ON THE SOLUTION OF LINEAR G.C.D. EQUATIONS

David Jacobson and Kenneth S. Williams

Let Z denote the domain of ordinary integers and let $m(\geqq 1), n(\geqq 1), l_{i}(i=1, \cdots, m), l_{i j}(i=1, \cdots, m ; j=1, \cdots, n) \in Z$. We consider the solutions $x \in Z^{n}$ of

$$
\begin{gather*}
\text { G.C.D. }\left(l_{11} x_{1}+\cdots+l_{1 n} x_{n}+l_{1}, \cdots, l_{m 1} x_{1}+\cdots\right. \tag{1}\\
\left.+l_{m n} x_{n}+l_{m}, c\right)=d
\end{gather*}
$$

where $c(\neq 0), d(\geqq 1) \in Z$ and G.C.D. denotes "greatest common divisor". Necessary and sufficient conditions for solvability are proved. An integer t is called a solution modulus if whenever x is a solution of (1), $x+t y$ is also a solution of (1) for all $y \in Z^{n}$. The positive generator of the ideal in Z of all such solution moduli is called the minimum modulus of (1). This minimum modulus is calculated and the number of solutions modulo it is derived.

1. Introduction. Let Z denote the domain of ordinary integers and let $m(\geqq 1), n(\geqq 1), l_{i}(i=1, \cdots, m), \quad l_{i j}(i=1, \cdots, m ; j=1, \cdots$, $n) \in Z$. We write $\boldsymbol{l}=\left(l_{1}, \cdots, l_{m}\right)$ and for each $i=1, \cdots, m$ we write $\boldsymbol{l}_{i}=\left(l_{i 1}, \cdots, l_{i n}\right)$ and $\boldsymbol{l}_{i}^{\prime}=\left(l_{i 1}, \cdots, l_{i n}, l_{i}\right)$ so that $\boldsymbol{l} \in Z^{m}$, each $\boldsymbol{l}_{i} \in Z^{n}$, and each $\boldsymbol{l}_{i}^{\prime} \in Z^{n+1}$. If $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right) \in Z^{n}$ we write in the usual way $\boldsymbol{l}_{i} \cdot \boldsymbol{x}$ for the linear expression $l_{i 1} x_{1}+\cdots+l_{i n} x_{n}$. We let L denote the $m \times n$ matrix whose i th row is \boldsymbol{l}_{i} and L^{\prime} denote the $m \times(n+1)$ matrix whose i th row is l_{i}^{\prime}.

Henceforth in this paper we will write the abbreviation G.C.D. for "greatest common divisor" of a finite sequence of integers, not all zero, and consider the solutions $\boldsymbol{x} \in Z^{n}$ of

$$
\begin{equation*}
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, c\right)=d \tag{1.1}
\end{equation*}
$$

where $c(\neq 0), d(\geqq 1) \in Z$. A number of authors have either used or proved results concerning special cases of this equation (see for example [1], [5]) so that it is of interest to give a general treatment. This equation is clearly connected with the system

$$
\begin{equation*}
\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i} \equiv 0(\bmod d)(i=1, \cdots, m) \tag{1.2}
\end{equation*}
$$

If we denote the number of incongruent solutions modulo d of (1.2) by $N\left(d, L^{\prime}\right)$, then $N\left(d, L^{\prime}\right)>0$ is a necessary condition for the solvability of (1.1). A complete treatment of the system (1.2) has been given by Smith [4]. Let $D_{i}=$ greatest common divisor of the determinants of all the $i \times i$ submatrices in $L(i=1, \cdots, \min (m, n)), D_{i}^{\prime}=$ greatest common divisor of the determinants of all the $i \times i$ sub-
matrices in $L^{\prime}(i=1, \cdots, \min (m, n+1)), \gamma_{i}=$ greatest common divisor of d and $\frac{D_{i}}{D_{i-1}}, i=1, \cdots, \min (m, n)$, where $D_{0}=1$, and $\gamma_{i}^{\prime}=$ greatest common divisor of d and $\frac{D_{i}^{\prime}}{D_{i-1}^{\prime}}, i=1, \cdots, \min (m, n)$, where $D_{0}^{\prime}=1$. Smith has shown that (1.2) is solvable if and only if

$$
\prod_{i=1}^{\min (m, n)} \gamma_{i}=\prod_{i=1}^{\min (m, n)} \gamma_{i}^{\prime}
$$

and

$$
\frac{D_{n+1}^{\prime}}{D_{n}^{\prime}} \equiv 0(\bmod d), \text { if } m>n
$$

When solvable he shows that

$$
N\left(d, L^{\prime}\right)=\gamma d^{\max (n-m, 0)}
$$

where

$$
\gamma=\prod_{i=1}^{\min (m, n)} \gamma_{i}
$$

We show in Theorem 1 that the conditions

$$
\begin{equation*}
d \mid c, N\left(d, L^{\prime}\right)>0, \text { G.C.D. }\left(\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{m}, d\right)=\text { G.C.D. }\left(\boldsymbol{l}_{1}^{\prime}, \cdots, \boldsymbol{l}_{m}^{\prime}, c\right) \tag{1.3}
\end{equation*}
$$

are both necessary and sufficient for solvability of (1.1). When (1.1) is solvable, (1.3) shows that the quantity $g=$ G.C.D. $\left(\boldsymbol{l}_{1}, \cdots, l_{m}, d\right)$ is a factor of $l_{i}, l_{i}(i=1, \cdots, m), c$ and d. Cancelling this factor throughout we obtain the equation

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} / g \cdot \boldsymbol{x}+l_{1} / g, \cdots, \boldsymbol{l}_{m} / g \cdot \boldsymbol{x}+l_{m} / g, c / g\right)=d / g .
$$

This equation is equivalent to (1.1) in the sense that every solution of this equation is a solution of (1.1) and vice-versa. Thus we can suppose without loss of generality that

$$
\text { G.C.D. }\left(l_{1}, \cdots, l_{m}, d\right)=1
$$

The solution set of (1.1) is denoted by $\mathscr{S}_{d}^{c} \equiv \mathscr{S}_{d}^{c}\left(L^{\prime}\right)$ that is,

$$
\begin{equation*}
\mathscr{S}_{d}^{c} \equiv \mathscr{S}_{d}^{c}\left(L^{\prime}\right)=\left\{\boldsymbol{x} \in Z^{n} \mid \text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, c\right)=d\right\} \tag{1.4}
\end{equation*}
$$

Moreover when $\mathscr{S}_{d}^{c} \neq \varnothing$, we have

$$
d \mid c, N\left(d, L^{\prime}\right)>0, \text { G.C.D. }\left(\boldsymbol{l}_{1}^{\prime}, \cdots, \boldsymbol{l}_{m}^{\prime}, c\right)=1
$$

and we write e for the integer c / d.
If $t \in Z, \boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right) \in Z^{n}$ and $\boldsymbol{b}=\left(b_{1}, \cdots, b_{n}\right) \in Z^{n}$, we say that
\boldsymbol{a} and \boldsymbol{b} are congruent modulo $t($ writing $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod t)$) if and only if $a_{i} \equiv b_{i}(\bmod t)$ for each $i=1, \cdots, n$. This congruence \equiv is an equivalence relationship on Z^{n}. If $\mathscr{S}_{d}^{c} \neq \varnothing$, any integer t for which this equivalence relationship is preserved on $\mathscr{S}_{d}{ }^{c}\left(\subseteq Z^{n}\right)$ is called a solution modulus of (1.1). Thus a solution modulus t has the property that if $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{c}$ then $\boldsymbol{x}+t \boldsymbol{y} \in \mathscr{S}_{d}{ }^{c}$ for all $\boldsymbol{y} \in Z^{n}$. Clearly 0 and $\pm c$ are solution moduli. In Theorem 2 it is shown that the set of all solution moduli with respect to $\mathscr{S}_{d}{ }^{c}$ viz.,

$$
\mathfrak{M}_{d}^{c} \equiv \mathfrak{M}_{d}^{c}\left(L^{\prime}\right)=\left\{t \in Z \mid \boldsymbol{x}+t \boldsymbol{y} \in \mathscr{S}_{d}^{c} \text { for all } \boldsymbol{x} \in \mathscr{S}_{d}^{c} \text { and all } \boldsymbol{y} \in Z^{n}\right\},
$$

is a principal ideal of Z. The positive generator of this ideal is denoted by $M_{d}^{c}\left(L^{\prime}\right)$ and called the minimum modulus of the equation (1.1). We show

$$
\begin{equation*}
M_{d}^{c} \equiv M_{d}^{c}\left(L^{\prime}\right)=d \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p \tag{1.5}
\end{equation*}
$$

(Here and throughout this paper the empty product is to be taken as 1). The product in (1.5) is taken over precisely those primes $p \mid e$ for which the system of congruences $\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i} \equiv 0(\bmod p d)(i=1$, \cdots, m) is solvable.

