NOTE ON THE KLOOSTERMAN SUM

KENNETH S. WILLIAMS

ABSTRACT. The Kloosterman sum

\[\sum_{x=0}^{p-1} \exp(2\pi i n x / p^\alpha), \]

where \(p \) is an odd prime, \(\alpha \geq 2 \) and \((n, p) = 1 \), is evaluated in a very short direct way.

Let \(p \) denote an odd prime, \(\alpha \) a positive integer, and \(n \) an integer such that \((n, p) = 1 \). The Kloosterman sum \(A_{\nu \alpha}(n) \) is given by

\[A_{\nu \alpha}(n) = \sum_{\bar{x}=0}^{p^\alpha-1} \exp(2\pi i n (x + \bar{x}) / p^\alpha), \]

where the dash (') indicates that \(x \) only takes values from 0, 1, \(\cdots \), \(p^\alpha-1 \) which are coprime with \(p \), and \(\bar{x} \) is the unique solution of the congruence \(x\bar{x} \equiv 1 \pmod{p^\alpha} \) satisfying \(0 < \bar{x} < p^\alpha \). Salié [3] has evaluated \(A_{\nu \alpha}(n) \) explicitly when \(\alpha \geq 2 \). His evaluation is based upon induction. A direct (but fairly long) proof has been given by Whiteman [4] which requires results concerning Ramanujan sums. In this note we give a modification of Salié’s original argument which gives a very short direct evaluation of \(A_{\nu \alpha}(n) \). (The referee has kindly pointed out that essentially the same technique has been used by Estermann [2], Carlitz [1].)

We let \(\gamma = \alpha - [\alpha/2] \) and \(\delta = [\alpha/2] \), so that \(\alpha = \gamma + \delta \), \(2\gamma \geq \alpha \) and \(\gamma \geq \delta \geq 1 \). Setting \(x = u + v p^\gamma \) \((u = 0, 1, \cdots, p^\gamma - 1; v = 0, 1, \cdots, p^\delta - 1) \) in (1), so that \(\bar{x} = \bar{u} - \bar{u}^2 v p^\gamma \pmod{p^\alpha} \), we obtain

\[A_{\nu \alpha}(n) = \sum_{u=0}^{p^\gamma-1} \sum_{v=0}^{p^\delta-1} \exp(2\pi i n (u + v p^\gamma + (\bar{u} - \bar{u}^2 v p^\gamma)) / p^\alpha) \]

\[= \sum_{u=0}^{p^\gamma-1} \exp(2\pi i n u / p^\alpha) \sum_{v=0}^{p^\delta-1} \exp(2\pi i n v (1 - \bar{u}^2) / p^\delta) \]

\[= p^\delta \sum_{u=0; u^2 \equiv 1 \pmod{p^\delta}}^{p^\gamma-1} \exp(2\pi i n (u + \bar{u}) / p^\alpha). \]

If \(\alpha \) is even, say \(\alpha = 2\beta \), then \(\gamma = \beta = \delta \), and as the solutions \(u \) of \(u^2 \equiv 1 \pmod{p^\delta} \) in the range \(0 \leq u \leq p^\delta - 1 \) are \(u = 1, p^\delta - 1 \) (so that
\[\bar{a} = 1, \ p^{2\beta} - p^\delta - 1 \text{ respectively} \] we have

\[A_p^{\alpha}(n) = p^\delta \left\{ \exp\left(4\pi in/p^{2\beta}\right) + \exp\left(-4\pi in/p^{2\beta}\right) \right\} = 2p^\delta \cos\left(4\pi n/p^{2\beta}\right). \]

If \(\alpha \) is odd, say \(\alpha = 2\beta + 1 \), then \(\gamma = \beta + 1, \ \delta = \beta, \) and as the solutions \(u \) of \(u^2 \equiv 1 \ (\mod p^\beta) \) in the range \(0 \leq u \leq p^{\beta+1} - 1 \) are \(u = 1 + wp^\beta \) \((w = 0, 1, \ldots, p-1), \ -1 + wp^\beta \ (w = 1, 2, \ldots, p) \) (so that \(\bar{a} = 1 - wp^\beta + wp^\beta, \ -1 - wp^\beta - wp^\beta \ (\mod p^{2\beta+1}) \) respectively) we have

\[A_{p^{2\beta+1}}(n) = p^\beta \left\{ \exp\left(4\pi in/p^{2\beta+1}\right) \sum_{w=0}^{p-1} \exp\left(2\pi i w^2/p\right) + \exp\left(-4\pi in/p^{2\beta+1}\right) \sum_{w=1}^{p} \exp\left(-2\pi i w^2/p\right) \right\} \]

\[= 2(n/p) p^{\beta+1/2} \cos\left(4\pi n/p^{2\beta+1}\right), \quad \text{if } p \equiv 1 \ (\mod 4), \]

\[= -2(n/p) p^{\beta+1/2} \sin\left(4\pi n/p^{2\beta+1}\right), \quad \text{if } p \equiv 3 \ (\mod 4), \]

using the well-known result [4]

\[\sum_{w=0}^{p-1} \exp\left(2\pi i w^2/p\right) = (n/p) i^{(p-1)/4} p^{1/2}. \]

REFERENCES

CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA