A Distribution Property of the Solutions of a Congruence Modulo a Large Prime

Kenneth S. Williams*
Department of Mathematics, Carleton University, Ottawa 1, Canada
Communicated by H. Zassenhaus

Received March 21, 1969

A regularity in the distribution of the solutions of the congruence

$$
f\left(x_{1}, \ldots, x_{n}\right) \equiv 0(\bmod p)
$$

is shown.

1. Introduction

Let Z denote the domain of integers of the real number field R and let p denote a prime. For any integer $n \geqslant 1$, we define the fundamental cube of $R^{n}=R \times \cdots \times R$ (with respect to p) to be the set

$$
\begin{equation*}
R^{n}(p)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n} \mid 0 \leqslant x_{i}<p, i=1,2, \ldots, n\right\} \tag{1.1}
\end{equation*}
$$

and the fundamental lattice of R^{n} (with respect to p) to be

$$
\begin{equation*}
Z^{n}(p)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in Z^{n} \mid 0 \leqslant x_{i}<p, i=1,2, \ldots, n\right\} . \tag{1.2}
\end{equation*}
$$

Clearly $Z^{n}(p)=Z^{n} \cap R^{n}(p)$. A subcube of $R^{n}(p)$ is a set S of the form

$$
\begin{equation*}
S=\left\{\mathbf{x} \in R^{n}(p) \mid a_{i} \leqslant x_{i}<a_{i}+b, i=1,2, \ldots, n\right\} \tag{1.3}
\end{equation*}
$$

where $a_{i}(i=1,2, \ldots, n), b \in R$ are such that

$$
\begin{equation*}
0 \leqslant a_{i}<a_{i}+b \leqslant p, i=1,2, \ldots, n \tag{1.4}
\end{equation*}
$$

The length of each side of S is clearly b. We write this symbolically as $\|S\|=b$. A finite family of subcubes $\left\{S_{i}\right\}(i=1,2, \ldots, k)$ of $R^{n}(p)$ will be called a subcube division of $R^{n}(p)$ if
(i) $\left\|S_{i}\right\|$ is the same for $i=1,2, \ldots, k$,
(ii) $S_{i} \cap S_{j}=\varnothing$, for $i \neq j, i, j=1,2, \ldots, k$,
(iii) $\bigcup_{i=1}^{k} S_{i}=R^{n}(p)$.

[^0]These conditions require the S_{i} to be congruent, pairwise disjoint and exhaustive.

Now let $f\left(X_{1}, \ldots, X_{n}\right)$ be a polynomial of degree $d \geqslant 2$ in the $n \geqslant 2$ indeterminates X_{1}, \ldots, X_{n}, with integral coefficients which does not vanish $(\bmod p)$. A number of authors, Vinogradov [9], Mordell [5], Chalk [2], Mordell [6], Chalk and Williams [3], Tietäväinen [8], Smith [7], and Williams [10], have considered the distribution of the solutions $x \in Z^{n}$ of the congruence

$$
\begin{equation*}
f(\mathbf{x}) \equiv 0(\bmod p) \tag{1.6}
\end{equation*}
$$

within the fundamental cube $R^{n}(p)$, particularly when p is large in comparison with n and d. We denote the number of solutions of (1.6) in $R^{n}(p)$ by $N_{p}(f)$. A study of the results of the above authors suggests a distribution result for the solutions of (1.6) of the following type:

If p is large in comparison with n and $d,\left\{S_{i}\right\}$ is a subcube division of $R^{n}(p)$ with $\left\|S_{i}\right\| \gg p^{1-(1 / n)}$, and $N_{p}(f) \gg p^{n-1}$ then each S_{i} contains a solution x of (1.6).

It is the purpose of this paper to obtain a precise result along these lines. The method employed is based on that of Tietäväinen [8]. The modifications necessary require the estimation of a certain exponential sum $\mathscr{F}(f, \mathbf{y})$ (see Section 4). This sum has been considered by Chalk and the author in [3]. It was estimated effectively only when f is homogeneous and free from linear factors modulo p. Therefore, in view of the type of distribution property we are considering, we restrict ourselves to the case of homogeneous polynomials f of degree $d \geqslant 2$, which are irreducible $(\bmod p)$. To guarantee $N_{p}(f) \gg p^{n-1}$, we further assume that f is absolutely irreducible $(\bmod p)$, for if not, by a result of Birch and Lewis [1] $N_{p}(f) \ll p^{n-2}$. With these assumptions, we know from the deep work of Lang and Weil [4] that

$$
\begin{equation*}
N_{p}(f)=p^{n-1}+O\left(p^{n-3 / 2}\right) \tag{1.7}
\end{equation*}
$$

where the constant implied by the O-symbol depends only on n and d. Hence we know that

$$
\begin{equation*}
N_{p}(f) \geqslant \frac{1}{2} p^{n-1} \tag{1.8}
\end{equation*}
$$

for p large enough compared with n and d and it is convenient to assume that this occurs for

$$
\begin{equation*}
p \geqslant(20 d)^{n} \tag{1.9}
\end{equation*}
$$

(See the remark in [1] concerning the implied constant in (1.7)). We prove:

Theorem. Let $f\left(X_{1}, \ldots, X_{n}\right) \in Z\left[X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree $d \geqslant 2$ in the $n \geqslant 2$ indeterminates $X_{1}, X_{2}, \ldots, X_{n}$ and let p be a prime satisfying (1.9). If f is absolutely irreducible $(\bmod p)$ and $N_{p}(f) \geqslant \frac{1}{2} p^{n-1}$ then every subcube

$$
\begin{align*}
S\left(i_{1}, \ldots, i_{n}\right)= & \left\{\mathbf{x} \in R^{n}(p) \mid i_{j} \mu \leqslant x_{j}<\left(i_{j}+1\right) \mu, j=1,2, \ldots, n\right\} \\
& i_{1}, \ldots, i_{n}=0,1,2, \ldots, \lambda-1, \tag{1.10}
\end{align*}
$$

where

$$
\begin{gather*}
\lambda \equiv \lambda(p, n, d)=\left[\frac{p^{1 / n}}{10 d}\right] \in Z \tag{1.11}\\
\mu \equiv \mu(p, n, d)=\frac{p}{\lambda} \in R, \tag{1.12}
\end{gather*}
$$

contains a solution $\mathbf{x} \in Z^{n}$ of (1.6).
We note that $\lambda \geqslant 2, \lambda \mu=p$, and the family $\left\{S\left(i_{1}, \ldots, i_{n}\right)\right\}$ is a subcube division of $R^{n}(p)$, with $\left\|S\left(i_{1}, \ldots, i_{n}\right)\right\|=\mu \approx p^{1-1 / n}$.

2. Notation

It is convenient to let

$$
\begin{equation*}
e(t)=\exp \{2 \pi i t \mid p\}, t \in R . \tag{2.1}
\end{equation*}
$$

It is well-known that for $b \in Z$,

$$
\sum_{t=0}^{p-1} e(b t)=\left\{\begin{array}{l}
p, b \equiv 0(\bmod p) \tag{2.2}\\
0, b \not \equiv 0(\bmod p)
\end{array}\right.
$$

and, more generally, for $\mathbf{x} \in Z^{n}$

$$
\sum_{\mathbf{y} \in Z^{n}(p)} e(\mathbf{x} \cdot \mathbf{y})=\left\{\begin{array}{l}
p^{n}, \mathbf{x} \equiv \mathbf{0}(\bmod p), \tag{2.3}\\
0, \quad \mathbf{x} \neq \mathbf{0}(\bmod p) .
\end{array}\right.
$$

We also let

$$
\begin{equation*}
\mathscr{F}(f, \mathbf{y})=\sum_{z \in Z^{n}(p)} \sum_{t=0}^{p-1} e(t f(\mathbf{z})-\mathbf{y} \cdot \mathbf{z}) . \tag{2.4}
\end{equation*}
$$

Taking $\mathbf{y} \equiv \mathbf{0}(\bmod p)$, we have

$$
\begin{equation*}
\mathscr{F}(f, \mathbf{0})=\sum_{z \in Z^{n}(p)} \sum_{t=0}^{p-1} e(t f(\mathbf{z}))=p N_{p}(f), \tag{2.5}
\end{equation*}
$$

by (2.2), and for $\mathbf{y} \neq 0(\bmod p)$, we have

$$
\begin{align*}
\mathscr{F}(f, \mathbf{y}) & =\sum_{\mathbf{z} \in Z^{n}(p)}\left\{e(-\mathbf{y} \cdot \mathbf{z})+\sum_{t=1}^{p-1} e(t f(\mathbf{z})-\mathbf{y} \cdot \mathbf{z})\right\} \tag{2.6}\\
& =\sum_{\mathbf{z} \in Z^{n}(p)} \sum_{t=1}^{p-1} e(t f(\mathbf{z})-\mathbf{y} \cdot \mathbf{z}),
\end{align*}
$$

by (2.3).
Finally we let

$$
\begin{align*}
R(i, \mu) & =\left\{x \in R \left\lvert\, \frac{1}{2} i \mu \leqslant x<\frac{1}{2}(i+1) \mu\right.\right\}, \quad i=0,1,2, \ldots, \lambda-1 \tag{2.7}\\
& =\left[\frac{1}{2} i \mu, \frac{1}{2}(i+1) \mu\right) \\
Z(i, \mu) & =R(i, \mu) \cap Z, \quad i=0,1,2, \ldots, \lambda-1, \tag{2.8}\\
A(t, i, \mu) & =\sum_{w \in Z(i, \mu)} e(t w), \quad t \in Z, i=0,1,2, \ldots, \lambda-1 \tag{2.9}
\end{align*}
$$

and if X denotes a set with only a finite number of elements, then we write | X | for the number of elements in X.

3. Some Lemmas

The six lemmas proved in this section are all of an elementary computational nature. Lemmas 3.1 and 3.2 are required in the proof of Lemma 3.4. Lemmas 3.1 and 3.3 are required in the proof of Lemma 3.5. Lemmas 3.4-3.6 are used in the proof of the theorem.