In $\S 5$ we consider the problem of evaluating $\mathfrak{N}_{d}^{c} \equiv \mathfrak{N}_{d}^{c}\left(L^{\prime}\right)$, the number of incongruent solutions \boldsymbol{x} of (1.1) modulo the minimum modulus M_{d}^{c}, from which the number of solutions modulo a given modulus can be determined. In Theorem 4 we derive a technical formula which allows the evaluation of \mathfrak{R}_{d}^{c} in some important cases (see §6). In particular we prove that if G.C.D. $(d, e)=1$ then

$$
\begin{equation*}
\mathfrak{R}_{d}^{c}=N\left(d, L^{\prime}\right) \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right), \tag{1.6}
\end{equation*}
$$

where $r(p, L)$ is the rank of the matrix $L^{(p)}$ obtained from L by replacing each entry $l_{i j}$ by its residue class modulo p in the finite field Z_{p}.

Finally in § 7 an alternative approach is given which enables us to generalize a recent result of Stevens [6].
2. A necessary and sufficient condition for $\mathscr{S}_{d}^{c} \neq \varnothing$. We begin by dealing with the case $d=1$. We prove

Lemma 1. $\quad \mathscr{S}_{1}^{c} \neq \varnothing$ if and only if

$$
\begin{equation*}
\text { G.C.D. }\left(l_{1}^{\prime}, \cdots, l_{m}^{\prime}, c\right)=1 \tag{2.1}
\end{equation*}
$$

Proof. The necessity of (2.1) is obvious. Thus to complete the proof it suffices to show that if (2.1) holds then $\mathscr{S}_{1}^{c} \neq \varnothing$. In view of (2.1) for each prime $p \mid c$ there must be some l_{i} or $l_{i j} \neq 0(\bmod p)$.

If some $l_{i} \not \equiv 0(\bmod p)$ we let $\boldsymbol{x}^{\dagger}(p)=0$, otherwise we have some $l_{i j} \equiv \equiv$ $0(\bmod p)$ and we let $\boldsymbol{x}^{\dagger}(p)=\left(0, \cdots, 0, x_{j}, 0, \cdots, 0\right)$, where the $j^{\text {th }}$ entry x_{j} is any solution of $l_{i j} x_{j} \equiv 1(\bmod p)$, so that in both cases we have

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}^{\dagger}(p)+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}^{\dagger}(p)+l_{m}, p\right)=1 .
$$

We now determine \boldsymbol{x} by the Chinese remainder theorem so that $\boldsymbol{x} \equiv$ $\boldsymbol{x}^{\dagger}(p)(\bmod p)$, for all $p \mid c$. Hence we have

$$
\begin{aligned}
& \text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, \prod_{p_{c}} p\right) \\
& =\Pi \text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, p\right) \\
& =\prod_{p l e}^{\text {ple }} \text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}^{\dagger}(p)+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}^{\dagger}(p)+l_{m}, p\right) \\
& =1 \text {, }
\end{aligned}
$$

proving that $\boldsymbol{x} \in \mathscr{S}_{1}{ }^{\circ}$.
Now we use Lemma 1 to handle the general case $d \geqq 1$. We prove
Theorem 1. $\mathscr{S}_{i}^{c} \neq \varnothing$ if and only if
(2.2) $d \mid c, N\left(d, L^{\prime}\right)>0$, G.C.D. $\left(l_{1}, \cdots, l_{m}, d\right)=$ G.C.D. $\left(l_{1}^{\prime}, \cdots, l_{m}^{\prime}, c\right)$.

Proof. The necessity is obvious. Thus to complete the proof we must show that if (2.2) holds then $\mathscr{S}_{d}{ }^{c} \neq \varnothing$. As $N\left(d, L^{\prime}\right)>0$ there exists $\boldsymbol{k} \in \boldsymbol{Z}^{n}$ and $\boldsymbol{h}=\left(h_{1}, \cdots, h_{m}\right) \in \boldsymbol{Z}^{m}$ such that

$$
\begin{equation*}
l_{i} \cdot k+l_{i}=d h_{i}, i=1, \cdots, m . \tag{2.3}
\end{equation*}
$$

We write $d_{1}=d / g, \boldsymbol{g}_{i}=\boldsymbol{l}_{i} / g \in Z^{n}, \boldsymbol{g}_{i}^{\prime}=\boldsymbol{l}_{i}^{\prime} / g \in Z^{n+1}, g_{i}=l_{i} / g \in Z(i=1, \cdots$, m) where $g=$ G.C.D. $\left(\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{m}, d\right)$ and suppose that

$$
\begin{equation*}
\text { G.C.D. }\left(\boldsymbol{g}_{1}, \cdots, \boldsymbol{g}_{m}, \boldsymbol{h}, e\right)>1 \text {, } \tag{2.4}
\end{equation*}
$$

where $e=c / d$. Then there exists a prime p such that

$$
\begin{equation*}
\boldsymbol{g}_{i} \equiv \mathbf{0}(i=1, \cdots, m), \boldsymbol{h} \equiv \mathbf{0}, e \equiv 0(\bmod p) . \tag{2.5}
\end{equation*}
$$

Now from (2.3) we have

$$
\boldsymbol{g}_{i} \cdot \boldsymbol{k}+g_{i}=d_{1} h_{i}, i=1, \cdots, m,
$$

and so appealing to (2.5) we deduce $g_{i} \equiv 0(\bmod p)(i=1, \cdots, m)$, giving $\boldsymbol{g}_{i}^{\prime} \equiv \mathbf{0}(\bmod p)(i=1, \cdots, m)$. Thus we have G.C.D. $\left(\boldsymbol{g}_{\mathbf{1}}^{\prime}, \cdots\right.$, $\left.\boldsymbol{g}_{m}^{\prime}, d_{1} e\right) \equiv 0(\bmod p)$, which contradicts G.C.D. $\left(\boldsymbol{g}_{1}^{\prime}, \cdots, \boldsymbol{g}_{m}^{\prime}, d_{1} e\right)=1$. Hence our assumption (2.4) is incorrect and we have G.C.D. $\left(g_{1}, \cdots\right.$, $\left.\boldsymbol{g}_{m}, \boldsymbol{h}, e\right)=1$. Thus by Lemma 1 there exists $\lambda \in Z_{n}$ such that

$$
\text { G.C.D. }\left(\boldsymbol{g}_{1} \cdot \lambda+h_{1}, \cdots, \boldsymbol{g}_{m} \cdot \lambda+h_{m}, e\right)=1
$$

and so $\boldsymbol{x}=d_{1} \lambda+\boldsymbol{k} \in \mathscr{S}_{d}^{c}$.
3. Throughout the rest of this paper we suppose that $\mathscr{S}_{d}^{c} \neq \varnothing$ and G.C.D. $\left(l_{1}, \cdots, l_{m}, d\right)=1$. Thus by Theorem 1 we have $d \mid c, N(d$, $\left.L^{\prime}\right)>0$ and G.C.D. $\left(l_{1}^{\prime}, \cdots, l_{m}^{\prime}, c\right)=1$. Also throughout this paper corresponding to any $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ we define $\boldsymbol{u} \in Z^{m}$ by $\boldsymbol{u}=\left(u_{1}, \cdots, u_{m}\right)$, where $\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i}=d u_{i}(i=1, \cdots, m)$, so that G.C.D. $(\boldsymbol{u}, e)=1$. The following lemmas will be needed later.

Lemma 2. (i) If $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ and p is a prime dividing e for which the system of simultaneous congruences

$$
\begin{equation*}
\boldsymbol{l}_{i} \cdot z+u_{i} \equiv 0(\bmod p), i=1, \cdots, m \tag{3.1}
\end{equation*}
$$

is solvable then $N\left(p d, L^{\prime}\right)>0$.
(ii) Conversely if p is a prime dividing e for which $N\left(p d, L^{\prime}\right)>0$ then there exists $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{c}$ such that (3.1) is solvable.

