ASYMPTOTIC BEHAVIOUR OF THE $n^{\text {th }}$ TERM OF CERTAIN SUBSEQUENCES OF THE NATURAL NUMBERS

KENNETHPS. WILLIAMS
(Carleton University, Ottawa)

Let $A=\{a(1), u(2), \ldots, u(n), \ldots\}$ be an infinite subse. quence of the natural numbers. Number theory provides us with a wealth of examples of such subsequences A for which the asymptotic behaviour is known (as $x \rightarrow+\infty$) of the number $\pi_{\mathrm{A}}(x)$ of elements in A, which are less than or equal to the real number x. (For a few such examples see [2]-[12]). For example [3] if A is the subsequence of squarefree integers it is known that

$$
\pi_{\mathrm{A}}(x)=\frac{6}{\pi^{2}} x+O\left(x^{\frac{1}{2}}\right) \text {. as } x \rightarrow+\infty \text {. }
$$

Hence as $\pi_{A}(a(n))=n$, we hare

$$
n=\frac{6}{\pi^{2}} a(n)+O\left((a(n))^{\frac{1}{2}}\right),
$$

from which we deduce

$$
n(n)=O_{(n)} .
$$

and so

$$
\begin{aligned}
u & =\frac{6}{\pi^{2}} u(n)+O\left(n^{\frac{1}{2}}\right), \text { that is, } \\
u(u) & =\frac{\pi^{2}}{6} u+O\left(n^{\frac{b}{2}}\right), \text { as } u \rightarrow+\infty .
\end{aligned}
$$

Thus we have deduced the asymptotic behaviour of $a(n)$ from the known asymptotic behaviour of $\pi_{A}(x)$. It is the purpose of this paper to do this for a general subsequence A for which the nsymptotic behaviour of $\pi_{A}(x)$ is known. We suppose that an asymptotic formula for $\pi_{A}(x)$ is known of the following type:

$$
\begin{equation*}
\pi_{\mathrm{A}}(x)=f(x)+O(g(x)), \quad \text { as } \quad x \rightarrow+\infty, \tag{1}
\end{equation*}
$$

where the constant implied by the O-symbol is independent of x. It will always be understood that such an expression as (1) is a genuine asymptotic formula, that is, $f(x)$ is the "main term", so that $\pi_{\mathrm{A}}(x) \sim f(x)$, as $x \rightarrow+\infty$, and $O(g(x))$ is the "error term". This is guaranteed by

$$
\lim _{x \rightarrow+\infty} \frac{g(x)}{f(x)}=0
$$

We prove
Theorem. Let $A=\{a(1), a(2), \ldots\}$ be an infinite subsequence of the natural numbers for which an asymptotic formula (1) is known, where for all sufficiently large $x, f^{\prime}(x)$ and $g^{\prime}(x)$ both exist, and satisfy
(2) $f^{\prime}(x)>0, g^{\prime}(x)>0, \frac{f(x)}{f^{\prime}(x)}=O(x), \frac{g^{\prime}(x)}{g(x)}=O\binom{1}{x}$, as $x \rightarrow+\infty$.

Then if $(k(x), h(x))$ is a pair of real-valued functions with $h(x)=o(x)$, as $x \rightarrow+\infty$, such that for all sufficiently large x we have

$$
\begin{equation*}
f(k(x))=x+O(h(x)), \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\left.a(n)=k(n)+O\binom{k(n)}{n} \max (g(k(n)), h(n))\right), \tag{4}
\end{equation*}
$$

as $n \rightarrow+\infty$.

We note that (2) implies the existence of $f^{1}(x)$ for all sufficiently large x and so there is always a pair $(k(x), h(x))$ satisfying (3), namely $(k(x), h(x))=\left(f^{-1}(x), 0\right)$. With this choice the theorem gives

$$
\begin{equation*}
a(n)=f^{-1}(n)+O\left(\frac{f^{-1}(n) g\left(f^{1}(n)\right)}{n}\right) \text {, as } n \rightarrow \infty . \tag{5}
\end{equation*}
$$

However as we shall see in the examples concluding this paper, it is often more convenient to apply (4) with $k(x) \neq f^{-1}(x)$ rather than (5).