Lemma 3.1. If $a, b \in R$ with $a<b$, then

$$
b-a-2<|Z \cap[a, b)|<b-a+2
$$

Proof. The half-closed, half-open interval $[a, b)$ contains the integers $[a]+1, \ldots,[b]-1$, so

$$
\begin{aligned}
|Z \cap[a, b)| & \geqslant([b]-1)-([a]+1)+1 \\
& =[b]-[a]-1 \\
& >b-a-2
\end{aligned}
$$

As $Z \cap[a, b) \subseteq Z \cap[[a],[b]]$, we have

$$
\begin{aligned}
|Z \cap[a, b)| & \leqslant|Z \cap[[a],[b]]| \\
& =[b]-[a]+1 \\
& <b-a+2
\end{aligned}
$$

Lemma 3.2.

$$
\frac{1}{2} \mu-2 \geqslant \frac{199}{40} d p^{1-1 / n}
$$

Proof. $\quad \mu=p / \lambda=p /\left[p^{1 / n} / 10 d\right]>p /\left(p^{1 / n} / 10 d\right)=10 d p^{1-1 / n}$. Now

$$
\begin{array}{rlr}
\left(5-\frac{199}{40}\right) d p^{1-(1 / n)} & =\frac{1}{40} d p^{1-1 / n} & \\
& \geqslant \frac{1}{20} p^{1 / 2} \quad(n, d \geqslant 2) \\
& \geqslant \frac{20 d}{20} & \left(p \geqslant(20 d)^{n} \geqslant(20 d)^{2}\right) \\
& \geqslant 2, &
\end{array}
$$

so that

$$
\frac{1}{2} \mu-2 \geqslant 5 d p^{1-1 / n}-2 \geqslant \frac{199}{40} d p^{1-1 / n}
$$

Lemma 3.3.

$$
\frac{1}{2} \mu+2<\frac{401}{40} d p^{1-1 / n}
$$

Proof.
$\mu=p / \lambda=p /\left[p^{1 / n} / 10 d\right]<p /\left(\left(p^{1 / n} / 10 d\right)-1\right) \leqslant p /\left(p^{1 / n} / 20 d\right)=20 d p^{1-1 / n}$,
as

$$
\left(\frac{1}{10}-\frac{1}{20}\right) \frac{p^{1 / n}}{d}=\frac{p^{1 / n}}{20 d} \geqslant 1, \text { recalling } p \geqslant(20 d)^{n}
$$

Now

$$
\begin{gathered}
\left(\frac{401}{40}-10\right) d p^{1-1 / n}=\frac{1}{40} d p^{1-1 / n} \geqslant 2, \text { as in Lemma 3.2, giving } \\
\frac{1}{2} \mu+2 \leqslant 10 d p^{1-1 / n}+2 \leqslant \frac{401}{40} d p^{1-1 / n}
\end{gathered}
$$

Lemma 3.4.

$$
\prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2}>\frac{199^{2 n}}{40^{2 n}} d^{2 n} p^{2 n-2}
$$

Proof.

$$
\begin{aligned}
A\left(0, i_{j}, \mu\right) & =\sum_{w \in Z\left(i_{j}, \mu\right)} 1 \\
& =\left|Z\left(i_{j}, \mu\right)\right| \\
& =\left|Z \cap\left[\frac{i_{j} \mu}{2}, \frac{\left(i_{j}+1\right) \mu}{2}\right]\right| \\
& >\frac{1}{2} \mu-2, \quad \text { by Lemma } 3.1 \\
& \geqslant \frac{199}{40} d p^{1-1 / n}, \quad \text { by Lemma } 3.2
\end{aligned}
$$

which gives

$$
\prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2}>\frac{199^{2 n}}{40^{2 n}} d^{2 n} p^{2 n-2}
$$

Lemma 3.5.

$$
\prod_{j=1}^{n} \sum_{t_{j}=0}^{p-1}\left|A\left(t_{j}, i_{j}, \mu\right)\right|^{2}<\frac{401^{n}}{40^{n}} d^{n} p^{2 n-1}
$$

Proof.

$$
\begin{aligned}
\sum_{t_{j}=0}^{p-1} & \left|A\left(t_{j}, i_{j}, \mu\right)\right|^{2} \\
& =\sum_{t_{j}=0}^{p-1} A\left(t_{j}, i_{j}, \mu\right) \overline{A\left(t_{j}, i_{j}, \mu\right)} \\
& =\sum_{i_{j}=0} \sum_{w \in Z\left(i_{j}, \mu\right)} \sum_{v \in Z\left(i_{j}, \mu\right)} e\left(t_{j}(w-v)\right) \\
& =\sum_{w, v \subset Z\left(i_{j}, \mu\right)} \sum_{t_{j}=0}^{p-1} e\left(t_{j}(w-v)\right) \\
& =p\left|Z\left(i_{j}, \mu\right)\right| \\
& =p\left|Z \cap\left[\frac{1}{2} i_{j} \mu, \frac{1}{2}\left(i_{j}+1\right) \mu\right)\right| \\
& <p\left(\frac{1}{2} \mu+2\right), \quad \text { by Lemma 3.1 } \\
& <\frac{401}{40} d p^{2-1 / n}, \quad \text { by Lemma 3.3. }
\end{aligned}
$$

