Duke Math. J. 38 (1971), 659-665.

NOTE ON DICKSON'S PERMUTATION POLYNOMIALS

By Kenneth S. Williams

1. Introduction. Let p be a prime and let m be an integer ≥ 1. The finite field with p^{m} elements is denoted by $G F\left(p^{m}\right)$ and its algebraic closure by $\overline{G F}\left(p^{m}\right)$. If X denotes an indeterminate, a polynomial $F(X) \in G F\left(p^{m}\right)[X]$ is called a permutation polynomial if the associated polynomial function is a bijection on $G F\left(p^{m}\right)$. Recently Hayes [5] has suggested an approach which might lead to a systematic theory of permutation polynomials, at least when $p^{m}>k(n)$, where $k(n)$ is a constant depending only on n, the degree of F. Appealing to a deep theorem of Lang and Weil [6] he notes (for $p^{m}>k(n)$) that

$$
F^{*}(X, Y)=\frac{F(X)-F(Y)}{X-Y} \varepsilon G F\left(p^{m}\right)[X, Y]
$$

must factor in $\overline{G F\left(p^{m}\right)}[X, Y]$ if $F(X) \in G F\left(p^{m}\right)[X]$ is to be a permutation polynomial. It is the purpose of this note to show that Hayes' approach works for Dickson's polynomials [3] [4]

$$
\begin{equation*}
D_{n, a}(X)=\sum_{s=0}^{n}(-1)^{*} \frac{2 n+1}{2 n+1-s}\binom{2 n+1-s}{s} a^{*} X^{2 n+1-2} \tag{1.1}
\end{equation*}
$$

where $n \geq 1$ and $a(\neq 0) \varepsilon G F\left(p^{m}\right)$. We note that

$$
\frac{2 n+1}{2 n+1-s}\binom{2 n+1-s}{s}
$$

is an integer for $s=0,1,2, \cdots, n$ as it is just

$$
2\binom{2 n+1-s}{s}-\binom{2 n-s}{s}
$$

It is shown by factoring $D_{n, a}^{*}(X, Y)$ in $\overline{\operatorname{GF}\left(p^{m}\right)}[X, Y]$ that if G.C.D. $\left(p^{2 m}-1\right.$, $2 n+1)=1$, then Dickson's polynomials $D_{n, a}(X)$ are permutation polynomials. This result is not new, in fact Dickson [3] [4] proved that the $D_{n, 0}(X)$ are permutation polynomials under this condition by showing that the equation $D_{n, a}(x)=b$ has a unique solution $x \varepsilon G F\left(p^{m}\right)$ for any $b \varepsilon G F\left(p^{m}\right)$. (The equation $D_{n, a}(x)=b$ considered as an equation over the complex field is solvable algebraically by a generalization of Cardan's solution of the cubic $D_{1, a}(x)=b$-this has been rediscovered a number of times, see for example [7]-and Dickson's argument is just the finite field analogue of this.) What is new is the explicit form of the factorization of $D_{n, a}^{*}(X, Y)$ in $\overline{G F\left(p^{m}\right)}[X, Y]$. The author was led to the form of the factors through a study of a recent paper by Chowla [2].
Received November 8, 1969. Revision received August 4, 1970. This research was supported by a National Research Council of Canada Grant (No. A-7233).
2. The quantities α_{i} and β_{i}. We let $p^{k}(k \geq 0)$ denote the largest power of p dividing $2 n+1$ so that

$$
\begin{equation*}
2 n+1=p^{k}\left(2 n_{1}+1\right), \quad p \nmid\left(2 n_{1}+1\right) . \tag{2.1}
\end{equation*}
$$