In the proof of the theorem we make use of the following theorem due to Entringer [1], namely, if $r(x) \rightarrow+\infty$ and $r(x) \sim s(x)$ as $x \rightarrow+\infty$, and $t(x)$ is monotonic and

$$
\frac{t^{\prime}(x)}{t(x)}=O\left(\frac{1}{x}\right)
$$

for all sufficiently large x, then $t(r(x)) \sim t(s(x))$, as $x \rightarrow+\infty$.
Proof of Theorem, As $f^{\prime}(x)>0$, for all sufficiently large $x, f^{-1}(x)$ exists and is differentiable with positive derivative $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$, for all sufficiently large x. Moreover as A is an infinite subsequence we have $\pi_{\mathrm{A}}(x) \rightarrow+\infty$, as $x \rightarrow+\infty$. But $\pi_{\mathrm{A}}(x) \sim f(x)$, as $x \rightarrow+\infty$, so we must have $f(x) \rightarrow+\infty$, as $x \rightarrow+\infty$. Thus $f^{-1}(x) \rightarrow+\infty$, as $x \rightarrow+\infty$, and so choosing $y=f^{-1}(x)$ in $\frac{f(y)}{f^{\prime}(y)}=\dot{O}(y)$, as $y \rightarrow+\infty$, we obtain

$$
\begin{align*}
\frac{\left(f^{-1}\right)^{\prime}(x)}{f^{-1}(x)} & =\frac{1}{x f^{-1}(x)} \cdot \frac{f\left(f^{-1}(x)\right)}{f^{\prime}\left(f^{-1}(x)\right)} \tag{6}\\
& =\frac{1}{x f^{-1}(x)} \cdot O\left(f^{-1}(x)\right)=O\left(\frac{1}{x}\right)
\end{align*}
$$

as $x \rightarrow+\infty$. Now from (3), as $h(x)=o(x)$, as $x \rightarrow+\infty$, we have

$$
\begin{equation*}
f(k(x)) \sim x, \quad \text { as } x \rightarrow+\infty . \tag{7}
\end{equation*}
$$

Thus for all sufficiently large x, we have

$$
\begin{equation*}
f(k(x)) \geqslant \frac{x}{2} . \tag{8}
\end{equation*}
$$

From (6) and (7) by Entringer's theorem we have

$$
\begin{equation*}
k(x)=f^{-1}(f(k(x))) \sim f^{-1}(x), \text { as } x \rightarrow+\infty, \text { and so } \tag{9}
\end{equation*}
$$ for all sufficiently large x we have

$$
\begin{equation*}
\frac{1}{2} k(x) \leqslant f^{-1}(x) \leqslant \frac{3}{2} k(x) . \tag{10}
\end{equation*}
$$

From (9) we cleduce $k(x) \rightarrow+\infty$, as $x \rightarrow+\infty$, and so as $f(x)$ is monotonic increasing we have from (10) for all sufficiently large x

$$
\begin{equation*}
x \leqslant f\left(\frac{3}{2} k(x)\right) \tag{11}
\end{equation*}
$$

Hence from (8) and (11) we have for all sufficiently large x

$$
\begin{equation*}
\max (x, f(k(x))) \leqslant f\left(\frac{3}{2} k(x)\right) \min (x, f(k(x))) \geqslant \frac{x}{2} . \tag{12}
\end{equation*}
$$