Hence

$$
\prod_{j=1}^{n} \sum_{t_{j}=0}^{p-1}\left|A\left(t_{j}, i_{j}, \mu\right)\right|^{2}<\frac{401^{n}}{40^{n}} d^{n} p^{2 n-1}
$$

Lemma 3.6. $199^{2 n} \cdot 2^{n-2}-4 \cdot 40^{n} \cdot 401^{n}>0$, for $n \geqslant 2$.
Proof. As $39601>2 \cdot 16040$, we have, as $n \geqslant 2$,

$$
199^{2 n}=(39601)^{n}>2^{n} \cdot(16040)^{n} \geqslant 4 \cdot(16040)^{n}=4.40^{n} \cdot 401^{n}
$$

Hence

$$
\begin{aligned}
199^{2 n} & \cdot 2^{n-2}-4.40^{n} \cdot 401^{n} \\
& >2^{n} \cdot 40^{n} \cdot 401^{n}-4.40^{n} \cdot 401^{n} \\
\quad & =\left(2^{n}-4\right) 40^{n} \cdot 401^{n} \\
& \geqslant 0
\end{aligned}
$$

4. Estimation of $\mathscr{F}(f, \mathbf{y})$

Lemma 4.1. If $f\left(X_{1}, \ldots, X_{n}\right) \in Z\left[X_{1}, \ldots, X_{n}\right]$ is of total degree $d \geqslant 0$ and does not vanish identically $(\bmod p)$, then the number of solutions $\left(x_{1}, \ldots, x_{n}\right) \in Z^{n}(p)$ of the congruence

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right) \equiv 0(\bmod p) \tag{4.1}
\end{equation*}
$$

is at most $d p^{n-1}$.
Proof. We prove the result by induction on the number of variables n. The result is clearly true when $n=1$. We assume the estimate is valid for polynomials of any degree, which do not vanish $(\bmod p)$, in at most k variables. Suppose $F\left(X_{1}, \ldots, X_{k+1}\right) \in Z\left[X_{1}, \ldots, X_{k+1}\right]$ is of total degree d_{1} and does not vanish identically $(\bmod p)$. Then

$$
\begin{equation*}
F\left(X_{1}, \ldots, X_{k+1}\right)=\sum_{i=0}^{d_{1}} F_{i}\left(X_{1}, \ldots, X_{k}\right) X_{k+1}^{i} \tag{4.2}
\end{equation*}
$$

where each $F_{i}\left(X_{1}, \ldots, X_{k}\right) \in Z\left[X_{1}, \ldots, X_{k}\right]$, degree $F_{i}+i \leqslant d_{1}$ and not all the F_{i} vanish $(\bmod p)$ as F does not vanish $(\bmod p)$. Let d_{2} denote the largest value of $i\left(0 \leqslant i \leqslant d_{1}\right)$ for which $F_{i}\left(X_{1}, \ldots, X_{k}\right)$ does not vanish $(\bmod p)$. We consider two cases according as $d_{2}=0$ or $d_{2} \neq 0$. If $d_{2}=0$,

$$
\begin{equation*}
F\left(X_{1}, \ldots, X_{k+1}\right)=F_{0}\left(X_{1}, \ldots, X_{k}\right) \tag{4.3}
\end{equation*}
$$

and the number of solutions $\left(x_{1}, \ldots, x_{k+1}\right) \in Z^{k+1}(p)$ of $F\left(x_{1}, \ldots, x_{k+1}\right) \equiv 0$ $(\bmod p)$ is p times the number of solutions $\left(x_{1}, \ldots, x_{k}\right) \in Z^{k}(p)$ of $F_{0}\left(x_{1}, \ldots, x_{k}\right) \equiv 0(\bmod p)$. By the inductive hypothesis this number is less than $p \cdot d_{1} p^{k-1}=d_{1} p^{k}$. If $d_{2} \neq 0$,

$$
\begin{equation*}
F\left(X_{1}, \ldots, X_{k+1}\right)=\sum_{i=0}^{d_{2}} F_{i}\left(X_{1}, \ldots, X_{k}\right) X_{k+1}^{i} \tag{4.4}
\end{equation*}
$$

where $F_{d_{\mathrm{g}}}\left(X_{1}, \ldots, X_{k}\right)$ does not vanish identically $(\bmod p)$. The solutions $\left(x_{1}, \ldots, x_{k+1}\right) \in Z^{k+1}(p)$ of $F\left(x_{1}, \ldots, x_{k+1}\right) \equiv 0(\bmod p)$ are of 2 kinds, those which also satisfy $F_{d_{2}}\left(x_{1}, \ldots, x_{k}\right) \equiv 0(\bmod p)$ and those which do not. The number of the former type is at most $p \cdot\left(d_{1}-d_{2}\right) p^{k-1}$ and the number of the latter type is at most $d_{2} p^{k}$. Thus, the required number is less than or equal to $\left(d_{1}-d_{2}\right) p^{k}+d_{2} p^{k}=d_{1} p^{k}$. The result now follows by mathematical induction.

Lemma 4.2. Suppose $f\left(X_{1}, \ldots, X_{n}\right) \in Z\left[X_{1}, \ldots, X_{n}\right]$ is of total degree $d \geqslant 2$ in $n \geqslant 2$ indeterminates X_{1}, \ldots, X_{n}, does not vanish $(\bmod p)$ and is irreducible $(\bmod p)$. Then, if not all of $a_{1}, \ldots, a_{n} \in Z$ vanish $(\bmod p)$, the number of solutions $\left(x_{1}, \ldots, x_{n}\right) \in Z^{n}(p)$ of the pair of simultaneous congruences

$$
\begin{align*}
f\left(x_{1}, \ldots, x_{n}\right) \equiv 0 & (\bmod p) \\
a_{1} x_{1}+\cdots+a_{n} x_{n} \equiv 0 & (\bmod p) \tag{4.5}
\end{align*}
$$

is at most $d p^{n-2}$.
Proof. As not all of a_{1}, \ldots, a_{n} vanish $(\bmod p)$, we can assume without any loss of generality that $a_{1} \neq 0(\bmod p)$. The linear congruence becomes

$$
\begin{equation*}
x_{1} \equiv-a_{1}^{-1}\left(a_{2} x_{2}+\cdots+a_{n} x_{n}\right) \quad(\bmod p) \tag{4.6}
\end{equation*}
$$

Set

$$
\begin{equation*}
g\left(x_{2}, \ldots, x_{n}\right)=f\left(-a_{1}^{-1}\left(a_{2} x_{2}+\cdots+a_{n} x_{n}\right), x_{2}, \ldots, x_{n}\right) \tag{4.7}
\end{equation*}
$$

The number of solutions $\left(x_{1}, \ldots, x_{n}\right) \in Z^{n}(p)$ of (4.5) is just the number of solutions $\left(x_{2}, \ldots, x_{n}\right) \in Z^{n-1}(p)$ of $g\left(x_{2}, \ldots, x_{n}\right) \equiv 0(\bmod p)$. By Lemma 4.1 this is at most $d p^{n-2}$, unless g vanishes $(\bmod p) . g$ cannot vanish $(\bmod p)$ however, for if so every solution $\left(x_{1}, \ldots, x_{n}\right)$ of $a_{1} x_{1}+\cdots+a_{n} x_{n} \equiv 0$ $(\bmod p)$ would satisfy $f\left(x_{1}, \ldots, x_{n}\right) \equiv 0(\bmod p)$ and so by Hilbert's Nullstellensatz there exists an integer k and a polynomial

$$
h\left(x_{1}, \ldots, x_{n}\right) \in Z\left[x_{1}, \ldots, x_{n}\right]
$$

such that

$$
\begin{equation*}
\left\{f\left(x_{1}, \ldots, x_{n}\right\}^{k} \equiv\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right) h\left(x_{1}, \ldots, x_{n}\right)(\bmod p)\right. \tag{4.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{n} x_{n} \mid f\left(x_{1}, \ldots, x_{n}\right) \tag{4.9}
\end{equation*}
$$

which contradicts the fact that f is irreducible $(\bmod p)$ and of degree $d \geqslant 2$.

Lemma 4.3. If $f\left(X_{1}, \ldots, X_{n}\right) \in Z\left[X_{1}, \ldots, X_{n}\right]$ is homogeneous of degree $d \geqslant 2$, does not vanish $(\bmod p)$ and is irreducible $(\bmod p)$, then for $\mathbf{y}(\not \equiv \mathbf{0}) \in Z^{n}(p)$ we have

$$
\begin{equation*}
|\mathscr{F}(f, \mathbf{y})| \leqslant 4 d p^{n-1} \tag{4.10}
\end{equation*}
$$

Proof. For $l \in Z$:

$$
\begin{equation*}
\mathscr{F}(f, l \mathbf{y})=\sum_{\mathbf{x} \in Z^{n}(p)} \sum_{t=0}^{p-1} e(t f(\mathbf{x})-l \mathbf{x} \cdot \mathbf{y}) . \tag{4.11}
\end{equation*}
$$

If $l \not \equiv 0(\bmod p), m$ is uniquely defined $(\bmod p)$ by $l m \equiv 1(\bmod p)$. The mapping $\mathbf{x} \rightarrow m \mathbf{x}$ is a bijection on $Z^{n}(p)$. Hence

$$
\begin{aligned}
\mathscr{F}(f, l \mathbf{y}) & =\sum_{\mathbf{x} \in \mathcal{Z}^{n}(p)} \sum_{t=0}^{p-1} e(t f(m \mathbf{x})-\mathbf{x} \cdot \mathbf{y}) \\
& =\sum_{\mathbf{x} \in Z^{n}(p)} \sum_{t=0}^{p-1} e\left(t m^{d} f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}\right),
\end{aligned}
$$

as f is homogeneous of degree d. As $m \not \equiv 0(\bmod p)$, the mapping $t \rightarrow t m^{d}$ is a bijection on $Z(p)$, so that

$$
\begin{aligned}
\mathscr{F}(f, l \mathbf{y}) & =\sum_{\mathbf{x} \in Z^{n}(p)} \sum_{t=\mathbf{0}}^{p-1} e(t f(\mathbf{x})-\mathbf{x} \cdot \mathbf{y}) \\
& =\mathscr{F}(f, \mathbf{y}) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{l=0}^{p-1} \mathscr{F}(f, l \mathbf{y})=\mathscr{F}(f, \mathbf{0})+(p-1) \mathscr{F}(f, \mathbf{y}) \tag{4.12}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
& \sum_{l=0}^{p-1} \mathscr{F}(f, l \mathbf{y})=\sum_{l=0}^{p-1} \sum_{\mathbf{x} \in Z^{n}(p)} \sum_{t=0}^{p-1} e(t f(\mathbf{x})-l \mathbf{x} \cdot \mathbf{y}) \\
& =\sum_{\mathbf{x} \in Z^{n}(p)} \sum_{t=0}^{p-1} e(t f(\mathbf{x})) \sum_{l=0}^{p-1} e(-l \mathbf{x} \cdot \mathbf{y}) \\
& =p \sum_{\substack{x \in Z^{n}(p) \\
x=y}} \sum_{t=0}^{p-1} e(t f(\mathbf{x})) \\
& =p^{2} \sum_{\substack{\mathbf{x} \in Z^{n}(\mathcal{L}) \\
\text { and } \\
f(x)=0}} 1 \\
& =p^{2} N \text {, }
\end{aligned}
$$

where N denotes the number of solutions $\mathbf{x} \in Z^{n}(p)$ of

$$
f(\mathbf{x}) \equiv \mathbf{x} \cdot \mathbf{y} \equiv 0(\bmod p)
$$

Thus

$$
\begin{equation*}
\mathscr{F}(f, \mathbf{y})=\frac{p}{p-1}\left\{p N-N_{p}(f)\right\} \tag{4.13}
\end{equation*}
$$

and so by Lemmas 4.1 and 4.2

$$
\begin{aligned}
|\mathscr{F}(f, \mathbf{y})| & \leqslant \frac{p}{p-1}\left\{p N+N_{p}(f)\right\} \\
& \leqslant 2\left\{p \cdot d p^{n-2}+d p^{n-1}\right\} \\
& =4 d p^{n-1}
\end{aligned}
$$

as required.

5. Proof of Theorem

We let a denote any integer and set

$$
\begin{align*}
N(a, i, \mu)= & \text { Number of }(u, v) \in Z(i, \mu) \times Z(i, \mu) \text { such that } \\
& u+v \equiv a(\bmod p) . \tag{5.1}
\end{align*}
$$

We have

$$
\begin{aligned}
N(a, i, \mu) & =\frac{1}{p} \sum_{u, v \in \mathcal{Z}(i, \mu)} \sum_{t=0}^{p-1} e((u+v-a) t) \\
& =\sum_{t=0}^{p-1} e(-a t) \sum_{u \in Z(i, u)} e(t u) \sum_{v \in Z(i, \mu)} e(t v),
\end{aligned}
$$

giving

$$
\begin{equation*}
N(a, i, \mu)=\frac{1}{p} \sum_{t=0}^{p-1} e(-a t)\{A(t, i, \mu)\}^{2} \tag{5.2}
\end{equation*}
$$

For $0 \leqslant i_{1}, \ldots, i_{n} \leqslant \lambda-1$, we let $N\left(i_{1}, \ldots, i_{n}, \mu\right)$ denote the number of solutions ($\mathbf{x}, \mathbf{y}) \in Z\left(i_{1}, \mu\right) \times \cdots \times Z\left(i_{n}, \mu\right) \times Z\left(i_{1}, \mu\right) \times \cdots \times Z\left(i_{n}, \mu\right)$ of

$$
\begin{equation*}
f(\mathbf{x}+\mathbf{y}) \equiv 0(\bmod \rho) \tag{5.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
N\left(i_{1}, \ldots, i_{n}, \mu\right)=\frac{1}{p} \sum_{x, y}^{\prime} \sum_{t=0}^{p-1} e(t f(\mathbf{x}+\mathbf{y})) \tag{5.4}
\end{equation*}
$$

where the prime (') denotes that the summation is taken over $\mathbf{x}, \mathbf{y} \in Z\left(i_{1}, \mu\right)$ $\times \cdots \times Z\left(i_{n}, \mu\right)$.

Hence

$$
\begin{aligned}
& N\left(i_{1}, \ldots, i_{n}, \mu\right)=\frac{1}{p} \sum_{t=0}^{p-1} \sum_{\mathbf{x}}^{\prime} \sum_{\mathbf{y}}^{\prime} e(t f(\mathbf{x}+\mathbf{y})) \\
& =\frac{1}{p} \sum_{t \rightarrow 0}^{p-\mathbf{1}} \sum_{\mathbf{z} \subset \mathcal{Z}^{n}(p)} \sum_{\substack{\mathbf{x}+\mathbf{y} \\
\mathbf{x}+\mathbf{y}=\mathbf{z}}}^{\prime} \sum^{\prime} e(t f(\mathbf{z})) \\
& =\frac{1}{p} \sum_{i=0}^{p-1} \sum_{\mathbf{z} \in Z^{n}(p)} e(t f(\mathbf{z})) \sum_{\substack{\mathbf{x} \\
\mathbf{x}+\mathbf{y}=\mathbf{y}}}^{\prime} \sum_{\mathbf{y}}^{\prime} 1 \\
& =\frac{1}{p} \sum_{t=0}^{p-1} \sum_{\mathbf{z} \in Z^{n}(p)} e(t f(\mathbf{z})) \prod_{j=1}^{n} N\left(z_{j}, i_{j}, \mu\right) \\
& =\frac{1}{p^{n+1}} \sum_{t=0}^{p-1} \sum_{\mathbf{z} \in \mathbb{Z}^{n}(p)} e(t f(z)) \sum_{\mathbf{t} \in \mathcal{Z}^{n}(p)} e(-\mathbf{z} \cdot \mathbf{t}) \prod_{j=1}^{n} A\left(t_{j}, i_{j}, \mu\right)^{2},
\end{aligned}
$$