As G.C.D. $\left(p, 2 n_{1}+1\right)=1$ the quantity

$$
q=\frac{p^{\phi\left(2 n_{1}+1\right)}-1}{2 n_{1}+1},
$$

where ϕ denotes Euler's function, is an integer. Hence if α is a primitive element of $G F\left(p^{\phi\left(2 n_{1}+1\right)}\right)$, that is a generator of the cyclic (multiplicative) group of $G F\left(p^{\phi\left(2 n_{1}+1\right)}\right)$, the quantity $\alpha^{q} \varepsilon G F\left(p^{\phi\left(2 n_{1}+1\right)}\right) \subseteq G F\left(p^{m \phi\left(2 n_{1}+1\right)}\right) \subset \overline{G F}\left(p^{m}\right)$ is a primitive $\left(2 n_{1}+1\right)$-th root of unity over $G F\left(p^{m}\right)$. Denoting such a primitive root by θ, so that

$$
\begin{equation*}
\theta^{2 n_{1}+1}=1, \quad \theta^{i} \neq 1, \quad i=1,2, \cdots, 2 n_{1}, \tag{2.2}
\end{equation*}
$$

we set for $i=1,2, \cdots, n_{1}$

$$
\begin{equation*}
\alpha_{i}=\theta^{i}+\theta^{2 n_{1}+1-i}, \quad \beta_{i}=\theta^{i}-\theta^{2 n_{1}+1-i} . \tag{2.3}
\end{equation*}
$$

We note that α_{i} and β_{i} are not independent as $\alpha_{i}^{2}-\beta_{i}^{2}=4$. We require a number of simple results concerning the α_{i} and β_{i} so that for convenience we put them together in a lemma.

Lemma 1. For $i=1,2, \cdots, n_{1}$ we have $\alpha_{i} \neq \pm 2, \beta_{i} \neq 0$, and for $i, j=$ $1,2, \cdots, n_{1}$ with $i \neq j$ we have $\beta_{i}^{2} \neq \beta_{i}^{2}$.

Proof. If $\alpha_{i}= \pm 2$ then $\theta^{i}+\theta^{-i}= \pm 2$, that is, $\theta^{i}= \pm 1$, or $\theta^{2 i}=1$, which contradicts (2.2) as $1<2 i \leq 2 n_{1}$. Thus we have $\alpha_{i} \neq \pm 2$, and $\beta_{i} \neq 0$ follows from $\alpha_{i}^{2}-\beta_{i}^{2}=4$.
Finally if $\beta_{i}^{2}=\beta_{i}^{2}, i \neq j$, then $\theta^{2 i}+\theta^{-2 i}=\theta^{2 i}+\theta^{-2 i}$, so that on multiplying both sides of this by $\theta^{2 i}$ we obtain $\theta^{4 i}+1=\theta^{2 i+2 i}+\theta^{2 i-2 i}$, or equivalently $\left(\theta^{2 i+2 i}-1\right)\left(\theta^{2 i-2 i}-1\right)=0$. Thus we have $\theta^{2(i \pm t)}=1$. Hence there exists an integer t such that $2(i \pm j)=t\left(2 n_{1}+1\right)$. Now $0<|i \pm j|<2 n_{1}$, so that

$$
0<|t|<\frac{4 n_{1}}{2 n_{1}+1}<2 \text { giving } t= \pm 1
$$

which is clearly impossible as $2(i \pm j)$ is even and $\pm\left(2 n_{1}+1\right)$ is odd.
3. The factorization of $D_{n, 0}(X)$. In this section we prove

Theorem 1. For $n \geq 1$ and $a(\neq 0)$ e $G F\left(p^{\prime \prime}\right)$ we have

$$
D_{n, a}(X)=X^{p^{k}} \prod_{i=1}^{n_{1}}\left(X^{2}+\beta_{i}^{2} a\right)^{p^{2}}
$$

Proof. We write $\overline{G F\left(p^{\prime \prime}\right)}(X)$ for the field of rational functions in the indeterminate X over the field $\overline{G F\left(p^{m}\right)}$. The algebraic extension field of $\overline{G F\left(p^{\prime \prime}\right)}(X)$
formed by adjoining the element $\sqrt{X^{2}-4 a}\left(a(\neq 0) \varepsilon G F\left(p^{\prime \prime}\right)\right)$ is denoted by $\overline{G F}\left(p^{\prime \prime \prime}\right)\left(X, \sqrt{X^{2}-4 a}\right)$. Now if R is any commutative ring with identity and $\alpha, \beta \varepsilon R$, the following identity is readily established by induction on n

$$
\begin{equation*}
\alpha^{2 n+1}+\beta^{2 n+1}=\sum_{s=0}^{n}(-1)^{\prime} \frac{2 n+1}{2 n+1-s}\binom{2 n+1-s}{s}(\alpha+\beta)^{2 n+1-2 \mathrm{~s}}(\alpha \beta)^{\prime} \tag{3.1}
\end{equation*}
$$

