i \cdot x}) + u_i \ &= d^{-1}(p d v_i - l_i - d u_i + l_i) + u_i \ &= d d^{-1}(p v_i - u_i) + u_i \ &\equiv 0 \pmod{p} \; , \end{aligned}$$

as required.

COROLLARY 5. If N(d, L') = 1 then the number \mathfrak{R}^{c}_{d} of solutions of (1.1) modulo M^{c}_{d} is

(6.1)
$$\mathfrak{R}_d^{\mathfrak{o}} = \prod_{p \mid e, N(pd, L') > 0} p^n \left(1 - \frac{1}{p^{r(p, L)}} \right).$$

In particular N(d, L') = 1 when L is invertible (mod d), and so \mathfrak{R}_d^c is given by (6.1). Moreover if L is invertible modulo $d \prod_{p|e} p$ or c, then (1.1) is solvable and $\mathfrak{R}_d^c = \prod_{p|e} (p^n - 1)$.

Proof. This is immediate from Theorem 4 since by Lemma 2(ii), $\delta_p(E)=1$ for all $p\,|\,e,\ N(pd,\,L')>0$. Also (1.1) is solvable when L is invertible modulo $d\,\prod_{p\,|\,e}\,p$ as

G.C.D.
$$(l_1, \dots, l_m, d) = G.C.D. (l'_1, \dots, l'_m, c) = 1$$
.

COROLLARY 6. If L is invertible modulo $\prod_{p|e,N(pd,L')>0} p$ then the number of solutious of (1.1) modulo M_d^c is

$$\mathfrak{R}^{e}_{d}=N(d,L')\prod_{p\mid e,N(pd,L')>0}\left(p^{n}-1
ight)$$
 .

Proof. Let p be any prime such that $p \mid e$ and N(pd, L') > 0. Then L is invertible modulo p and so for any $x \in \mathscr{S}_a^c$ the system

$$l_i \cdot z + u_i \equiv 0 \pmod{p} \ (1 = 1, \dots, n)$$

is solvable and so $\delta_p(E^{(j)}) = 1$, $j = 1, \dots, N(d, L')$. Moreover as L is invertible modulo p we have r(p, L) = n and the result follows from Theorem 4.

COROLLARY 7. It

(6.2) G.C.D.
$$(a_1, \dots, a_n, d) = 1$$

the equation

(6.3) G.C.D.
$$(a_1x_1 + \cdots + a_nx_n + b, c) = d$$

is solvable if and only if

(6.4)
$$d \mid c, \text{ G.C.D. } (a_1, \dots, a_n, b, c) = 1.$$

The minimum modulus of (6.3) is

$$d\prod_{n|c/d} p$$

and the number of solutions x modulo this minimum modulus is

$$d^{n-1}\prod_{p|c/d}{}'(p^n-p^{n-1})$$
 ,

where the dash (') means that the product is taken over those primes $p \mid c/d$ such that G.C.D. $(a_1, \dots, a_n, p) = 1$.

Proof. According to Smith [4] or Lehmer [3] the number of solutions x taken modulo d of

$$a_1x_1 + \cdots + a_nx_n + b \equiv 0 \pmod{d}$$

is d^{n-1} G.C.D. (a_1, \dots, a_n, d) if G.C.D. (a_1, \dots, a_n, d) divides b and 0 otherwise. Thus as G.C.D. $(a_1, \dots, a_n, d) = 1$, we have $N(d, L') = d^{n-1}$ and so by Theorem 1 (6.3) is solvable if and only if

$$d | c, G.C.D. (a_1, \dots, a_n, b, c) = 1$$
.

Now if (6.3) is solvable and $p \mid c/d$ then

G.C.D.
$$(a_1, \dots, a_n, pd) \mid b$$

if and only if

G.C.D.
$$(a_1, \dots, a_n, p) = 1$$
,

in view of (6.2) and (6.4). Thus by Theorem 2 the minimum modulus is

$$d\prod_{p\mid c/d}' p$$
 .

Finally for p|c/d, G.C.D. $(a_1, \dots, a_n, p) = 1$ we have r(p, L) = 1 and moreover the congruence $a_1x_1 + \dots + a_nx_n + u \equiv 0 \pmod{p}$ is always solvable so that $\delta_p(E^{(j)}) = 1, j = 1, \dots, d^{n-1}$. Hence by Theorem 4 the number of solutions is

$$d^{n-1}\prod_{p\mid e/d}'\,p^n\,\left(1-rac{1}{p}
ight)$$
 .