Proof. (i) For $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ and z a solution of (3.1) we let $\boldsymbol{w}=\boldsymbol{x}+d \boldsymbol{z}$. Then for $i=1, \cdots, m$ we have

$$
\begin{aligned}
\boldsymbol{l}_{i} \cdot \boldsymbol{w}+l_{i} & =\left(\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i}\right)+d \boldsymbol{l}_{i} \cdot \boldsymbol{z} \\
& =d\left(u_{i}+\boldsymbol{l}_{i} \cdot \boldsymbol{z}\right) \\
& \equiv 0(\bmod p d)
\end{aligned}
$$

showing that $N\left(p d, L^{\prime}\right)>0$.
(ii) We define v_{i} by $\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{w}+l_{i}=p d v_{i}(i=1, \cdots, m)$ and claim that

$$
\begin{equation*}
\text { G.C.D. }\left(l_{1}, \cdots, l_{m}, p v_{1}, \cdots, p v_{m}, e\right)=1 \tag{3.2}
\end{equation*}
$$

For if not there is a prime $p^{\prime} \mid e$ such that

$$
\boldsymbol{l}_{i} \equiv \mathbf{0}, p v_{i} \equiv 0\left(\bmod p^{\prime}\right)(i=1, \cdots, m)
$$

Thus from $\boldsymbol{l}_{i} \cdot \boldsymbol{w}+l_{i}=d p v_{i}$ we have $l_{i} \equiv 0\left(\bmod p^{\prime}\right)(i=1, \cdots, m)$, giving $\boldsymbol{l}_{i}^{\prime} \equiv \mathbf{0}\left(\bmod p^{\prime}\right)(i=1, \cdots, m)$, which contradicts G.C.D. $\left(\boldsymbol{l}_{1}^{\prime}, \cdots\right.$, $\boldsymbol{l}_{m}^{\prime}$, de) $=1$. Hence (3.2) is valid and so by Lemma 1 we can find $\boldsymbol{t} \in \boldsymbol{Z}^{n}$ such that
G.C.D. $\left(\boldsymbol{l}_{1} \cdot \boldsymbol{t}+p v_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{t}+p v_{m}, \boldsymbol{e}\right)=1$.

We set $\boldsymbol{x}=\boldsymbol{w}+d \boldsymbol{t}$ so that for $i=1, \cdots, m$ we have

$$
\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{x}+l_{i}=d\left(\boldsymbol{l}_{i} \cdot \boldsymbol{t}+p v_{i}\right)
$$

giving

$$
\text { G.C.D. } \begin{aligned}
& \left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, c\right) \\
= & d \text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{t}+p v_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{t}+p v_{m}, e\right) \\
= & d
\end{aligned}
$$

so that $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{\circ}$. Finally taking $z=-\boldsymbol{t}$ we see that the system

$$
\boldsymbol{l}_{i} \cdot z+u_{i} \equiv 0(\bmod p)(i=1, \cdots, m)
$$

is solvable, as $u_{i}=\boldsymbol{l}_{i} \cdot \boldsymbol{t}+p v_{i}$.
Lemma 3. Let t be a positive integer, A a subset of Z^{n} which consists of $A(t)$ distinct congruence classes modulo t. Now if t^{\prime} is a positive integer such that $t \mid t^{\prime}$ then A consists of $\left(t^{\prime} / t\right)^{n} A(t)$ congruence classes modulo t^{\prime}.

Proof. It suffices to prove that a congruence class C modulo t of A consists of $\left(t^{\prime} / t\right)^{n}$ classes modulo t^{\prime}. This is clear for if $\boldsymbol{x} \in C$ then so does $\boldsymbol{x}+t \boldsymbol{y}_{i}, \quad\left(i=1, \cdots,\left(t^{\prime} / t\right)^{n}\right)$, where the \boldsymbol{y}_{i} are incongruent modulo t^{\prime} / t, moreover the $\boldsymbol{x}+\boldsymbol{y}_{\boldsymbol{i}}$ are incongruent modulo t^{\prime} and every member of C is congruent modulo t^{\prime} to one of them.
4. The minumum modulus. In this section we determine the minimum modulus M_{d}^{c}. We prove

Theorem 2. If $\mathscr{S}_{d}{ }^{c} \neq \varnothing$ and G.C.D. $\left(\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{m}, d\right)=1$ the minimum modulus M_{d}^{c} with respect to $\mathscr{S}_{d}{ }^{c}$ is given by

$$
\begin{equation*}
M_{d}^{c}=d \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p \tag{4.1}
\end{equation*}
$$

Proof. As $\mathscr{S}_{d}^{c} \neq \varnothing, \mathfrak{M}_{d}^{c}$-the set of all solution moduli with respect to $\mathscr{S}_{d}{ }^{c}$-is well-defined and moreover \mathfrak{M}_{d}^{c} is non-empty as 0 and $\pm c$ belong to \mathfrak{M}_{d}^{c}. The proof will be accomplished by showing that \mathfrak{m}_{d}^{c} is a principal ideal of Z generated by $d_{p \mid e, N\left(p d, L^{\prime}\right)>0} p$.
(i) We begin by showing that \mathfrak{M}_{d}^{c} is an ideal of Z. It suffices to prove that if $t_{1} \in \mathfrak{M}_{d}^{c}$ and $t_{2} \in \mathfrak{M}_{d}^{c}$ then $t_{1}-t_{2} \in \mathfrak{M}_{d}^{c}$. For any $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ and any $\boldsymbol{y} \in Z^{n}$ we have $\boldsymbol{x}+t_{1} \boldsymbol{y} \in \mathscr{S}_{d}^{c}$, as $t_{1} \in \mathfrak{M}_{d}^{c}$. Hence as $t_{2} \in \mathfrak{M}_{d}^{c}$ we have

$$
\left(\boldsymbol{x}+t_{1} \boldsymbol{y}\right)+t_{2}(-\boldsymbol{y}) \in \mathscr{S}_{d}^{c},
$$

that is

$$
\boldsymbol{x}+\left(t_{1}-t_{2}\right) \boldsymbol{y} \in \mathscr{S}_{d}^{c},
$$

so that

$$
t_{1}-t_{1} \in \mathfrak{M}_{d}^{c} .
$$

(ii) Next we show that $k=d \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p \in \mathbb{M}_{d}^{c}$. For $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ and any $\boldsymbol{y} \in Z^{n}$ we have

$$
\begin{aligned}
& \text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot(\boldsymbol{x}+k \boldsymbol{y})+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot(\boldsymbol{x}+k \boldsymbol{y})+l_{m}, c\right) \\
&=\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}+k\left(\boldsymbol{l}_{1} \cdot \boldsymbol{y}\right), \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}+k\left(\boldsymbol{l}_{m} \cdot \boldsymbol{y}\right), d e\right) \\
&=d \text { G.C. } D .\left(u_{1}+k_{1}\left(\boldsymbol{l}_{1} \cdot \boldsymbol{y}\right), \cdots, u_{m}+k_{1}\left(\boldsymbol{l}_{m} \cdot \boldsymbol{y}\right), e\right),
\end{aligned}
$$

where $k_{1}=k / d$. To complete the proof we must show that for all $\boldsymbol{y} \in \boldsymbol{Z}^{n}$ we have

$$
\text { G.C.D. }\left(u_{1}+k_{1}\left(\boldsymbol{l}_{1} \cdot \boldsymbol{y}\right), \cdots, u_{m}+k_{1}\left(\boldsymbol{l}_{m} \cdot \boldsymbol{y}\right), e\right)=1
$$

Suppose that this is not the case. Then there exists $\boldsymbol{y}_{0} \in Z^{n}$ and a prime $p \mid e$ such that $u_{i}+k_{1}\left(\boldsymbol{l}_{i} \cdot \boldsymbol{y}_{0}\right) \equiv 0(\bmod p)$ for $i=1, \cdots, m$. Let $\boldsymbol{z}=\boldsymbol{x}+k \boldsymbol{y}_{0}$ so that for $i=1, \cdots, m$ we have

$$
\begin{aligned}
\boldsymbol{l}_{i} \cdot \boldsymbol{z}+\boldsymbol{l}_{i} & =\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i}+k\left(\boldsymbol{l}_{i} \cdot \boldsymbol{y}_{0}\right) \\
& =d\left(u_{i}+k_{1}\left(\boldsymbol{l}_{i} \cdot \boldsymbol{y}_{0}\right)\right),
\end{aligned}
$$

that is,

$$
\boldsymbol{l}_{i} \cdot z+l_{i} \equiv 0(\bmod p d),
$$

so that $N\left(p d, L^{\prime}\right)>0$. Hence as $p \mid e$ we have $p \mid k_{1}$ and so $p \mid u_{i}$ for $i=1, \cdots, m$. This is the required contradiction as G.C.D. $\left(u_{1}, \cdots\right.$, $\left.u_{m}, e\right)=1$, since $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$.
(iii) In (i) we showed that \mathfrak{M}_{d}^{c} is an ideal of Z and since Z is a principal ideal domain, \mathfrak{M}_{d}^{c} is principal. Thus by the definition of the minimum modulus M_{d}^{c} we have $\mathfrak{M}_{d}^{c}=\left(M_{d}^{c}\right)$. In (ii) we showed that $k \in \mathfrak{M}_{d}^{c}$ so that $M_{d}^{c} \mid k$. Hence to show that $M_{d}^{c}=k$ we have only to show that $k \mid M_{d}^{c}$.