Now by the mean value theorem there exists $c(x)$ satisfying $\min (x, f(k(x)) \leqslant c(x) \leqslant \max (x, f(k(x)))$ and such that
(13) $\left|\int^{-1}(x)-k(x)\right|=\left|f^{-1}(x)-f^{-1}(f(k(x)))\right|$

$$
=\left|\left(f^{-1}\right)^{\prime}(c(x))(x-f(k(x)))\right| .
$$

From (12) we deduce that

$$
\frac{x}{2} \leqslant c(x) \leqslant f\left(\begin{array}{c}
3 \tag{14}\\
2
\end{array} k(x)\right)
$$

and so as $f^{-1}(x)$ is monotonic increasing for all sufficiently large x, we have

$$
f^{-1}(c(x)) \leqslant \frac{3}{2} k(x) .
$$

Hence from (6) and (14) we have
(15) $\quad\left(f^{-1}\right)^{\prime}(c(x))=O\left(\frac{f^{-1}(c(x))}{c(x)}\right)=O\left(\frac{k(x)}{x}\right)$,
as $x \rightarrow+\infty$.
Thus from (3), (13) and (15) we deduce
(16) $\left|f^{-1}(x)-k(x)\right|=O\left(\frac{k(x) h(x)}{x}\right)$, as $t \rightarrow+\infty$.

Now taking $x=a(n), n \rightarrow+\infty$, in (1) we obtain

$$
\begin{equation*}
\left.n=\pi_{\mathbf{A}}(a(n))\right)=f(a(n))+O(g(a(n))), \tag{17}
\end{equation*}
$$

as $n \rightarrow+\infty$, that is,

$$
\begin{equation*}
n \sim f(a(n)), \text { as } n \rightarrow+\infty \tag{18}
\end{equation*}
$$

and so in particular for all sufficiently large n we have

$$
\begin{equation*}
f(u(n)) \geqslant \frac{n}{2} . \tag{19}
\end{equation*}
$$

From (18) by Entringer's theorem we have

$$
\begin{equation*}
f^{-1}(n) \sim a(n), \text { as } n \rightarrow \infty, \tag{20}
\end{equation*}
$$

and so in particular for all sufficiently large u we have

$$
\begin{equation*}
\frac{1}{2} a(u) \leqslant f^{-1}(n) \leqslant \frac{3}{2} a(n) \tag{21}
\end{equation*}
$$

Thus as $f(x)$ is increasing for all sufficiently large x, and $a(n) \rightarrow+\infty$, as $n \rightarrow+\infty$, we deduce from (21) that for all sufficiently large n,

$$
\begin{equation*}
n \leqslant f\left(\frac{3}{2} a(n)\right) \tag{22}
\end{equation*}
$$

Hence from (19) and (22) we have for all sufficiently large n

$$
\begin{equation*}
\max (n, f(a(n))) \leqslant f\left(\frac{3}{2} a(n)\right) \tag{23}
\end{equation*}
$$

$$
\min (n, f(a(n))) \geqslant \frac{n}{2} .
$$

Now by the mean value theorem there exists $d(n)$ satisfying $\min (n, f(a(n))) \leqslant d(n) \leqslant \max (n, f(a(n)))$ such that

$$
\begin{align*}
\left|a(n)-f^{-1}(n)\right| & =\left|f^{-1}(f(a(n)))-f^{-1}(n)\right| \tag{24}\\
& =\left|\left(f^{-1}\right)^{\prime}(d(n))(f(a(n))-n)\right|
\end{align*}
$$

From (23) we decuce that for all sutficiently large n

$$
\begin{equation*}
\frac{n}{2} \leqslant d(n) \leqslant f\left(\frac{3}{2} a(n)\right) \tag{25}
\end{equation*}
$$

and so as $f^{-1}(x)$ is monotonic increasing for all sufficiently large x, we have

$$
f^{-1}(d(n)) \leqslant \frac{3}{2} a(n)
$$

Hence from (6) and (25) we have

$$
\begin{equation*}
\left(f^{-1}\right)^{\prime}(d(n))=O\left(\frac{f^{-1}(d(n))}{d(n)}\right)=O\left(\frac{a(n)}{n}\right), \text { as } n \rightarrow+\infty . \tag{26}
\end{equation*}
$$

Moreover from (9) and (20) we have

$$
\begin{equation*}
a(n) \sim f^{-1}(n) \sim k(n), \text { as } n \rightarrow+\infty, \tag{27}
\end{equation*}
$$

so that (26) becomes
(28) $\left(f^{-1}\right)^{\prime}(d(n))=O\left(\frac{k(n)}{n}\right)$, as $n \rightarrow+\infty$.