We remark that in particular ([5])

G.C.D.
$$(ax + b, c) = 1$$

is solvable if and only if G.C.D. (a, b, c) = 1, has minimum modulus $\prod_{p|c,p\nmid a} p$, and has $\prod_{p|c,p\nmid a} (p-1)$ solutions x modulo the minimum modulus.

COROLLARY 8. There is a unique solution of (1.1) modulo M_a^c if and only if

(i) N(d, L') = 1 and there is no prime p such that

$$p|e, N(pd, L') > 0$$
,

or

(ii) N(d, L') = 1 and the only prime p such that $p \mid e$, N(pd, L') > 0, is p = 2, and r(2, L) = 1, n = 1.

Proof. If (1.1) possesses a unique solution modulo M_c^c , Theorem 4 shows that S can consist only of a single congruence class modulo d. Hence N(d, L') = 1. Also by Theorem 4 if there is no prime p such that $p \mid e$ and N(pd, L') > 0 then $\mathfrak{R}_d^c = 1$. Suppose however that there is such a prime p. Then by Corollary 5 we have

$$1 = \prod_{p \mid e, N (pd, L') > 0} (p^n - p^{n-r(p,L)})$$
.

This occurs if and only if

$$(6.5) p^n - p^{n-r(p,L)} = 1,$$

for all p | e with N(pd, L') > 0. But the left-hand side of (6.5) is divisible by p unless r(p, L) = n. Then $p^n = 2$ and we have p = 2, n = 1, r(p, L) = r(2, L) = 1, which proves the theorem.

7. Another method. Although the formula of Theorem 4 applies to some important cases in § 6, this formula seems difficult to evaluate even for example in the diagonal case

G.C.D.
$$(a_1x_1 + b_1, \dots, a_nx_n + b_n, c) = d$$
.

The inherent difficulty is in determining for a given prime p which solutions of this equation have the property that the system $a_i z_i + u_i \equiv 0 \pmod{p}$ $(i = 1, \dots, n)$ is solvable. We now present another method which in conjunction with previous results yields the diagonal case.

We consider the set \mathfrak{U} of $u \in \mathbb{Z}^n$ with G.C.D. (u, e) = 1 for which the system

(7.1)
$$l_i \cdot x + l_i \equiv du_i \pmod{c} \ (i = 1, \dots, n)$$
 is solvable.

It is clear that if $u \in \mathbb{N}$ and $u \equiv u' \pmod{e}$ then $u' \in \mathbb{N}$. We denote by K_d^c the number of distinct classes modulo e contained in \mathbb{N} . Let \mathfrak{N} denote the number of solutions x of (1.1) modulo e. We prove

Theorem 5. $\mathfrak{R}=K_d^cN_c(L^*)$ where L^* is the $m\times (n+1)$ matrix

[L: 0].

Proof. If $x \in \mathscr{S}_d^c$ then there exists $u \in Z^n$ such that $l_i \cdot x + l_i = du_i$ $(i = 1, \dots, m)$ and G.C.D. (u, e) = 1. If $x, x' \in \mathscr{S}_d^c$ are such that $x \equiv x' \pmod{e}$ then $du_i \equiv du_i' \pmod{e}$, that is $u_i \equiv u_i' \pmod{e}$.

Conversely if G.C.D. (u, e) = 1 and x satisfies $l_i \cdot x + l_i \equiv du_i$ (mod c) $(i = 1, \dots, m)$ then $l_i \cdot x + l_i = d(u_i + \lambda_i e)$ and $x \in \mathscr{S}_a^c$ as G.C.D. $(u + \lambda_i e) = G.C.D.$ (u, e) = 1.

Thus $x \in \mathcal{S}_d^c$ if and only if x is a solution of $l_i \cdot x + l_i \equiv du_i$ (mod c), where G.C.D. (u, e) = 1. Now there are K_d^c incongruent classes of u modulo e, with G.C.D. (u, e) = 1, for which (7.1) is solvable. For each one of these, (7.1) has $N_c(L:0)$ incongruent solutions modulo c. Hence we have

$$\mathfrak{N} = K_d^c N_c(L^*)$$

as required.

We now obtain the following interesting result.

COROLLARY 9. If $h \in \mathbb{Z}^n$ and e_1, \dots, e_n are divisors of e then the system

$$(7.2) u_i \equiv h_i \pmod{e_i} \ (i = 1, \cdots, n)$$

has a solution $\mathbf{u} = (u_1, \dots, u_n)$ such that G.C.D. $(\mathbf{u}, e) = 1$ if and only if G.C.D. $(e_1, \dots, e_n, h_1, \dots, h_n, e) = 1$. When this holds (7.2) has

$$\prod_{i=1}^{n} (e/e_i) \prod_{p \mid e}' \left(1 - \frac{1}{p^{r(p)}}\right)$$

distinct solutions \mathbf{u} modulo e, for which G.C.D. $(\mathbf{u}, e) = 1$, where r(p) = number of e_i $(i = 1, \dots, n)$ not divisible by p, and the dash (') means that the product is taken over those primes $p \mid e$ such that $p \nmid e_i$ or $p \mid G.C.D.$ (e_i, h_i) $(i = 1, \dots, n)$.

