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NOTE ON DICKSON'S PERMUTATION POLYNOMIALS 

1. Introduction. Let p be a prime and let m be an integer 2 1. The finite 
field with p" elements is denoted by GF(pm) and its algebraic closure by GF(pm). 
If X denotes an indeterminate, a polynomial F(X) e GF(pm)[XI is called a 
permutation polynomial if the associated polynomial function is a bijection 
on GF(pm). Recently Hayes [5] has suggested an approach which might lead to 
a systematic theory of permutation polynomials, at  least when pm > lc(n), where 
k(n) is a constant depending only on n, the degree of F. Appealing to a deep 
theorem of Lang and Weil [6] he notes (for pm > lc(n)) that 

F*(X, Y) = F(m - F(Y) e GF(pm) [X, Y] X - Y  

must factor in GF(pm)[X, Y] if F(X) e GF(pm)[XI is to be a permutation poly- 
nomial. It is the purpose of this note to show that Hayes' approach works for 
Dickson's polynomials [3] [4] 

where n 2 1 and a(# 0) E GF(pm). We note that 

is an integer for s = 0, 1, 2, - , n as it is just 

I t  is shown by factoring D,*,,(X, Y) in GF(p")[X, Y] that if G.C.D. (p2" - 1, 
2n + 1) = 1, then Dickson's polynomials D,,.(X) are permutation polynomials. 
This result is not new, in fact Dickson [3] [4] proved that the D,.,(X) are per- 
mutation polynomials under this condition by showing that the equation 
D,,,(z) = b has a unique solution x e GF(pm) for any b e GF(pm). (The equation 
D,,.(z) = b considered as an equation over the complex field is solvable alge- 
braically by a generalization of Cardan's solution of the cubic D,,,(z) = b--this 
has been rediscovered a number of times, see for example [7]-and Dickson's 
argument is just the field analogue of this.) What is new is the explicit 
form of the factorization of D:,(X, Y) in GF(p")[X, Y]. The author was led to 
the form of the factors through a study of a recent paper by Chowla [2]. 
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2. The quantities ai and Pi. We let pk(k 2 0) denote the largest power of p 
dividing 2n + 1 so that 

As G.C.D. (p, 2n1 + 1) = 1 the quantity 

where 4 denotes Euler's function, is an integer. Hence if a is a primitive element 
of GF(p4'2n'+1'), that is a generator of the cyclic (multiplicative) group of 
GF(P~(~" '+~ '  ), the quantity aa e GF(p"2n'+1') _C GF(p"'2"'+1' )cGF(p")isa 
primitive (2nl + 1)-th root of unity over GF(pm). Denoting such a primitive 
root by 8, so that 

we set for i = 1, 2, . . - , nl 

(2.3) a4 = oi + gan 1+1-i , @4 = 8i - 82n1+1-4 

We note that ai and pi are not independent as a: - 8: = 4. We require s 
number of simple results concerning the arc and 8' so that for convenience we 
put them together in a lemma. 

LEMMA 1. For i = 1, 2, . , nl we have ai # f 2, Pi # 0, and for i, j = 
1, 2, - . - , n1 with i # j  we have 8: # 8; . 

Proof. If a' = f 2 then 8' + 8-' = f 2, that is, 8' = f 1, or 8" = 1, which 
contradicts (2.2) as 1 < 2i 2 2nl . Thus we have ai # f 2, and # 0 follows 
from a: - 8: = 4. 

Finally if 8: = 8: , i # j, then 8" + 8-" = 8" + 8-", so that on multiplying 
both sides of this by 8" we obtain e4' + 1 = 8ai+2i + 82i-2', or equivalently 
(82i'2i - 1)(8"-'' - 1) = 0. Thus we have o~"*" = 1. Hence there exists an 
integer t such that 2(i f j) = t(2nl + 1). Now 0 < li f j J  < 2nl , so that 

4n1 0 < I t (  < - 
2n1 + 1 

< 2 giving t =  f l ,  

which is clearly impossible as 2(i f 37 is even and f (2nl + 1) is odd. 