Now for all $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ and all $\boldsymbol{y} \in Z^{n}$ we have

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot\left(\boldsymbol{x}+M_{d}^{c} \boldsymbol{y}\right)+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot\left(\boldsymbol{x}+M_{d}^{c} \boldsymbol{y}\right)+l_{m}, c\right)=d
$$

Hence

$$
\text { G.C.D. }\left(d u_{1}+M_{d}^{c} \boldsymbol{l}_{1} \cdot \boldsymbol{y}, \cdots, d u_{m}+M_{d}^{c} \boldsymbol{l}_{m} \cdot \boldsymbol{y}, d e\right)=d,
$$

and so we must have

$$
M_{d}^{c} \boldsymbol{l}_{i} \cdot \boldsymbol{y} \equiv 0(\bmod d)
$$

for all $\boldsymbol{y} \in Z^{n}$ and all $i(1 \leqq i \leqq m)$. Taking in particular $\boldsymbol{y}=(0, \cdots$, $0,1,0, \cdots, 0$), where the 1 appears in the $j^{\text {th }}$ place we must have for $i=1, \cdots, m$ and $j=1, \cdots, n$

$$
M_{d}^{c} l_{i j} \equiv 0(\bmod d)
$$

that is

$$
\text { G.C.D. }\left(M_{d}^{c} l_{11}, \cdots, M_{d}^{c} l_{m n}\right) \equiv 0(\bmod d)
$$

$$
\mathrm{M}_{d}^{c} \text { G.C.D. }\left(\boldsymbol{l}_{1}, \cdots, \boldsymbol{l}_{m}\right) \equiv 0(\bmod d) .
$$

But G.C.D. $\left(\boldsymbol{l}_{1} \ldots, \boldsymbol{l}_{m}, d\right)=1$ so we must have $M_{d}^{c} \equiv 0(\bmod d)$. Thus it suffices to prove that

$$
k_{1} \mid \pi_{d}^{\tau}, \text { where } k_{1}=k / d=\prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p \text { and } \pi_{d}^{\tau}=M_{d}^{c} / d .
$$

We suppose that $k_{1} \nmid \pi_{d}^{c}$ so that there exists a prime $p \mid e$ for which the system $\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{w}+l_{i} \equiv 0(\bmod p d)(i=1, \cdots, m)$ is solvable yet $p \nmid$ π_{d}^{c}. By Lemma 2 (ii) there exists $\boldsymbol{z} \in Z^{n}$ such that for some $\boldsymbol{x} \in \mathscr{S}_{d}^{\circ}$ we have

$$
\boldsymbol{l}_{i} \cdot \boldsymbol{z}+u_{i} \equiv 0(\bmod p), i=1, \cdots, m
$$

As $p \nmid \pi_{d}^{c}$ we can define λ by $\pi_{d}^{c} \lambda \equiv 1(\bmod p)$ and let $y=\lambda z$ so that for $i=1, \cdots, m$ we have

$$
\begin{equation*}
u_{i}+\pi_{d}^{c} L_{i} \cdot \boldsymbol{y} \equiv 0(\bmod p) . \tag{4.2}
\end{equation*}
$$

But as M_{d}^{c} is the minimum modulus and $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{c}$ we must have

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot\left(\boldsymbol{x}+M_{d}^{c} \boldsymbol{y}\right)+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot\left(\boldsymbol{x}+M_{d}^{c} \boldsymbol{y}\right)+l_{m}, c\right)=d,
$$

that is

$$
\text { G.C.D. }\left(u_{1}+\pi_{d}^{c} \boldsymbol{l}_{1} \cdot \boldsymbol{y}, \cdots, u_{m}+\pi_{d}^{c} \boldsymbol{l}_{m} \cdot \boldsymbol{y}, e\right)=1,
$$

which is contradicted by (4.2). Hence $\pi_{d}^{o}=\prod_{p \mid e, N\left(\mid q d, L^{\prime}\right)>0} p$ and this completes the proof.

We note the following important corollary of Theorem 2.
Corollary 1. $\boldsymbol{x} \in Z^{n}$ is a solution of

$$
\begin{equation*}
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, c\right)=d \tag{4.3}
\end{equation*}
$$

if and only if
G.C.D. $\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, M_{d}^{c}\right)=d$.

Proof. (i) Suppose \boldsymbol{x} is a solution of (4.3). Then we can define $u_{i}(i=1, \cdots, m)$ by $l_{i} \cdot \boldsymbol{x}+l_{i}=d u_{i}$ and we have

$$
\text { G.C.D. }\left(u_{1}, \cdots, u_{m}, e\right)=1 .
$$

Hence we deduce

$$
\text { G.C.D. }\left(u_{1}, \cdots, u_{m}, \prod_{p \mid e, N\left(\phi \phi, L^{\prime}\right)>0} p\right)=1
$$

and so

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, d \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p\right)=d
$$

which by Theorem 2 is

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, M_{d}^{c}\right)=d
$$

(ii) Conversely suppose \boldsymbol{x} is a solution of (4.4). Then there exist $u_{i}(i=1, \cdots, m)$ such that $l_{i} \cdot x+l_{i}=d u_{i}$ and

$$
\text { G. C. D. }\left(u_{1}, \cdots, u_{m}, \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} \mathrm{p}\right)=1 .
$$

Suppose however that

$$
\text { G.C.D. }\left(u_{1}, \cdots, u_{m}, e\right) \neq 1
$$

Then there exists a prime p such that

$$
u_{i} \equiv 0(i=1, \cdots, m), e \equiv 0(\bmod p), N\left(p d, L^{\prime}\right)=0
$$

But for $i=1, \cdots, m$ we have

$$
\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i}=d u_{i} \equiv 0(\bmod p d)
$$

that is $N\left(p d, L^{\prime}\right)>0$, which is the required contradiction. Hence we have

$$
\text { G.C.D. }\left(u_{1}, \cdots, u_{m}, e\right)=1
$$

and so

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, c\right)=d .
$$

5. Number of solutions with respect to the minimum modulus. We begin by evaluating \mathfrak{N}_{1}^{c}, that is, the number of solutions of (1.1), when $d=1$, which are incongruent modulo M_{1}^{c}. We prove

THEOREM 3. $\quad \mathfrak{N}_{1}^{c}=\prod_{p \mid c, N\left(p, L^{\prime}\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)$, where $r(p, L)$ is the rank of the matrix $L^{(p)}$ obtained from L by replacing each entry $l_{i j}$ by its residue class modulo p in the finite field Z_{p}.

Proof. By Corollary 1 the required number of solutions \mathfrak{N}_{1}^{c} is just the number of solutions taken modulo M_{1}^{c} of

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, M_{1}^{c}\right)=1
$$

Thus as $M_{1}^{c}=\prod_{p \mid c, N\left(p, L^{\prime}\right)>0} p$ is a product of distinct primes, a standard
argument involving use of the Chinese remainder theorem shows that this number \mathfrak{R}_{1}^{c} is just $\prod_{p \mid M M_{1}^{c}} \mathfrak{R}(p)$, where $\mathfrak{N}(p)$ is the number of solutions \boldsymbol{x} taken modulo p of

$$
\begin{equation*}
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot \boldsymbol{x}+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot \boldsymbol{x}+l_{m}, p\right)=1 \tag{5.1}
\end{equation*}
$$

Now \boldsymbol{x} is a solution of (5.1) if and only if $\boldsymbol{x}^{(p)}$ is not a solution of the system (T denotes transpose)

$$
L^{(p)} \boldsymbol{x}^{(p)^{T}}+\boldsymbol{l}^{(p)^{T}}=\mathbf{0}^{T}
$$

Since $N\left(p, L^{\prime}\right)>0$, this system is consistent over the field Z_{p} and has $p^{n-r(p, L)}$ solutions. Thus the number of solutions (modulo p) of (5.1) is $p^{n}-p^{n-r(p, L)}=p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)$, giving

$$
\mathfrak{N}_{\perp}^{c}=\prod_{p \mid c, N\left(p, L^{\prime}\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)
$$

as required.
In the proof of Theorem 2 we have seen that any solution modulus M of (1.1) is a multiple of M_{d}^{c}. As \mathscr{S}_{d}^{c} consists of \mathfrak{R}_{d}^{c} congruence classes modulo M_{d}^{c}, Lemma 3 shows that $\mathscr{S}_{d}{ }^{c}$ consists of $\left(M / M_{d}^{c}\right)^{n} \mathfrak{N}_{d}^{c}$ congruence classes modulo M. Hence by Theorem 3 we have

Corollary 2. The number of solutions \boldsymbol{x} of (1.1), with $d=1$, determined modulo $M-a$ multiple of M_{d}^{c}-is

$$
M^{n} \prod_{p \mid c, N\left(p, L^{\prime}\right)>0}\left(1-\frac{1}{p^{r(p, L)}}\right) .
$$

As a consequence of Corollary 2 we have the linear case of a result recently established by Stevens [6]. A generalization of this result is proved in $\S 7$.