Applying (3.1) with
$R=\overline{G F\left(p^{\prime \prime \prime}\right)}\left(X, \sqrt{X^{2}-4 a}\right), \alpha=\frac{X+\sqrt{X^{2}-4 a}}{2}, \beta=\frac{X-\sqrt{X^{2}-4 a}}{2}$,
we obtain

$$
\begin{equation*}
D_{n, a}(X)=\left(\frac{X+\sqrt{X^{2}-4 a}}{2}\right)^{2 n+1}+\left(\frac{X-\sqrt{X^{2}-4 a}}{2}\right)^{2 n+1} . \tag{3.2}
\end{equation*}
$$

Now as $p \nmid\left(2 n_{1}+1\right)$ we have seen that there exists a primitive $\left(2 n_{1}+1\right)$-th root of unity over $G F\left(p^{m}\right)$, namely θ. Moreover θ^{2} is also a primitive ($2 n_{1}+1$)-th root of unity over $G F\left(p^{m}\right)$, so that if X_{1}, X_{2} are indeterminates we have the following factorization in $\overline{G F}\left(p^{m}\right)\left[X_{1}, X_{2}\right]$

$$
X_{1}^{2 n_{2}+1}-X_{2}^{2 n_{1}+1}=\prod_{i=0}^{2 n_{1}}\left(X_{1}-\theta^{2 i} X_{2}\right)
$$

Hence we have

$$
\begin{aligned}
X_{1}^{2 n+1}-X_{2}^{2 n^{2}+1} & =X_{1}^{p^{2}\left(22_{1}+1\right)}-Y_{1}^{p^{\downarrow}\left(2 n_{1}+1\right)} \\
& =\left(X_{1}^{2 n_{1}+1}-Y_{1}^{2 n_{1}+1}\right)^{p^{4}} \\
& =\prod_{i=0}^{2 n_{2}}\left(X_{1}-\theta^{2 i} X_{2}\right)^{)^{b}} .
\end{aligned}
$$

Replacing X_{1}, X_{2} by the elements

$$
\frac{X+\sqrt{X^{2}-4 a}}{2}, \quad \frac{\sqrt{X^{2}-4 a}-X}{2}
$$

(respectively) of the field $\overline{G F\left(p^{n}\right)}\left(X, \sqrt{\left.X^{2}-4 a\right)}\right.$ we obtain

$$
\begin{aligned}
&\left(\frac{X+\sqrt{X^{2}-4 a}}{2}\right)^{2 n+1}-\left(\frac{\sqrt{X^{2}-4 a}-X}{2}\right)^{2 n+1} \\
&= X^{p^{2}} \prod_{i=1}^{2 n_{1}}\left\{\left(\frac{X+\sqrt{X^{2}-4 a}}{2}\right)-\theta^{2 i}\left(\frac{\sqrt{X^{2}-4 a}-X}{2}\right)\right\}^{p^{4}} \\
&= X^{p^{2}} \prod_{i=1}^{n_{2}}\left\{\left[\left(\frac{X+\sqrt{X^{2}-4 a}}{2}-\theta^{2 i}\left(\frac{\sqrt{X^{2}-4 a}-X}{2}\right)\right]\right.\right. \\
&\left.\cdot\left[\left(\frac{X+\sqrt{X^{2}-4 a}}{2}\right)-\theta^{2\left(2 n_{1}+1\right)-2 i}\left(\frac{\sqrt{X^{2}-4 a}-X}{2}\right)\right]\right\}^{p^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =X^{p^{k}} \prod_{i=1}^{n_{2}}\left\{X^{2}-2 a+\left(\theta^{2 i}+\theta^{2\left(2 n_{1}+1\right)-2 i}\right) a\right\}^{p^{k}} \\
& =X^{p^{k}} \prod_{i=1}^{n_{1}}\left\{X^{2}+\left(\theta^{i}-\theta^{2 n_{2}+1-i}\right)^{2} a\right\}^{p^{k}} \\
& =X^{p^{k}} \prod_{i=1}^{n_{2}}\left(X^{2}+\beta_{i}^{2} a\right)^{p^{k}} .
\end{aligned}
$$