Proof. The system (7.2) has a solution u such that G.C.D. (u, e) = 1 if and only if

(7.3) G.C.D.
$$(e_1x_1 + h_1, \dots, e_nx_n + h_n, e) = 1$$

is solvable, which by Lemma 1 is the case if and only if G.C.D. $(e_1, \dots, e_n, h_1, \dots, h_n, e) = 1$. Applying Theorem 5 to (7.3) we have $\mathfrak{R} = K_1^e N_e(L^*)$ and we note that K_1^e is the number of distinct solutions u modulo e of (7.2) for which G.C.D. (u, e) = 1. However $N_e(L^*)$ is the number of solutions x modulo e such that $e_i x_i \equiv 0 \pmod{e}$ $(i = 1, \dots, n)$. Clearly $N_e(L^*) = \prod_{i=1}^n e_i$. By Corollary 2

$$\mathfrak{R}=e^n\prod_{p\mid e,N(p,L')>0}\left(1-rac{1}{p^{r(p,L)}}
ight)$$
 ,

where

$$L' = egin{pmatrix} e_1 & h_1 \ \ddots & dots \ e_n & h_n \end{pmatrix}$$
 .

Now N(p, L') > 0 if and only if the system $e_i w_i + h_i \equiv 0 \pmod{p}$ $(i = 1, \dots, n)$ is solvable, that is, if and only if G.C.D. $(p, e_i) \mid h_i$ or if and only if $p \nmid e_i$ or $p \mid \text{G.C.D}$ (e_i, h_i) $(i = 1, \dots, n)$. Also r(p, L) is just the number of the e_i $(i = 1, \dots, n)$ not divisible by p. This completes the proof.

We now obtain a generalization of Steven's result [6] (see Corollary 3).

COROLLARY 10. The equation

G.C.D.
$$(a_1x_1 + b_1, \dots, a_nx_n + b_n, c) = d$$
,

where

G.C.D.
$$(a_1, \dots, a_n, d) = 1$$
,

is solvable if and only if

$$d | c, \text{ G.C.D. } (a_i, d) | b_i \ (i = 1, \dots, n)$$

G.C.D.
$$(a_1, \dots, a_n, b_1, \dots, b_n, c) = 1$$
.

The number of solution modulo c is given by

$$\prod_{i=1}^n \text{G.C.D. } (a_i, d) \cdot (c/d)^n \cdot \prod_{v \mid c/d} \left(1 - \frac{\nu_1(p) \cdots \nu_n(p)}{p^n}\right),$$

where $v_i(p)$ $(i = 1, \dots, n)$ is the number of incongruent solutions modulo p of $\frac{a_i}{\text{G.C.D. } (a_i, d)} x + \frac{b_i}{\text{G.C.D. } (a_i, d)} \equiv 0 \pmod{p}$.

Proof. The necessary and sufficient conditions for solvability are immediate from Theorem 1. When solvable we calculate the number \mathfrak{N} of solutions modulo e using Theorem 5. Thus we require the number of distinct e modulo e with G.C.D. (e, e) = 1 such that

$$a_i x_i + b_i \equiv du_i \pmod{de} \ (i = 1, \dots, n)$$

is solvable, that is,

$$(a_i/d_i)x_i + (b_i/d_i) \equiv (d/d_i)u_i \pmod{d/d_i \cdot e}$$

where $d_i = \text{G.C.D}(a_i, d) (i = 1, \dots, n)$. This is solvable if and only if

G.C.D.
$$((a_i/d_i), (d/d_i)e) | (d/d_i)u_i - (b_i/d_i)(i = 1, \dots, n)$$
,

that is, if and only if,

$$(d/d_i)u_i \equiv (b_i/d_i) \pmod{\text{G.C.D.}} ((a_i/d_i), e) (i = 1, \dots, n)$$
.