Corollary 3. (Stevens) The number of solutions of

$$
\text { G.C.D. }\left(a_{1} x_{1}+b_{1}, \cdots, a_{n} x_{n}+b_{n}, c\right)=1,
$$

taken modulo c, is

$$
c^{n} \prod_{p \mid c}\left(1-\frac{\nu_{1}(p) \cdots \nu_{n}(p)}{p^{n}}\right),
$$

where $\nu_{i}(p)(i=1, \cdots, n)$ is the number of incongruent solutions modulo p of $a_{i} x_{i}+b_{i} \equiv 0(\bmod p)$.

Proof. The system

$$
a_{i} x_{i}+b_{i} \equiv 0(\bmod p)(i=1, \cdots, n)
$$

is solvable if and only if

$$
\text { G.C.D. }\left(a_{i}, p\right) \mid b_{i}(i=1, \cdots, n),
$$

that is, if and only if

$$
p \nmid a_{i} \text { or } p \mid \text { G.C.D. }\left(a_{i}, b_{i}\right)(i=1, \cdots, n) .
$$

Hence by Corollary 2 the required number of solutions is

$$
\begin{equation*}
c^{n} \prod_{p \mid c}^{\prime}\left(1-\frac{1}{p^{r(p)}}\right) \tag{5.2}
\end{equation*}
$$

where the dash (') denotes that the product is taken over all p such that $p \nmid a_{i}$ or p |G.C.D. $\left(a_{i}, b_{i}\right)(1 \leqq i \leqq n)$ and $r(p)$ is the number of $a_{i}(i=1, \cdots, n)$ not divisible by p. As

$$
\nu_{i}(p)=\left\{\begin{array}{l}
1, p \nmid a_{i} \\
0, p \mid a_{i}, p \nmid b_{i} \\
p, p\left|a_{i}, p\right| b_{i}
\end{array}\right.
$$

for $i=1, \cdots, n,(5.2)$ is just

$$
c^{n} \prod_{p \mid c}\left(1-\frac{\nu_{1}(p) \cdots \nu_{n}(p)}{p^{n}}\right)
$$

which is the required result.
We now turn to the general case $d \geqq 1$. Let p be a prime and let E denote an equivalence class of $\mathscr{S}_{d}{ }^{c}$ consisting of elements of \mathscr{S}_{d}^{c} which are congruent modulo d. We assert that if $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)} \in E$ then the system $\boldsymbol{l}_{i} \cdot \boldsymbol{z}^{(1)}+u_{i}^{(1)} \equiv 0(\bmod p)(i=1, \cdots, n)$ is solvable if and only if the system $\boldsymbol{l}_{i} \cdot z^{(2)}+u_{i}^{(2)} \equiv 0(\bmod p)(i=1, \cdots, n)$ is solvable. As $\boldsymbol{x}^{(1)} \equiv \boldsymbol{x}^{(2)}(\bmod p)$ there exists $\boldsymbol{t} \in Z^{n}$ such that $\boldsymbol{x}^{(2)}=\boldsymbol{x}^{(1)}+d \boldsymbol{t}$. Hence for $i=1, \cdots, n$ we have

$$
\begin{aligned}
d u_{i}^{(2)} & =\boldsymbol{l}_{i} \cdot \boldsymbol{x}^{(2)}+l_{i} \\
& =\boldsymbol{l}_{i} \cdot \boldsymbol{x}^{(1)}+l_{i}+d \boldsymbol{l}_{i} \cdot \boldsymbol{t} \\
& =d u_{i}^{(1)}+d \boldsymbol{l}_{i} \cdot \boldsymbol{t}
\end{aligned}
$$

giving

$$
u_{i}^{(2)}=u_{i}^{(1)}+\boldsymbol{l}_{i} \cdot \boldsymbol{t}
$$

If there exists $\boldsymbol{z}^{(1)} \in Z^{n}$ such that $\boldsymbol{l}_{i} \cdot \boldsymbol{z}^{(1)}+u_{i}^{(1)} \equiv 0(\bmod p)(i=1$, \cdots, n) letting $\boldsymbol{z}^{(2)}=\boldsymbol{z}^{(1)}-\boldsymbol{t}$ we have $\boldsymbol{l}_{i} \cdot \boldsymbol{z}^{(2)}+u_{i}^{(2)}=\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{z}^{(1)}-\boldsymbol{l}_{i} \cdot \boldsymbol{t}+u_{i}^{(1)}+$ $\boldsymbol{l}_{i} \cdot \boldsymbol{t} \equiv 0(\bmod p)$, which completes the proof of the assertion. Hence
the solvability of the system

$$
\boldsymbol{l}_{i} \cdot \boldsymbol{z}+u_{i} \equiv 0(\bmod p)(i=1, \cdots, n)
$$

depends only on the equivalence class E to which \boldsymbol{x} (recall $\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{x}+l_{i}=$ $d u_{i}$) belongs. Thus we can define a symbol $\delta_{p}(E)$ as follows:

$$
\delta_{p}(E)=\left\{\begin{array}{l}
1, \text { if for some } \boldsymbol{x} \in E(\text { and thus for all } \boldsymbol{x} \in E) \text { the system } \\
\boldsymbol{l}_{i} \cdot z+u_{i} \equiv 0(\bmod p)(i=1, \cdots, m) \text { is solvable } \\
0, \text { otherwise. }
\end{array}\right.
$$

We now prove the following result.
THEOREM 4. $\quad \mathfrak{N}_{d}^{c}=\sum_{j=1}^{N\left(d, L^{\prime}\right)}\left\{\prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)^{\delta_{p}\left(E^{(j)}\right)}\right\}$, where the $E^{(j)}$ denote the $N\left(d, L^{\prime}\right)$ congruence classes modulo d in $\mathscr{S}_{d}{ }^{c}$.

Proof. We let

$$
\mathscr{S}=\left\{\boldsymbol{x} \in Z^{n} \mid \boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i} \equiv 0(\bmod d), i=1, \cdots, m\right\}
$$

so that we have $\mathscr{S}_{d}{ }^{c} \subseteq \mathscr{S}$. Now \mathscr{S} consists of $N\left(d, L^{\prime}\right)$ congruence classes modulo d and if we restrict this equivalence relation modulo d to $\mathscr{S}_{d}{ }^{c}$, we show that $\mathscr{S}_{d}{ }^{c}$ also contains the same number of classes. We write $E(\boldsymbol{x})\left(\operatorname{resp} . E^{\prime}(\boldsymbol{x})\right)$ for the equivalence class to which $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{\text {c }}$ (resp. $\boldsymbol{x} \in \mathscr{S}$) belongs. From the proof of Theorem 1 we see that for each $\boldsymbol{x} \in \mathscr{S}$ there exists $\lambda \in Z^{n}$ such that $\boldsymbol{x}+d \lambda \in \mathscr{S}_{d}^{c}$. We define a mapping f from the set of equivalence classes of \mathscr{S} into the set of equivalence classes of $\mathscr{S}_{d}{ }^{c}$ as follows: For $\boldsymbol{x} \in \mathscr{S}$

$$
f\left(E^{\prime}(\boldsymbol{x})\right)=E(\boldsymbol{x}+d \lambda)
$$

This mapping is well-defined for if $x^{\prime} \in \mathscr{S}$ is such that $E^{\prime}\left(\boldsymbol{x}^{\prime}\right)=E^{\prime}(x)$ then $E\left(\boldsymbol{x}^{\prime}+d \lambda^{\prime}\right)=E(\boldsymbol{x}+d \lambda)$. f is onto for if $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ then $f\left(E^{\prime}(\boldsymbol{x})\right)=$ $E(\boldsymbol{x})$ and is also one-to-one, for if $f\left(E^{\prime}(\boldsymbol{x})\right)=f\left(E^{\prime \prime}(\boldsymbol{y})\right)$, then $E(\boldsymbol{x}+d \lambda)=$ $E\left(\boldsymbol{y}+d \lambda^{\prime}\right)$, that is $\boldsymbol{x} \equiv \boldsymbol{y}(\bmod d)$, giving $E^{\prime}(\boldsymbol{x})=E^{\prime}(\boldsymbol{y})$. Thus the number of equivalence classes of \mathscr{S}_{d}^{c} is the same as the number of equivalence classes of \mathscr{S}, that is $N\left(d, L^{\prime}\right)$.

