On Salié's Sum

Kenneth S. Williams*
Department of Mathematics, Carleton University, Ottawa 1, Canada
Communicated by H. Zassenhaus

Received May 12, 1969; revised November 19, 1970

A finite transformation formula involving the Legendre symbol is proved, from which the value of Salie's sum $\sum_{x=1}^{p-1}(x / p) e^{2 \pi i k(x+\tilde{\tilde{x}}) \boldsymbol{p}}$ can be deduced immediately.

Let p denote an odd prime. If $F(x)$ is a function with period p it is well known that

$$
\begin{equation*}
\sum_{x=1}^{p-1} F(x)+\sum_{x=1}^{p-1}\left(\frac{x}{p}\right) F(x)=\sum_{x=1}^{p-1} F\left(x^{2}\right) \tag{1}
\end{equation*}
$$

and, if $a \not \equiv 0(\bmod p)$, Jacobsthal [1] has noted that

$$
\begin{equation*}
\sum_{x=0}^{p-1} F(x)+\sum_{x=0}^{p-1}\left(\frac{x^{2}-4 a}{p}\right) F(x)=\sum_{x=1}^{p-1} F(x+a \bar{x}) \tag{2}
\end{equation*}
$$

where $\left(\frac{x}{p}\right)$ is the Legendre symbol and \bar{x} is the unique integer such that $x \bar{x} \equiv 1$ (all congruences in this note are to be taken $\bmod p)$ and $0<\bar{x}<p$. It is the purpose of this note to prove a result of a similar type to (1) and (2), namely,

$$
\begin{equation*}
\sum_{x=0}^{p-1}\left(\frac{x-2}{p}\right) F(x)+\sum_{x=0}^{p-1}\left(\frac{x+2}{p}\right) F(x)=\sum_{x=0}^{p-1}\left(\frac{x}{p}\right) F(x+\bar{x}) . \tag{3}
\end{equation*}
$$

The value of the Salié sum [3] can be deduced from (3) since with the obvious choice of $F(x)$ we obtain the Salié sum as the sum of two Gaussian sums.

[^0]Taking $a=1$ in (2) and replacing $F(x)$ by $\left(\frac{x-2}{p}\right) F(x)$ we obtain

$$
\begin{aligned}
\sum_{x=0}^{p-1}\left(\frac{x-2}{p}\right) F(x)+\sum_{x=0}^{p-1} & \left(\frac{x+2}{p}\right)\left(\frac{(x-2)^{2}}{p}\right) F(x) \\
& =\sum_{x=1}^{p-1}\left(\frac{x-2+\bar{x}}{p}\right) F(x+\bar{x})
\end{aligned}
$$

i.e.,

$$
\begin{align*}
& \sum_{x=0}^{p-1}\left(\frac{x-2}{p}\right) F(x)+\sum_{\substack{x=0 \\
x \neq 2}}^{p-1}\left(\frac{x+2}{p}\right) F(x) \\
& \quad=\sum_{x=1}^{p-1}\left(\frac{x}{p}\right)\left(\frac{(x-1)^{2}}{p}\right) F(x+\bar{x})=\sum_{x=2}^{p-1}\left(\frac{x}{p}\right) F(x+\bar{x}) . \tag{4}
\end{align*}
$$

This proves (3) as $\left(\frac{4}{p}\right) F(2)=\left(\frac{1}{p}\right) F(1+\overline{1})$.
Taking $F(x)=e(k x)(k \neq 0)$ in (3), where $e(t)=e^{2 \pi i t / p}$, we obtain

$$
\sum_{x=1}^{p-1}\left(\frac{x}{p}\right) e(k(x+\bar{x}))=\sum_{x=0}^{p-1}\left(\frac{x-2}{p}\right) e(k x)+\sum_{x=0}^{p-1}\left(\frac{x+2}{p}\right) e(k x),
$$

which gives Saliés result [3]

$$
\sum_{x=1}^{p-1}\left(\frac{x}{p}\right) e(k(x+\bar{x}))=\left(\frac{k}{p}\right) i^{i^{(p-1)^{2}}} p^{\frac{1}{1}}(e(2 k)+e(-2 k)),
$$

in view of the Gaussian sum [2]

$$
\sum_{x=0}^{p-1}\left(\frac{x-a}{p}\right) e(k x)=\left(\frac{k}{p}\right) i^{z^{(p-1)^{\mathfrak{2}}} p^{\frac{1}{2}}} e(k a) .
$$

References

1. E. Jacobsthal, Uber die Darstellung der Primzahlen der Form $4 n+1$ als Summe zweier Quadrate, J. Reine Angew. Math. 132 (1907), 238-245.
2. H. Rademacher, "Lectures on Elementary Number Theory," p. 93, Blaisdell, Waltham, Mass., 1964.
3. H. Salie, Über die Kloostermanschen Summen $S(u, v ; q)$, Math. $Z .34$ (1931), 91-109.

[^0]: * This research was supported by a National Research Council of Canada Grant (No. A-7233).