From (2), $g(x)$ satisfies the conditions of Entringer's theorem and so by (27) we can deduce

$$
\begin{equation*}
g(a(n)) \sim g(k(n)), \quad \text { as } \quad n \xrightarrow{\longrightarrow}+\infty, \tag{29}
\end{equation*}
$$

so that from (17), (24), (28), (29) we obtain
(30) $\left|u(n)-f^{-1}(n)\right|=O\left(\frac{k(n) g(k(n))}{n}\right)$, as $n \rightarrow+\infty$.
(4) now follows from (16) and (30) in view of the inequality

$$
|a(n)-k(n)| \leqslant\left|a(n)-f^{-1}(n)\right|+\left|f^{-1}(n)-k(n)\right| .
$$

We remark that (4) is a genuine asymptotic formula as $h(n)=o(n)$ and $g(k(n))=o(f(k(n))=o(n)$, as $u \rightarrow+\infty$.

We conclude this paper with two examples.
Example 1. Let $a(n)=n^{t h}$ integer which is the sum of two squares. Then it is known [5] (p. 261) that

$$
\pi_{\mathbf{A}}(x)=\frac{B x}{\log ^{\frac{1}{2}} x}+O\left(\frac{x}{\log ^{\frac{8}{2}} x}\right) \text {, as } \quad x \rightarrow+\infty,
$$

where

$$
B=\frac{1}{\sqrt{2}^{2}} \prod_{r=1}^{\infty}\left(1-\frac{1}{r^{2}}\right)^{-\frac{1}{2}}
$$

Thus we may take

$$
f(x)=\frac{B x}{\log ^{\frac{1}{2}} x} \text { and } g(x)=\frac{x}{\log ^{\frac{8}{4}} x}
$$

It is easily verified that the eonditions given in (2) are satisfied. Further as (see below)
(31) $f\left(\frac{x \log ^{\frac{1}{2}} x}{B}\right)=x+0\left(\frac{x \log \log x}{\log x}\right)$, as $x \rightarrow+\infty$. we can chouse

$$
(k(x) ; h(x))=\left(\begin{array}{c}
x \log ^{\frac{1}{2}} x \\
B
\end{array}, \frac{x \log \log x}{\log x}\right) .
$$

Then by the theorem we have

$$
a(n)=\frac{n \log ^{\frac{1}{2}} n}{B}+O\left(n \log ^{\frac{1}{4}} n\right) \text { as } n \rightarrow+\infty \text {. }
$$

Proof of (31). For $x \geqslant \exp \left(B^{2}\right)$.
so that $\quad \frac{\log ^{\frac{1}{2}} x}{B} \geqslant 1$,
we have

$$
\begin{aligned}
\left.x-f\left(\frac{x \log ^{\frac{1}{2}} x}{B}\right)=x-x\left(\frac{\log x}{\log \left(\frac{1}{B} x \log ^{\frac{1}{2}} x\right.}\right)\right)^{\frac{1}{2}} & \\
& \geqslant x-x\left(\frac{\log x}{\log x}\right)^{\frac{1}{2}}=0,
\end{aligned}
$$

so that as $x \rightarrow+\infty$ we have

$$
\begin{aligned}
x-f\left(\frac{x \log ^{\frac{1}{2}} x}{B}\right) & =x \cdots f\left(\frac{x \log ^{\frac{1}{2}} x}{B}\right) \\
& =x \frac{\left\{\log ^{\frac{1}{2}}\left(\frac{1}{B} x \log ^{\frac{1}{2}} x\right)-\log ^{\frac{1}{2}} x\right\}}{\log ^{\frac{1}{2}}\left(\frac{1}{B} x \log ^{\frac{1}{2}} x\right)} \\
& \leqslant \frac{x}{\log ^{\frac{1}{2}} x}\left\{\log ^{\frac{1}{2}}\left(\frac{1}{B} x \log ^{\frac{1}{2}} x\right)-\log ^{\frac{1}{2}} x\right\} \\
& =x\left[\left(1+\frac{\log \left(\frac{\log ^{\frac{1}{2}} x}{B}\right)}{\log x}\right)^{\frac{1}{2}}-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leqslant \frac{x}{2} \frac{\log \left(\frac{\log ^{\frac{1}{2}} x}{B}\right)}{\log x}\right) \\
& =O\left(\frac{x \log \log x}{\log x}\right)
\end{aligned}
$$