Since $d \mid M_{d}^{c}$, each equivalence class E of $\mathscr{S}_{d}{ }^{c}$, consists of a certain number of distinct classes in $\mathscr{S}_{d}{ }^{c}$ modulo M_{d}^{c}. We now determine this number. If $\boldsymbol{x} \in E, \boldsymbol{x}+d \boldsymbol{t}$ also belongs in E if and only if it belongs in $\mathscr{S}_{d}{ }^{c}$, that is, if and only if,

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1} \cdot(\boldsymbol{x}+d \boldsymbol{t})+l_{1}, \cdots, \boldsymbol{l}_{m} \cdot(\boldsymbol{x}+d \boldsymbol{t})+l_{m}, c\right)=d
$$

that is, if and only if,

$$
\begin{equation*}
\text { G.C.D. }\left(u_{1}+\boldsymbol{l}_{1} \cdot \boldsymbol{t}, \cdots, u_{m}+\boldsymbol{l}_{m} \cdot \boldsymbol{t}, e\right)=1 \tag{5.3}
\end{equation*}
$$

Thus the number of distinct classes modulo M_{d}^{c} contained in E is just the number of distinct classes modulo $\pi_{d}^{c}=M_{d}^{c} / d$ which satisfy (5.3). But the minimum modulus of (5.3) is $\Pi_{p \mid e} p^{p_{p}(E)}$. By lemma 2 (i) $\quad \delta_{p}(E)=1$ implies $N\left(p d, L^{\prime}\right)>0$, so that $\Pi_{p \mid e} p^{\delta_{p}(E)}$ divides $\Pi_{p \mid e, N\left(p d, L^{\prime}\right)>0} p=\pi_{d}^{c}$. Writing $\Pi_{p \mid e}^{+}$for $\Pi_{p \mid e, N\left(p d, L^{\prime}\right)>0}$ and $\Pi_{p \mid e}^{0}$ for $\Pi_{p \mid e, N\left(p d, L^{\prime}\right)=0}$, the required number of classes is by Corollary 2

$$
\begin{aligned}
& =\prod_{p \mid e}^{+} p^{n} \cdot \prod_{p \mid e}\left(1-\frac{1}{p^{r(p, L)}}\right)^{\delta_{p}(E)} \\
& =\prod_{p \mid e}^{+} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)^{\delta_{p}(E)} \cdot \quad \prod_{p \mid e}^{0}\left(1-\frac{1}{p^{r(p, L)}}\right)^{\delta_{p}(E)} \\
& =\prod_{p \mid e}^{+} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)^{\delta_{p}(E)},
\end{aligned}
$$

as $N\left(p d, L^{\prime}\right)=0$ implies $\delta_{p}(E)=0$.
Finally letting $E^{(1)}, \cdots, E^{(h)}$ denote the $h=N\left(d, L^{\prime}\right)$ distinct equivalence classes in $\mathscr{S}_{d}{ }^{c}$ we deduce that the total number of incongruent solutions modulo M_{d}^{c} of (1.1) is

$$
\sum_{j=1}^{N\left(d, L^{\prime}\right)}\left\{\prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)^{\delta_{p}\left(E^{(j)}\right)}\right\}
$$

We remark that $r(p, L) \neq 0$, for $p \mid e$ and $\delta_{p}(E)=1$. Otherwise, if $r(p, L)=0, \boldsymbol{l}_{i} \equiv 0(\bmod p)(i=1, \cdots, m)$. But as $\delta_{p}(E)=1$ then for $\boldsymbol{x} \in E$ the system $l_{i} \cdot \boldsymbol{z}+u_{i} \equiv 0(\bmod p)(i=1, \cdots, m)$ is solvable contradicting G.C.D. $\left(u_{1}, \cdots, u_{m}, e\right)=1$.
6. Some special cases. We note a number of interesting cases of our results.

Corollary 4. If G.C.D. $(d, e)=1$ then the number \mathfrak{R}_{d}^{c} of solutions of (1.1) modulo M_{d}^{c} is

$$
\mathfrak{R}_{d}^{c}=N\left(d, L^{\prime}\right) \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right)
$$

Proof. By Theorem 4 it suffices to show that if G.C.D. $(d, e)=$ 1, $p \mid e, N\left(p d, L^{\prime}\right)>0$ then for all $\boldsymbol{x} \in \mathscr{S}_{d}^{c}$ we have $\delta_{p}(E)=1$, that is the system $\boldsymbol{l}_{i} \cdot \boldsymbol{z}+u_{i} \equiv 0(\bmod p)$ is solvable. Let \boldsymbol{w} be a solution of $\boldsymbol{l}_{i} \cdot \boldsymbol{w}+l_{i} \equiv 0(\bmod p d)$, say $\boldsymbol{l}_{i} \cdot \boldsymbol{w}+l_{i}=p d v_{i}(i=1, \cdots, m)$. As $p \nmid d$ we can define $z=d^{-1}(\boldsymbol{w}-\boldsymbol{x})$, where $d d^{-1} \equiv 1(\bmod p)$ so that for $i=$ $1, \cdots, m$ we have

$$
\begin{aligned}
\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{z}+u_{i} & =d^{-1}\left(\boldsymbol{l}_{i} \cdot \boldsymbol{w}-\boldsymbol{l}_{i} \cdot \boldsymbol{x}\right)+u_{i} \\
& =d^{-1}\left(p d v_{i}-l_{i}-d u_{i}+l_{i}\right)+u_{i} \\
& =d d^{-1}\left(p v_{i}-u_{i}\right)+u_{i} \\
& \equiv 0(\bmod p),
\end{aligned}
$$

as required.
Corollary 5. If $N\left(d, L^{\prime}\right)=1$ then the number \mathfrak{N}_{d}^{c} of solutions of (1.1) modulo M_{d}^{c} is

$$
\begin{equation*}
\mathfrak{N}_{d}^{c}=\prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L)}}\right) . \tag{6.1}
\end{equation*}
$$

In particular $N\left(d, L^{\prime}\right)=1$ when L is invertible $(\bmod d)$, and so \mathfrak{R}_{d}^{c} is given by (6.1). Moreover if L is invertible modulo $d \prod_{p \mid e} p$ or c, then (1.1) is solvable and $\mathfrak{N}_{d}^{c}=\Pi_{p \mid e}\left(p^{n}-1\right)$.

Proof. This is immediate from Theorem 4 since by Lemma 2(ii), $\delta_{p}(E)=1$ for all $p \mid e, N\left(p d, L^{\prime}\right)>0$. Also (1.1) is solvable when L is invertible modulo $d \prod_{p l e} p$ as

$$
\text { G.C.D. }\left(\boldsymbol{l}_{1}, \cdots, l_{m}, d\right)=\text { G.C.D. }\left(\boldsymbol{l}_{1}^{\prime}, \cdots, \boldsymbol{l}_{m}^{\prime}, c\right)=1 .
$$

Corollary 6. If L is invertible modulo $\prod_{p \mid e, N\left(p d, L^{\prime}\right)>0} p$ then the number of solutious of (1.1) modulo M_{d}^{c} is

$$
\mathfrak{N}_{d}^{c}=N\left(d, L^{\prime}\right) \prod_{p \mid e, N\left(p d, L^{\prime}\right)>0}\left(p^{n}-1\right) .
$$

Proof. Let p be any prime such that $p \mid e$ and $N\left(p d, \mathrm{~L}^{\prime}\right)>0$. Then L is invertible modulo p and so for any $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{c}$ the system

$$
\boldsymbol{l}_{i} \cdot z+u_{i} \equiv 0(\bmod p)(1=1, \cdots, n)
$$

is solvable and so $\delta_{p}\left(E^{(j)}\right)=1, \mathrm{j}=1, \cdots, N\left(d, L^{\prime}\right)$. Moreover as L is invertible modulo p we have $r(p, L)=n$ and the result follows from Theorem 4.

Corollary 7. If

$$
\begin{equation*}
\text { G.C.D. }\left(a_{1}, \cdots, a_{n}, d\right)=1 \tag{6.2}
\end{equation*}
$$

the equation

$$
\begin{equation*}
\text { G.C.D. }\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+b, c\right)=d \tag{6.3}
\end{equation*}
$$

is solvable if and only if

$$
\begin{equation*}
d \mid c, \text { G.C.D. }\left(a_{1}, \cdots, a_{n}, b, c\right)=1 . \tag{6.4}
\end{equation*}
$$

The minimum modulus of (6.3) is

$$
d \prod_{p \mid c / d}^{\prime} p
$$

and the number of solutions \boldsymbol{x} modulo this minimum modulus is

$$
d^{n-1} \prod_{p \mid c / d}^{\prime}\left(p^{n}-p^{n-1}\right),
$$

where the dash (') means that the product is taken over those primes $p \mid c / d$ such that G.C.D. $\left(a_{1}, \cdots, a_{n}, p\right)=1$.

Proof. According to Smith [4] or Lehmer [3] the number of solutions \boldsymbol{x} taken modulo d of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}+b \equiv 0(\bmod d)
$$

is d^{n-1} G.C.D. $\left(a_{1}, \cdots, a_{n}, d\right)$ if G.C.D. $\left(a_{1}, \cdots, a_{n}, d\right)$ divides b and 0 otherwise. Thus as G.C.D. $\left(a_{1}, \cdots, a_{n}, d\right)=1$, we have $N\left(d, L^{\prime}\right)=d^{n-1}$ and so by Theorem 1 (6.3) is solvable if and only if

$$
d \mid c, \text { G.C.D. }\left(a_{1}, \cdots, a_{n}, b, c\right)=1
$$

Now if (6.3) is solvable and $p \mid c / d$ then

$$
\text { G.C.D. }\left(a_{1}, \cdots, a_{n}, p d\right) \mid b
$$

if and only if

$$
\text { G.C.D. }\left(a_{1}, \cdots, a_{n}, p\right)=1,
$$

in view of (6.2) and (6.4). Thus by Theorem 2 the minimum modulus is

$$
d \prod_{p \mid c / d}^{\prime} p
$$

Finally for $p \mid c / d$, G.C.D. $\left(a_{1}, \cdots, a_{n}, p\right)=1$ we have $r(p, L)=1$ and moreover the congruence $a_{1} x_{1}+\cdots+a_{n} x_{n}+u \equiv 0(\bmod p)$ is always solvable so that $\delta_{p}\left(E^{(j)}\right)=1, j=1, \cdots, d^{n-1}$. Hence by Theorem 4 the number of solutions is

$$
d^{n-1} \prod_{p \mid c / d}^{\prime} p^{n}\left(1-\frac{1}{p}\right)
$$

We remark that in particular ([5])

$$
\text { G.C.D. }(a x+b, c)=1
$$

is solvable if and only if G.C.D. $(a, b, c)=1$, has minimum modulus $\Pi_{p \mid c, p \nmid a} p$, and has $\Pi_{p \mid c, p \nmid a}(p-1)$ solutions x modulo the minimum modulus.

Corollary 8. There is a unique solution of (1.1) modulo M_{d}^{c} if and only if
(i) $N\left(d, L^{\prime}\right)=1$ and there is no prime p such that

$$
p \mid e, N\left(p d, L^{\prime}\right)>0
$$

or
(ii) $N\left(d, L^{\prime}\right)=1$ and the only prime p such that $p \mid e, N\left(p d, L^{\prime}\right)>$ 0 , is $p=2$, and $r(2, L)=1, n=1$.

Proof. If (1.1) possesses a unique solution modulo M_{d}^{c}, Theorem 4 shows that S can consist only of a single congruence class modulo d. Hence $N\left(d, L^{\prime}\right)=1$. Also by Theorem 4 if there is no prime p such that $p \mid e$ and $N\left(p d, L^{\prime}\right)>0$ then $\Re_{d}^{c}=1$. Suppose however that there is such a prime p. Then by Corollary 5 we have

$$
1=\prod_{p \mid e, N\left(p d, L^{\prime}\right)>0}\left(p^{n}-p^{n-r(p, L)}\right)
$$

This occurs if and only if

$$
\begin{equation*}
p^{n}-p^{n-r(p, L)}=1 \tag{6.5}
\end{equation*}
$$

for all $p \mid e$ with $N\left(p d, L^{\prime}\right)>0$. But the left-hand side of (6.5) is divisible by p unless $r(p, L)=n$. Then $p^{n}=2$ and we have $p=2$, $n=1, r(p, L)=r(2, L)=1$, which proves the theorem.
7. Another method. Although the formula of Theorem 4 applies to some important cases in $\S 6$, this formula seems difficult to evaluate even for example in the diagonal case

$$
\text { G.C.D. }\left(a_{1} x_{1}+b_{1}, \cdots, a_{n} x_{n}+b_{n}, c\right)=d
$$

The inherent difficulty is in determining for a given prime p which solutions of this equation have the property that the system $a_{i} z_{i}+$ $u_{i} \equiv 0(\bmod p)(i=1, \cdots, n)$ is solvable. We now present another method which in conjunction with previous results yields the diagonal case.

We consider the set \mathfrak{U} of $\boldsymbol{u} \in Z^{m}$ with G.C.D. $(\boldsymbol{u}, e)=1$ for which the system

$$
\begin{equation*}
\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i} \equiv d u_{i}(\bmod c)(i=1, \cdots, n) \text { is solvable } \tag{7.1}
\end{equation*}
$$

It is clear that if $\boldsymbol{u} \in \mathfrak{U}$ and $\boldsymbol{u} \equiv \boldsymbol{u}^{\prime}(\bmod e)$ then $\boldsymbol{u}^{\prime} \in \mathfrak{H}$. We denote by K_{d}^{c} the number of distinct classes modulo e contained in \mathfrak{U}. Let \mathfrak{R} denote the number of solutions \boldsymbol{x} of (1.1) modulo c. We prove

Theorem 5. $\mathfrak{R}=K_{d}^{c} N_{c}\left(L^{*}\right)$ where L^{*} is the $m \times(n+1)$ matrix
[L: 0].

Proof. If $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{c}$ then there exists $\boldsymbol{u} \in Z^{n}$ such that $\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i}=$ $d u_{i}(i=1, \cdots, m)$ and G.C.D. $(\boldsymbol{u}, e)=1$. If $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathscr{S}_{d}^{c}$ are such that
$\boldsymbol{x} \equiv \boldsymbol{x}^{\prime}(\bmod e)$ then $d u_{i} \equiv d u_{i}^{\prime}(\bmod c)$, that is $u_{i} \equiv u_{i}^{\prime}(\bmod e)$.
Conversely if G.C.D. $(\boldsymbol{u}, e)=1$ and \boldsymbol{x} satisfies $\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{x}+l_{i} \equiv d u_{i}(\bmod$ c) $(i=1, \cdots, m)$ then $\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i}=d\left(u_{i}+\lambda_{i} e\right)$ and $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{c}$ as G.C.D. $(\boldsymbol{u}+$ $\lambda e, e)=$ G.C.D. $(u, e)=1$.

Thus $\boldsymbol{x} \in \mathscr{S}_{d}{ }^{c}$ if and only if \boldsymbol{x} is a solution of $\boldsymbol{l}_{i} \cdot \boldsymbol{x}+l_{i} \equiv d u_{i}(\bmod$ c), where G.C.D. $(u, e)=1$. Now there are K_{d}^{c} incongruent classes of \boldsymbol{u} modulo e, with G.C.D. $(\boldsymbol{u}, e)=1$, for which (7.1) is solvable. For each one of these, (7.1) has $N_{c}(L: 0)$ incongruent solutions modulo c. Hence we have

$$
\mathfrak{N}=K_{d}^{c} N_{c}\left(L^{*}\right)
$$

as required.
We now obtain the following interesting result.
Corollary 9. If $\boldsymbol{h} \in Z^{n}$ and e_{1}, \cdots, e_{n} are divisors of e then the system

$$
\begin{equation*}
u_{i} \equiv h_{i}\left(\bmod e_{i}\right)(i=1, \cdots, n) \tag{7.2}
\end{equation*}
$$

has a solution $\boldsymbol{u}=\left(u_{1}, \cdots, u_{n}\right)$ such that G.C.D. $(\boldsymbol{u}, e)=1$ if and only if G.C.D. $\left(e_{1}, \cdots, e_{n}, h_{1}, \cdots, h_{n}, e\right)=1$. When this holds (7.2) has

$$
\prod_{i=1}^{n}\left(e / e_{i}\right) \prod_{p / e}^{\prime}\left(1-\frac{1}{p^{r(p)}}\right)
$$

distinct solutions \boldsymbol{u} modulo e, for which G.C.D. $(\boldsymbol{u}, e)=1$, where $r(p)=$ number of $e_{i}(i=1, \cdots, n)$ not divisible by p, and the dash (') means that the product is taken over those primes $p \mid e$ such that $p \nmid e_{i}$ or $p \mid$ G.C.D. $\left(e_{i}, h_{i}\right)(i=1, \cdots, n)$.

Proof. The system (7.2) has a solution \boldsymbol{u} such that G.C.D. $(\boldsymbol{u}, e)=1$ if and only if

$$
\begin{equation*}
\text { G.C.D. }\left(e_{1} x_{1}+h_{1}, \cdots, e_{n} x_{n}+h_{n}, e\right)=1 \tag{7.3}
\end{equation*}
$$

is solvable, which by Lemma 1 is the case if and only if G.C.D. (e_{1}, $\left.\cdots, e_{n}, h_{1}, \cdots, h_{n}, e\right)=1$. Applying Theorem 5 to (7.3) we have $\mathfrak{N}=$ $K_{1}^{e} N_{e}\left(L^{*}\right)$ and we note that K_{1}^{e} is the number of distinct solutions \boldsymbol{u} modulo e of (7.2) for which G.C.D. $(\boldsymbol{u}, e)=1$. However $N_{e}(L *)$ is the number of solutions \boldsymbol{x} modulo e such that $e_{i} x_{i} \equiv 0(\bmod e)(i=1, \cdots$, n). Clearly $N_{e}\left(L^{*}\right)=\prod_{i=1}^{n} e_{i}$. By Corollary 2

$$
\mathfrak{R}=e^{n} \prod_{p|e, N|\left(Q, L^{\prime}\right\rangle>0}\left(1-\frac{1}{p^{(p, L)}}\right),
$$

where

$$
L^{\prime}=\left(\begin{array}{ccc}
e_{1} & & \\
& h_{1} \\
& \ddots & \\
& & \\
& e_{n} & h_{n}
\end{array}\right)
$$

Now $N\left(p, L^{\prime}\right)>0$ if and only if the system $e_{i} w_{i}+h_{i} \equiv 0(\bmod p)(i=$ $1, \cdots, n)$ is solvable, that is, if and only if G.C.D. $\left(p, e_{i}\right) \mid h_{i}$ or if and only if $p \nmid e_{i}$ or $p \mid$ G.C.D $\left(e_{i}, h_{i}\right)(i=1, \cdots, n)$. Also $r(p, L)$ is just the number of the $e_{i}(i=1, \cdots, n)$ not divisible by p. This completes the proof.