from (5.2). Picking out the term with $t=0$, we obtain

$$
\begin{aligned}
& p^{n+1} N\left(i_{1}, \ldots, i_{n}, \mu\right) \\
& = \\
& \quad \sum_{\mathbf{z} \in Z^{n}(p)} \sum_{\mathbf{t} \in Z^{n}(p)} e(-\mathbf{z} \cdot \mathbf{t}) \prod_{j=1}^{n} A\left(t_{j}, i_{j}, \mu\right)^{2} \\
& \\
& \quad+\sum_{t=1}^{p-1} \sum_{\mathbf{z} \in Z^{n}(p)} e(t f(\mathbf{z})) \sum_{\mathbf{t} \in Z^{n}(p)} e(-\mathbf{z} \cdot \mathbf{t}) \prod_{j=1}^{n} A\left(t_{j}, i_{j}, \mu\right)^{2} .
\end{aligned}
$$

As

$$
\sum_{\mathbf{z} \in Z^{n}(p)} e(-\mathbf{z} \cdot \mathbf{t})=\left\{\begin{array}{l}
p^{n}, \mathbf{t} \equiv \mathbf{0} \tag{5.5}\\
0, \text { otherwise }
\end{array}\right.
$$

the first of these sums is

$$
\begin{equation*}
p^{n} \prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2} \tag{5.6}
\end{equation*}
$$

The second of these can be written

$$
\begin{equation*}
\sum_{\mathbf{t} \in Z^{n}(p)} \prod_{j=1}^{n} A\left(t_{j}, i_{j}, \mu\right)^{2} \sum_{t=1}^{p-1} \sum_{\mathbf{z} \in Z^{n}(p)} e(t f(\mathbf{z})-\mathbf{t} \cdot \mathbf{z}) \tag{5.7}
\end{equation*}
$$

The terms in (5.7), with $\mathbf{t}=\mathbf{0}$, give

$$
\begin{aligned}
& \prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2} \sum_{t=1}^{p-1} \sum_{z \in Z^{n}(p)} e(t f(\mathbf{z})) \\
& \quad=\prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2}\left\{\sum_{z \in Z^{n}(p)} \sum_{t=0}^{p-1} e\left(t f(\mathbf{z})-p^{n}\right\}\right. \\
& \quad=\prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2}\left\{p N_{p}(f)-p^{n}\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|p^{n+1} N\left(i_{1}, \ldots, i_{n}, \mu\right)-p N_{p}(f) \prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2}\right| \\
& \quad=\left|\sum_{0 \neq t \in Z^{n}(p)} \prod_{j=1}^{n} A\left(t_{j}, i_{j}, \mu\right)^{2} \mathscr{F}(f, t)\right| \\
& \quad \leqslant \sum_{0 \neq t \in Z^{n}(p)} \prod_{j=1}^{n}\left|A\left(t_{j}, i_{j}, \mu\right)\right|^{2}|\mathscr{F}(f, t)| \\
& \quad \leqslant 4 d p^{n-1} \prod_{j=1}^{n} \sum_{t_{j}=0}^{n-1}\left|A\left(t_{j}, i_{j}, \mu\right)\right|^{2}, \quad \text { by Lemma 4.3, } \\
& \quad \leqslant 4 \cdot \frac{4011^{n}}{40^{n}} \cdot d^{n+1} p^{3 n-2}, \quad \text { by Lemma 3.5. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& N\left(i_{1}, \ldots, i_{n}, \mu\right) \\
& \quad \geqslant \frac{N_{p}(f)}{p^{n}} \prod_{j=1}^{n} A\left(0, i_{j}, \mu\right)^{2}-4 \cdot \frac{401^{n}}{40^{n}} \cdot d^{n+1} p^{2 n-3} \\
& \quad \geqslant \frac{199^{2 n}}{2 \cdot 40^{2 n}} d^{2 n} p^{2 n-3}-4 \cdot \frac{401^{n}}{40^{n}} d^{n+1} p^{2 n-8}, \quad \text { by Lemma 3.4, } \\
& \quad=\frac{d^{n+1} p^{2 n-3}}{40^{2 n}}\left(\frac{d^{n-1} 199^{2 n}}{2}-4 \cdot 40^{n} \cdot 401^{n}\right) \\
& \quad \geqslant \frac{d^{n+1} p^{2 n-3}}{40^{2 n}}\left(2^{n-2} \cdot 199^{2 n}-4 \cdot 40^{n} \cdot 401^{n}\right) \\
& \quad>0, \quad \text { by Lemma 3.6. }
\end{aligned}
$$