as required.
Example 2. Let $a(n)=n^{\text {th }}$ prime number. It is wellknown [5] (p. 250) that one form of the prime number theorem with error term is

$$
\Pi_{A}(x)=l i(x)+O\left(x e^{-c \sqrt{\log x}}\right) \text {, as } x \rightarrow+\infty
$$

where c is a positive constant and $l i(x)$ is the logarithmic integral

$$
\int_{2}^{x} \frac{d t}{\log t} .
$$

Thus we may take $f(x)=l i(x)$ and $g(x)=x e^{-c \sqrt{\log x}}$. It is casily verified that the conditions given in (2) are satisfied. Further as (see below).
(32) $\quad l i(x \log x)=x+O\left(\frac{x \log \log x}{\log x}\right)$, as $x \rightarrow+\infty$,
we can choose

$$
(k(x), h(x))=\left(x \log x, \frac{x \log \log x}{\log x}\right)
$$

Then by the theorem we have

$$
a(n)=n \log n+O(n \log \log n) \text {, as } n \rightarrow+\infty .
$$

Proof of (32). We have on integrating by parts

$$
l i(x \log x)-x=\int_{2}^{x \log x} \frac{d t}{\log t}-x
$$

$$
\begin{aligned}
& =\frac{-x \log \log x}{\log (x \cdot \log x)}+\int_{2}^{x \log x} \frac{d t}{\log ^{2} t}+O(1) \\
& =O\left(\frac{x \log \log x}{\log x}\right)
\end{aligned}
$$

as $\int_{2}^{x \log x} \frac{d t}{\log ^{2} t}=\left(\int_{2}^{\sqrt{x}}+\int_{\sqrt{x} \log x}^{\sqrt{2}}\right) \frac{d t}{\log ^{2} t}$
$=O(\sqrt{x})+O\left(\frac{x \log x-\sqrt{x}}{\log ^{2} \sqrt{x}}\right)$
$=O\left(\frac{x}{\log x} \quad\right.$.

REFERENCES

1. R.C. Entringer, Functions and inverses of asymptotic functions, Amer. Math. Monthly 74 (1967). 1095-1097.
2. T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Annalen, l05 (1931), 654-662.
3. G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Oxford University Press (1962), 269.
4. E. Landau, Göttinger Nachrichten. Math.-phys. Kl (1911), 361-381.
5. W.J. LeVeque, Topics in number theory Vol. 2, Addison. Wesley Pub. Co., Reading, Mass., 1961.. pages 250. 256. 261.
6. L. Mirsky, Note on an asymptotic formula comected with r-free integers, Quart. J. Math.; Oxford Ser.. 18 (1947). 178.182.
7. L. Mirsky, On a problem in the theory of numbers, Simon Stevin 26 (1948), 25-27.
8. L. Mirsky, The number of representations of an integer as the sum of a prime and a k-free integer, Amer. Math. Monthly 56 (1949), 17-19.
9. H. Onishi, 'The number of positive integers $n \leqslant N$ such that $n, n+a_{2}, n+a_{3}, \ldots \ldots n+a_{r}$ are all square-free, Jour. Lond. Math. Soc., 41 (1966), 138.140.
10. G. Pall, Ihe distribution of integers represented by binary quadratic forms, Bull. Amer. Math. Soc., 49 (1943) 447-449.
11. K.F.Roth, A theorem involving squarefree numbers, J. Lond. Math. Soc., 22 (1947), 231-237.
12. L.G.Sathe, On a congruence property of the divisor function I, J. Inclian Math. Soc. (N.S.) 7 (1943), 143-145.