3. The factorization of Dn,,(X). In  this section we prove 

THEOREM 1. For n 2 1 and a(#O) e GF(pm) we have 

Proof. We write GF(pm)(X) for the field of rational functions in the indeter- 
minate X over the field GF(pm) . The algebraic extension field of GF(pm)(X) 



formed by adjoining the element d m  (a(Z0) e GF(pm)) is denoted by 
GF(p"') (X, d m ) .  Now if R is any commutative ring with identity 
and a, 8 e R, the following identity is readily established by induction on n 

Applying (3.1) with 

we obtain 

Now aa p y (2nl + 1) we have seen that there exists a primitive (2nl + 1)-th 
root of unity over GF(pm), namely 8. Moreover tf is also a primitive (2nl + 1)-th 
root of unity over GF(pm), so that if X1 , X, are indeterminates we have the 
following factorization in GF(pm)[X1 , XI] 

Hence we have 

X Y 1  - x?+l = ~ ; ~ ( 2 n ~ + l )  - z b ( 2 n s + l )  

Replacing X1 , X2 by the elements 

(respectively) of the field W ( X ,  d m  we obtain 

(X + d 2 y 2 n + 1  - (4-a - 
2 
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The theorem now follows on appealing to (3.2). 
A s  immediate consequences of Theorem 1 we have 

COROLLARY 1. For n 1 1 and a(#O) e GF(pm) we have 

Dn.o(X> = {D,.a(X> I d ,  
COROLURY 2. Hz, 8: = (- 1)m1(2nl + 1). 

4. The factorization of D:,,(X, Y ) .  We are now in a position to prove the 
main result of this paper, namely the factorization of D:,,(X, Y) in GF(pm)[X, q. 

THEOREM 2. For n 2 1 and a(#O) e GF(pm) we have 
ns 

(4.1) D:,,(X, Y )  = ( X  - Y)"-' ( X z  - a i X Y  + Y" +?a)"', 
i - 1  

where each quadratic factor is  irreducible in GF(p")[X, q. 

Proof. Appealing to Corollary 1 we have 

Thus it sufEces to factor D:, ,,(X, Y). To do this we apply (3.1) with n, 
replacing n, R = GF(p")[X, Y ] ,  

so that 

obtaining 



Similarly choosing 

so that 

we obtain 

Now 
( - X  + e i y ) 2 n ~ + l  = (- e 2 n r + l - i ~  + y)2nr+l, 

(X - e2nl+l-iy)2nl+l - - ( ~ i x  - y ) 2 n 1 + 1 '  

so that from (4.3) and (4.4) we have 

Hence the equation 

has the nl distinct roots 

t =  
xa - cuiXY + Y2 

a: (i = 1, 2, , n,) in GF(p") [X, Y] . 
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appealing to Corollary 2. Taking t = -a we have 

and the required factorization of D:,,(X, Y) follows from (4.2). 
If Xa - a iXY  + Y 2  + @:a is reducible in GF(pm) [ X ,  Y], then there exist 

r, s, t, u e GF(pm) such that 

As j3( # 0 (Lemma 1) and a # 0 we have s # 0,  u # 0. Thus equating coeffi- 
cients of X and Y we obtain u = - s and t = r. Next equating coefficients of Y 2  
and X Y  we have r2 = 1 and 2r = -ai , that is, ad  = f 2, which contradicts 
Lemma 1. Hence X 2  - a iXY  + Y a  + j3:a is irreducible in GF(pm)[X, Y]. 

5. Dickson's theorem. We show how Dickson's theorem [3], [4] can be 
deduced from Theorem 1 if G.C.D. (p2" - 1, 2n + 1) = 1. We f is t  prove 
a lemma concerning the non-vanishing of the quadratic factors of D:,(X, Y) 
in GF(pm). 

LEMMA 2. If G.C.D. (p2m - 1, 2n + 1) = 1 and a(#O) e GF(pm), then for 
i = 1, 2, . . . , nl there do not exist x, y e GF(pm) such that 

(5.1) x2 - a.xy + ya + j3:a = 0. 

Proof. Writing $I for oi(1 5 i 5 n,) (5.1) becomes 

that is, 

Now it can be deduced immediately from the work of Carlitz [ I ]  that the recip 
rocal quartic X4 + A x a  + B X ~  + A X  + 1 e G F ( p m ) [ 4 ,  where p > 2, is 
irreducible in GF(pm)[XI if and only if both of Aa - 4B + 8 and ( B  + 2)a - 4Aa 
are non-squares in GF(pm). It is easy to check that if X4 + A x a  + BX' + 
AX + 1 is reducible, it has only linear or quadratic factors. We have A = - xy/a 
and 

Hence the quartic (5.2) is reducible into linear and/or quadratic factors over 
GF(pm). This implies that C#I e GF(pZm). Thus, as + # 0,  I#?'"-' = 1. As 



G.C.D. (pa" - 1, 2n + 1) = 1 there exist integers a and b such that a(pam - 1) 
+ b(2n + 1) = 1. Hence 

which is the required contradiction. 
Hence from Theorem 2 and Lemma 2 we have 

THEORJZM 3 (Dickson). If G.C.D. (pa" - 1, 2n + 1) = 1 then D,,,(X), 
where a(#O) e GF(pm), is a permutation polynomial in GF(pm)[A. 
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