Thus for any selection $i_{1}, \ldots, i_{n} \in Z$ satisfying $0 \leqslant i_{1}, \ldots, i_{n} \leqslant \lambda-1$, we have proved the existence of \mathbf{x} and $\mathbf{y} \in Z\left(i_{1}, \mu\right) \times \cdots \times Z\left(i_{n}, \mu\right)$ such that $f(\mathbf{x}+\mathbf{y}) \equiv 0(\bmod p)$; that is, of $\mathbf{z} \in S\left(i_{1}, \ldots, i_{n}\right)$ such that $f(\mathbf{z}) \equiv 0(\bmod p)$, so that every such subcube contains a solution of (1.6), as required.

6. Conclusion

We illustrate the theorem by a simple numerical example. We choose $n=3, d=2$ (the choice $n=d=2$ is excluded as f must be both absolutely irreducible $(\bmod p)$ and homogeneous),

$$
\begin{equation*}
f\left(X_{1}, X_{2}, X_{3}\right)=X_{1}{ }^{2}+X_{2}{ }^{2}-X_{2} X_{3}, \tag{6.1}
\end{equation*}
$$

TABLE I

$S\left(i_{1}, i_{2}, i_{3}\right)$					
i_{1}	i_{2}		x_{1}	x_{2}	x_{3}
0	0		0	0	0
0	0		50000	50000	100000
0	0		74000	37000	185000
0	1	0	80761	100000	70158
0	1	1	0	92000	92000
0	1	2	90000	180000	225000
0	2	0	90000	270000	25823
0	2	1	50000	224177	174177
0	2	2	0	200000	200000
1	0	0	108000	58177	4177
1	0	1	180000	90000	175823
1	0	2	120000	30000	235823
1	1	0	180000	180000	85823
1	1	1	170000	99138	99139
1	1	2	92000	92000	184000
1	2	0	120000	244177	38354
1	2	1	125823	200000	177469
1	2	2	108000	216000	270000
2	0	0	274176	1	2
2	0	1	224177	50000	100000
2	0	2	200177	37000	185000
2	1	0	184177	94177	49177
2	1	1	248354	100000	177469
2	1	2	184177	180000	225000
2	2	0	184177	270000	25823
2	2	1	200000	200000	125823
2	2	2	270000	270000	265823

and $p=274177\left(\geqslant(20 d)^{n}=64000\right)$. (274 177 is the smaller of the two prime factors of $F_{6}=2^{2^{6}}+1$). As f is linear in X_{3}, f is absolutely irreducible $(\bmod p)$ and $N_{p}(f)=p^{2}\left(\geqslant \frac{1}{2} p^{2}\right)$. Finally,

$$
\begin{equation*}
\lambda=\left[274177^{1 / 3} / 20\right]=[3.2 \ldots]=3 \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=91,392 \frac{1}{3} . \tag{6.3}
\end{equation*}
$$

In view of the special form of f, it is easy to check that each of the 27 subcubes

$$
\begin{gather*}
S\left(i_{1}, i_{2}, i_{3}\right)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in R^{3} \mid 91,392 \frac{1}{3} i_{j} \leqslant x_{j}<91,392 \frac{1}{3}\left(i_{j}+1\right)\right. \\
j=1,2,3\}, i_{1}, i_{2}, i_{3}=0,1,2 \tag{6.4}
\end{gather*}
$$

contains a solution of (1.6). The table gives a solution in each case.
We close with the question-does a similar result hold for nonhomogeneous polynomials?

References

1. B. J. Birch and D. J. Lewis, p-adic forms, J. Indian Math. Soc., 23 (1959), 11-32.
2. J. H. H. Chalk, The number of solutions of congruences in incomplete residue systems, Canad. J. Math., 15 (1963), 291-296.
3. J. H. H. Chalk and K. S. Williams, The distribution of solutions of congruences, Mathematika 12 (1965), 176-192.
4. S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math., 76 (1954), 819-827.
5. L. J. Mordell, On the number of solutions in incomplete residue sets of quadratic congruences, Arch. Math., 8 (1957), 153-157.
6. L. J. Mordell, Incomplete exponential sums and incomplete residue systems for congruences, Czechoslovak Math. J., 14 (1964), 235-242.
7. R. A. Smith, The circle problem in an arithmetic progression, Canad. Math. Bull., 11 (1968), 175-184.
8. A. Tietäväninen, On the solvability of equations in incomplete finite fields, Ann. Univ. Turku. Ser. AI, 102 (1967), 3-13.
9. I. M. Vinogradov, "Elements of number theory," Chap. 5, p. 103, problem 12(b)(ϵ, Dover, New York, 1954.
10. K. S. Williams, Small solutions of the congruence $a x^{2}+b y^{2} \equiv c(\bmod k)$, Canad. Math. Bull., 21 (1969), 311-320.

[^0]: * This research was supported by the National Research Council of Canada under Grant No. A-7233.