This system is equivalent to

$$u_i \equiv h_i \pmod{\text{G.C.D.}(a_i/d_i, e)} \ (i = 1, \dots, n)$$

where $h_i = (d/d_i)^{-1}b_i/d_i$ and $(d/d_i)^{-1}$ is an inverse of d/d_i modulo G.C.D. $(a_i/d_i, e)$ since G.C.D. $(d/d_i, a_i/d_i, e) = 1$. Thus by Corollary 9 the number of such u is

$$\prod_{i=1}^n rac{e}{ ext{G.C.D.}\left((a_i/d_i),\,e
ight)} \prod_{p\,\mid\,e}' \left(1 - rac{1}{p^{r(p)}}
ight)$$
 ,

where the dash (') means that the product is taken over those $p \mid e$ such that $p \mid a_i/d_i$ or $p \mid G.C.D.$ $(a_i/d_i, b_i/d_i)$, $i = 1, \dots, n$, as $p \mid G.C.D.$ $(a_i/d_i, e, h_i)$ if and only if $p \mid G.C.D.$ $(a_i/d_i, e, b_i/d_i)$ because $(d/d_i)h_i \equiv b_i/d_i$ (mod G.C.D. $(a_i/d_i, e)$ and G.C.D. $(d/d_i, a_i/d_i) = 1$ $(i = 1, \dots, n)$. Also r(p) is the number of a_i/d_i $(i = 1, \dots, n)$ not divisible by p.

Next we need the number of incongruent x modulo de such that

$$a_i x_i \equiv 0 \pmod{de} \ (i = 1, \dots, n)$$
.

This is just

$$egin{aligned} &\prod_{i=1}^{n} & \text{G.C.D.} \; (a_{i}, \, de) \ &= &\prod_{i=1}^{n} \; d_{i} \; \text{G.C.D.} \; (a_{i}/d_{i}, \, (d/d_{i})e) \ &= &\prod_{i=1}^{n} \; d_{i} \; \text{G.C.D.} \; (a_{i}/d_{i}, \, e) \; . \end{aligned}$$

Hence by Theorem 5 the required number of solutions is

$$\prod_{i=1}^n \left(d_i \; e
ight)$$
 . $\prod_{p \mid e} \left(1 - rac{1}{p^{r(p)}}
ight)$,

where the dash (') means that the product is taken over those $p \mid e$ such that $p \mid a_i/d_i$ or $p \mid G.C.D.$ $(a_i/d_i, b_i/d_i)$, $i = 1, \dots, n$. This number is

$$\prod_{i=1}^n d_i \!\cdot\! e^n \!\cdot\! \prod_{p \mid e} \Big(1 - rac{oldsymbol{
u}_{\scriptscriptstyle 1}(p) \, \cdots \, oldsymbol{
u}_{\scriptscriptstyle n}(p)}{oldsymbol{p}^n} \Big),$$

as

$$u_i(p) = egin{cases} 1, & p
mid a_i/d_i, \ 0, & p \mid a_i/d_i, & p
mid b_i/d_i \ , \ p, & p \mid a_i/d_i, & p \mid b_i/d_i \ . \end{cases}$$

Finally we state that all formulas are easily modified if we do not assume g=G.C.D. $(\boldsymbol{l}_1,\,\cdots,\,\boldsymbol{l}_m,\,d)=1$ (See introduction, Theorem 1). For example we list

THEOREM 2'. If $\mathcal{S}_d{}^c \neq \emptyset$ the minimum modulus M_d^c with respect to (1.1) is given by

$$M^c_d = d_1 \prod_{p \mid e, N(pa_1, L'/g) > 0} p$$
 .

Corollary 4'. If G.C.D. (d, e) = 1 then the number \mathfrak{R}^{e}_{d} of solutions of (1.1) modulo M^{e}_{d} is

$$\mathfrak{R}^{\epsilon}_{d} = \mathit{N}(d, \, L'/g) \prod_{p \mid e, N(pd_1, L'/g) > 0} p^{n} \Big(1 - rac{1}{p^{r(p, L/g)}} \Big)$$
 .

REFERENCES

- 1. T. M. Apostol, Euler's \emptyset function and separable Gauss sums, Proc. Amer. Math. Soc., **24** (1970), 482-485.
- 2. L. E. Dickson, History of the Theory of Numbers, Chelsea N.Y., (1952), 88-93.
- 3. D. N. Lehmer, Certain theorems in the theory of quadratic residues, Amer Math. Monthly, 20 (1913), 155-156.
- 4. H. J. S. Smith, On systems of linear indeterminate equations and congruences, Phil. Trans. Lond., **151** (1861), 293-326. (Collected Mathematical Papers Vol. 1, Chelsea N. Y. (1965), 367-409.)
- 5. R. Spira, Elementary problem no. E1730, Amer. Math. Monthly, 72 (1965), 907.
- 6. H. Stevens, Generalizations of the Euler \emptyset function, Duke Math. J., **38** (1971), 181-186.

Received November 30, 1970, and in revised form April, 1971. This research was supported by a National Research Council of Canada Grant (No. A-7233).

CARLETON UNIVERSITY