The theorem now follows on appealing to (3.2).
As immediate consequences of Theorem 1 we have
Corollary 1. For $n \geq 1$ and $a(\neq 0) \varepsilon G F\left(p^{m}\right)$ we have

$$
D_{n, a}(X)=\left\{D_{n_{1}, a}(X)\right\}^{p^{*}}
$$

Corollary 2. $\prod_{i=1}^{n_{1}} \beta_{i}^{2}=(-1)^{n_{1}}\left(2 n_{1}+1\right)$.
4. The factorization of $D_{n, a}^{*}(X, Y)$. We are now in a position to prove the main result of this paper, namely the factorization of $D_{n, a}^{*}(X, Y)$ in $\overline{G F\left(p^{m}\right)}[X, Y]$.

Theorem 2. For $n \geq 1$ and $a(\neq 0)$ e $G F\left(p^{m}\right)$ we have

$$
\begin{equation*}
D_{n, a}^{*}(X, Y)=(X-Y)^{p^{k-1}} \prod_{i=1}^{n_{3}}\left(X^{2}-\alpha_{i} X Y+Y^{2}+\beta_{i}^{2} a\right)^{p^{\downarrow}} \tag{4.1}
\end{equation*}
$$

where each quadratic factor is irreducible in $\overline{G F\left(p^{m}\right)}[X, Y]$.
Proof. Appealing to Corollary 1 we have

$$
\begin{aligned}
(X-Y) D_{n, a}^{*}(X, Y) & =D_{n, a}(X)-D_{n, a}(Y) \\
& =\left\{D_{n_{1}, a}(X)\right\}^{p^{k}}-\left\{D_{n_{2}, a}(Y)\right\}^{p^{k}} \\
& =\left\{D_{n_{2}, a}(X)-D_{n_{2}, a}(Y)\right\}^{p^{k}} \\
& =\left\{(X-Y) D_{n_{1}, a}^{*}(X, Y)\right\}^{p^{k}}
\end{aligned}
$$

giving

$$
\begin{equation*}
D_{n, \mathrm{a}}^{*}(X, Y)=(X-Y)^{p^{k}-1}\left\{D_{n_{2}, a}^{*}(X, Y)\right\}^{p^{k}} \tag{4.2}
\end{equation*}
$$

Thus it suffices to factor $D_{n_{1}, a}^{*}(X, Y)$. To do this we apply (3.1) with n_{1} replacing $n, R=\overline{G F}\left(p^{m}\right)[X, Y]$,

$$
\alpha=\frac{\theta^{i} X-Y}{\beta_{i}}, \quad \beta=\frac{-\theta^{2 n_{i}+1-i} X+Y}{\beta_{i}}
$$

so that

$$
\alpha+\beta=X, \quad \alpha \beta=\frac{-\left(X^{2}-\alpha_{i} X Y+Y^{2}\right)}{\beta_{i}^{2}}
$$

obtaining

$$
\left.\begin{array}{l}
\frac{1}{\beta_{i}^{2 n_{1}+1}}\left\{\left(\theta^{i} X-Y\right)^{2 n_{1}+1}+\left(-\theta^{2 n_{1}+1-i} X+Y\right)^{2 n_{1}+1}\right\} \tag{4.3}\\
\quad=\sum_{s=0}^{n_{1}} \frac{2 n_{1}+1}{2 n_{1}+1-s}\binom{2 n_{1}+1-s}{s} X^{2 n_{1}+1-2 g}\left(\frac{X^{2}-\alpha_{i} X Y+Y^{2}}{\beta_{i}^{2}}\right.
\end{array}\right) .
$$

Similarly choosing

$$
\alpha=\frac{-X+\theta^{i} Y}{\beta_{i}}, \quad \beta=\frac{X-\theta^{2 n_{1}+1-i} Y}{\beta_{i}}
$$

so that

$$
\alpha+\beta=Y, \quad \alpha \beta=-\frac{\left(X^{2}-\alpha_{i} X Y+Y^{2}\right)}{\beta_{i}^{2}}
$$

we obtain

$$
\begin{align*}
& \frac{1}{\beta_{i}^{2 n_{1}+1}}\left\{\left(-X+\theta^{i} Y\right)^{2 n_{1}+1}+\left(X-\theta^{2 n_{1}+1-i} Y\right)^{2 n_{1}+1}\right\} \tag{4.4}\\
& \quad=\sum_{i=0}^{n_{1}} \frac{2 n_{1}+1}{2 n_{1}+1-s}\binom{2 n_{1}+1-s}{s} Y^{2 n_{1}+1-2 s}\left(\frac{X^{2}-\alpha_{i} X Y+Y^{2}}{\beta_{i}^{2}}\right)^{\prime}
\end{align*}
$$

Now

$$
\begin{aligned}
\left(-X+\theta^{i} Y\right)^{2 n_{1}+1} & =\left(-\theta^{2 n_{1}+1-i} X+Y\right)^{2 n_{1}+1} \\
\left(X-\theta^{2 n_{1}+1-i} Y\right)^{2 n_{1}+1} & =\left(\theta^{i} X-Y\right)^{2 n_{1}+1}
\end{aligned}
$$

so that from (4.3) and (4.4) we have

Hence the equation

$$
\sum_{s=0}^{n_{1}} \frac{2 n_{1}+1}{2 n_{1}+1-s}\binom{2 n_{1}+1-s}{s}\left(X^{2 n_{1}+1-2 s}-Y^{2 n_{1}+1-2 s}\right) t^{*}=0
$$

has the n_{1} distinct roots

$$
t=\frac{X^{2}-\alpha_{i} X Y+Y^{2}}{\beta_{i}^{2}} \quad\left(i=1,2, \cdots, n_{1}\right) \quad \text { in } \overline{G F\left(p^{m}\right)}[X, Y]
$$

Thus

$$
\begin{aligned}
& \sum_{i=0}^{n_{1}} \frac{2 n_{1}+1}{2 n_{1}+1-s}\binom{2 n_{1}+1-s}{s}\left(X^{2 n_{1}+1-2 s}-Y^{2 n_{1}+1-2}\right) t^{\prime} \\
&=\left(2 n_{1}+1\right)(X-Y) \prod_{i=1}^{n_{1}}\left(t-\frac{\left(X^{2}-\alpha_{i} X Y+Y^{2}\right)}{\beta_{i}^{2}}\right) \\
&=(X-Y) \prod_{i=1}^{n_{1}}\left(X^{2}-\alpha_{i} X Y+Y^{2}-\beta_{i}^{2} t\right)
\end{aligned}
$$

appealing to Corollary 2. Taking $t=-a$ we have

$$
\begin{aligned}
D_{n_{1}, a}^{*}(X, Y) & =\sum_{i=0}^{n_{1}}(-1)^{\prime} \frac{2 n_{1}+1}{2 n_{1}+1-s}\binom{2 n_{1}+1-s}{s} \frac{X^{2 n_{1}+1-2 \boldsymbol{p}}-Y^{2 n_{i}+1-2 s}}{X-Y} a^{*} \\
& =\prod_{i=1}^{n_{1}}\left(X^{2}-\alpha_{i} X Y+Y^{2}+\beta_{i}^{2} a\right)
\end{aligned}
$$

and the required factorization of $D_{n, \mathrm{a}}^{*}(X, Y)$ follows from (4.2).
If $X^{2}-\alpha_{i} X Y+Y^{2}+\beta_{i}^{2} a$ is reducible in $\overline{G F\left(p^{m}\right)}[X, Y]$, then there exist $r, s, t, u \in \overline{G F\left(p^{\prime \prime}\right)}$ such that

$$
X^{2}-\alpha_{i} X Y+Y^{2}+\beta_{i}^{2} a=(X+r Y+s)(X+t Y+u) .
$$

As $\beta_{i} \neq 0$ (Lemma 1) and $a \neq 0$ we have $s \neq 0, u \neq 0$. Thus equating coeffcients of X and Y we obtain $u=-s$ and $t=r$. Next equating coefficients of Y^{2} and $X Y$ we have $r^{2}=1$ and $2 r=-\alpha_{i}$, that is, $\alpha_{i}= \pm 2$, which contradicts Lemma 1. Hence $X^{2}-\alpha_{i} X Y+Y^{2}+\beta_{i}^{2} a$ is irreducible in $\overline{G F\left(p^{m}\right)}[X, Y]$.
5. Dickson's theorem. We show how Dickson's theorem [3], [4] can be deduced from Theorem 1 if G.C.D. $\left(p^{2 m}-1,2 n+1\right)=1$. We first prove a lemma concerning the non-vanishing of the quadratic factors of $D_{n, a}^{*}(X, Y)$ in $G F\left(p^{m}\right)$.