We now obtain a generalization of Steven's result [6] (see Corollary 3).

Corollary 10. The equation

$$
\text { G.C.D. }\left(a_{1} x_{1}+b_{1}, \cdots, a_{n} x_{n}+b_{n}, c\right)=d,
$$

where

$$
\text { G.C.D. }\left(a_{1}, \cdots, a_{n}, d\right)=1
$$

is solvable if and only if

$$
\begin{aligned}
& d \mid c, \text { G.C.D. }\left(a_{i}, d\right) \mid b_{i}(i=1, \cdots, n), \\
& \text { G.C.D. }\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}, c\right)=1 .
\end{aligned}
$$

The number of solution modulo c is given by

$$
\prod_{i=1}^{n} \text { G.C.D. }\left(a_{i}, d\right) \cdot(c / d)^{n} \cdot \prod_{p \mid c / d}\left(1-\frac{\nu_{1}(p) \cdots \nu_{n}(p)}{p^{n}}\right),
$$

where $\nu_{i}(p)(i=1, \cdots, n)$ is the number of incongruent solutions modulo p of $\frac{a_{i}}{\text { G.C.D. }\left(a_{i}, d\right)} x+\frac{b_{i}}{\text { G.C.D. }\left(a_{i}, d\right)} \equiv 0(\bmod p)$.

Proof. The necessary and sufficient conditions for solvability are immediate from Theorem 1. When solvable we calculate the number \mathfrak{R} of solutions modulo c using Theorem 5. Thus we require the number of distinct \boldsymbol{u} modulo e with G.C.D. $(\boldsymbol{u}, e)=1$ such that

$$
a_{i} x_{i}+b_{i} \equiv d u_{i}(\bmod d e)(i=1, \cdots, n)
$$

is solvable, that is,

$$
\left(a_{i} / d_{i}\right) x_{i}+\left(b_{i} / d_{i}\right) \equiv\left(d / d_{i}\right) u_{i}\left(\bmod d / d_{i} \cdot e\right)
$$

where $d_{i}=$ G.C.D $\left(a_{i}, d\right)(i=1, \cdots, n)$.
This is solvable if and only if

$$
\text { G.C.D. }\left(\left(a_{i} / d_{i}\right),\left(d / d_{i}\right) e\right) \mid\left(d / d_{i}\right) u_{i}-\left(b_{i} / d_{i}\right)(i=1, \cdots, n),
$$

that is, if and only if,

$$
\left(d / d_{i}\right) u_{i} \equiv\left(b_{i} / d_{i}\right)\left(\bmod \text { G.C.D. }\left(\left(a_{i} / d_{i}\right), e\right)(i=1, \cdots, n)\right.
$$

This system is equivalent to

$$
u_{i} \equiv h_{i}\left(\bmod \text { G.C.D. }\left(a_{i} / d_{i}, e\right)\right)(i=1, \cdots, n)
$$

where $h_{i}=\left(d / d_{i}\right)^{-1} b_{i} / d_{i}$ and $\left(d / d_{i}\right)^{-1}$ is an inverse of d / d_{i} modulo G.C.D. $\left(a_{i} / d_{i}, e\right)$ since G.C.D. $\left(d / d_{i}, a_{i} / d_{i}, e\right)=1$. Thus by Corollary 9 the number of such \boldsymbol{u} is

$$
\prod_{i=1}^{n} \frac{e}{\text { G.C.D. }\left(\left(a_{i} / d_{i}\right), e\right)} \Pi_{p \mid e}^{\prime}\left(1-\frac{1}{p^{r(p)}}\right)
$$

where the dash (') means that the product is taken over those $p \mid e$ such that $p \mid a_{i} / d_{i}$ or $p \mid$ G.C.D. $\left(a_{i} / d_{i}, b_{i} / d_{i}\right), i=1, \cdots, n$, as $p \mid$ G.C.D. $\left(a_{i} / d_{i}, e, h_{i}\right)$ if and only if $p \mid$ G.C.D. $\left(a_{i} / d_{i}, e, b_{i} / d_{i}\right)$ because $\left(d / d_{i}\right) h_{i} \equiv$ $b_{i} / d_{i}\left(\bmod\right.$ G.C.D. $\left(a_{i} / d_{i}, e\right)$ and G.C.D. $\left(d / d_{i}, a_{i} / d_{i}\right)=1(i=1, \cdots, n)$. Also $r(p)$ is the number of $\alpha_{i} / d_{i}(i=1, \cdots, n)$ not divisible by p.

Next we need the number of incongruent \boldsymbol{x} modulo de such that

$$
a_{i} x_{i} \equiv 0(\bmod d e)(i=1, \cdots, n)
$$

This is just

$$
\begin{aligned}
& \prod_{i=1}^{n} \text { G.C.D. }\left(a_{i}, d e\right) \\
= & \prod_{i=1}^{n} d_{i} \text { G.C.D. }\left(a_{i} / d_{i},\left(d / d_{i}\right) e\right) \\
= & \prod_{i=1}^{n} d_{i} \text { G.C.D. }\left(a_{i} / d_{i}, e\right) .
\end{aligned}
$$

Hence by Theorem 5 the required number of solutions is

$$
\prod_{i=1}^{n}\left(d_{i} e\right) \cdot \prod_{p \mid e}^{\prime}\left(1-\frac{1}{p^{r(p)}}\right)
$$

where the dash (') means that the product is taken over those $p \mid e$ such that $p \mid a_{i} / d_{i}$ or $p \mid$ G.C.D. $\left(a_{i} / d_{i}, b_{i} / d_{i}\right), i=1, \cdots, n$. This number is

$$
\prod_{i=1}^{n} d_{i} \cdot e^{n} \cdot \prod_{p \neq e}\left(1-\frac{\nu_{1}(p) \cdots \nu_{n}(p)}{p^{n}}\right)
$$

as

$$
\nu_{i}(p)= \begin{cases}1, & p \nmid a_{i} / d_{i} \\ 0, & p \mid a_{i} / d_{i}, p \nmid b_{i} / d_{i} \\ p, & p\left|a_{i} / d_{i}, p\right| b_{i} / d_{i}\end{cases}
$$

Finally we state that all formulas are easily modified if we do not assume $g=$ G.C.D. $\left(l_{1}, \cdots, l_{m}, d\right)=1$ (See introduction, Theorem 1). For example we list

THEOREM 2'. If $\mathscr{S}_{d}{ }^{c} \neq \varnothing$ the minimum modulus M_{d}^{c} with respect to (1.1) is given by

$$
M_{d}^{c}=d_{1} \prod_{p \mid e, N\left\langle p d_{1}, L^{\prime} \mid g\right\rangle>0} p .
$$

Corollary 4'. If G.C.D. $(d, e)=1$ then the number \mathfrak{N}_{d}^{c} of solutions of (1.1) modulo M_{d}^{c} is

$$
\mathfrak{R}_{d}^{c}=N\left(d, L^{\prime} / g\right) \prod_{p \mid e, N\left(p d_{1}, L^{\prime} \mid g\right)>0} p^{n}\left(1-\frac{1}{p^{r(p, L / g)}}\right) .
$$

References

1. T. M. Apostol, Euler's \varnothing - function and separable Gauss sums, Proc. Amer. Math. Soc., 24 (1970), 482-485.
2. L. E. Dickson, History of the Theory of Numbers, Chelsea N.Y., (1952), 88-93.
3. D. N. Lehmer, Certain theorems in the theory of quadratic residues, Amer Math. Monthly, 20 (1913), 155-156.
4. H. J. S. Smith, On systems of linear indeterminate equations and congruences, Phil. Trans. Lond., 151 (1861), 293-326. (Collected Mathematical Papers Vol. 1, Chelsea N. Y. (1965), 367-409.)
5. R. Spira, Elementary problem no. E1730, Amer. Math. Monthly, 72 (1965), 907.
6. H. Stevens, Generalizations of the Euler \varnothing - function, Duke Math. J., 38 (1971), 181-186.

Received November 30, 1970, and in revised form April, 1971. This research was supported by a National Research Council of Canada Grant (No. A-7233).