Lemma 2. If G.C.D. $\left(p^{2 m}-1,2 n+1\right)=1$ and $a(\neq 0)$ e $G F\left(p^{m}\right)$, then for $i=1,2, \cdots, n_{1}$ there do not exist $x, y \in G F\left(p^{m}\right)$ such that

$$
\begin{equation*}
x^{2}-\alpha_{i} x y+y^{2}+\beta_{i}^{2} a=0 . \tag{5.1}
\end{equation*}
$$

Proof. Writing ϕ for $\theta^{i}\left(1 \leq i \leq n_{1}\right)$ (5.1) becomes

$$
x^{2}-\left(\phi+\frac{1}{\phi}\right) x y+y^{2}+\left(\phi-\frac{1}{\phi}\right)^{2} a=0,
$$

that is,

$$
\begin{equation*}
\phi^{4}-\frac{x y}{a} \phi^{8}+\left(\frac{x^{2}+y^{2}}{a}-2\right) \phi^{2}-\frac{x y}{a} \phi+1=0 . \tag{5.2}
\end{equation*}
$$

Now it can be deduced immediately from the work of Carlitz [1] that the reciprocal quartic $X^{4}+A X^{3}+B X^{2}+A X+1 \varepsilon G F\left(p^{m}\right)[X]$, where $p>2$, is irreducible in $G F\left(p^{m}\right)[X]$ if and only if both of $A^{2}-4 B+8$ and $(B+2)^{2}-4 A^{2}$ are non-squares in $G F\left(p^{\prime \prime}\right)$. It is easy to check that if $X^{4}+A X^{3}+B X^{2}+$ $A X+1$ is reducible, it has only linear or quadratic factors. We have $A=-x y / a$ and

$$
B=\frac{x^{2}+y^{2}}{a}-2 \text { so that }(B+2)^{2}-4 A^{2}=\left(\frac{x^{2}-y^{2}}{a}\right)^{2} .
$$

Hence the quartic (5.2) is reducible into linear and/or quadratic factors over $G F\left(p^{m}\right)$. This implies that $\phi \in G F\left(p^{2 m}\right)$. Thus, as $\phi \neq 0, \phi^{p^{\prime-m}-1}=1$. As
G.C.D. $\left(p^{2 m}-1,2 n+1\right)=1$ there exist integers a and b such that $a\left(p^{2 m}-1\right)$ $+b(2 n+1)=1$. Hence

$$
\phi=\phi^{a\left(p^{p-1}\right)+\delta(2 n+1)}=1,
$$

which is the required contradiction.
Hence from Theorem 2 and Lemma 2 we have
Theorem 3 (Dickson). If G.C.D. ($p^{2 m}-1,2 n+1$) $=1$ then $D_{\text {n,a }}(X)$, where $a(\neq 0)$ e $G F\left(p^{m}\right)$, is a permutation polynomial in $G F\left(p^{m}\right)[X]$.

References

1. L. Carlitz, A special quartic congruence, Math. Scand., 4(1956), pp. 243-246.
2. S. Chowla, On substitution polynomials ($\bmod p$), Norske Vid. Selsk. Forh., Trondhjem, vol. 41(1968), pp. 4-6.
3. L. E. Dickson, The analytic representation of substitutions on a poner of a prime number of letters with a discussion of the linear group, I, Ann. of Math., vol. 11(1896/7), pp. 161-183; II, Ann. of Math., vol. 11(1896/7), pp. 65-120.
4. L. E. Dickson, Linear Groups, New York, 1958, pp. 57-58.
5. D. R. Hayes, A geometric approach to permutation polynomials over a finite field, Duke Math. J., vol. 34(1967), pp. 293-306.
6. S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math., vol. 76(1953), pp. 819-827.
7. K. S. Willisms, A generalization of Cardan's solution of the cubic, Math. Gaz., vol. 46(1962), pp. 221-223.
Carleton Univeraity
