INTEGERS OF BIQUADRATIC FIELDS

BY

KENNETH S. WILLIAMS(*)

Let Q denote the field of rational numbers. If m, n are distinct squarefree integers the field formed by adjoining \sqrt{m} and \sqrt{n} to Q is denoted by $Q(\sqrt{m}, \sqrt{n})$. Since $Q(\sqrt{m}, \sqrt{n}) = Q(\sqrt{m} + \sqrt{n})$ and $\sqrt{m} + \sqrt{n}$ has for its unique minimal polynomial $x^4 - 2(m+n)x^2 + (m-n)^2$, $Q(\sqrt{m}, \sqrt{n})$ is a biquadratic field over Q. The elements of $Q(\sqrt{m}, \sqrt{n})$ are of the form $a_0 + a_1 \sqrt{m} + a_2 \sqrt{n} + a_3 \sqrt{mn}$, where $a_0, a_1, a_2, a_3 \in Q$. Any element of $Q(\sqrt{m}, \sqrt{n})$ which satisfies a monic equation of degree ≥ 1 with rational integral coefficients is called an integer of $Q(\sqrt{m}, \sqrt{n})$. The set of all these integers is an integral domain. In this paper we determine the explicit form of the integers of $Q(\sqrt{m}, \sqrt{n})$ (Theorem 1), an integral basis for $Q(\sqrt{m}, \sqrt{n})$ (Theorem 2), and the discriminant of $Q(\sqrt{m}, \sqrt{n})$ (Theorem 3). (With $Q(\sqrt{m}, \sqrt{n})$ considered as a relative quadratic field, that is, as a quadratic field over $Q(\sqrt{m})$, an integral basis for $Q(\sqrt{m}, \sqrt{n})$ has been given in [1].)

The form of the integers of a quadratic field are well known [3]. If k is a squarefree integer then the integers of $Q(\sqrt{k})$ are given by $\frac{1}{2}(x_0 + x_1 \sqrt{k})$, where x_0, x_1 are integers such that $x_0 \equiv x_1 \pmod{2}$, if $k \equiv 1 \pmod{4}$; and by $x_0 + x_1 \sqrt{k}$, where x_0, x_1 are integers, if $k \equiv 2$ or $3 \pmod{4}$. Thus we know the integers of the subfields $Q(\sqrt{m}), Q(\sqrt{n}), Q(\sqrt{mn})$ of $Q(\sqrt{m}, \sqrt{n})$.

We begin by making some simplifying assumptions about m and n. We let $l = (m, n)$ and write $m = ln_1, n = ln_1$ so that $(n_1, n_1) = 1$. Since m, n are squarefree we have the following possibilities for the residues of m, n, m_1n_1 modulo 4.

<table>
<thead>
<tr>
<th>m_1</th>
<th>n_1</th>
<th>m_1n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1 or 3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Received by the editors March 16, 1970.

(*) This research was supported by National Research Council of Canada Grant A-7233.
Thus as
\[Q(\sqrt{m}, \sqrt{n}) = Q(\sqrt{m}, \sqrt{m_1 n_1}) = Q(\sqrt{n}, \sqrt{m_1 n_1}) = Q(\sqrt{n}, \sqrt{m}) \]
we may suppose without loss of generality that
\[(m, n) \equiv (1, 1), (1, 2), (2, 3) \text{ or } (3, 3) \pmod{4}. \]

We now determine the form of the integers of \(Q(\sqrt{m}, \sqrt{n}) \), where \(m, n \) satisfy (1).

Theorem 1. Letting \(x_0, x_1, x_2, x_3 \) denote rational integers, the integers of \(Q(\sqrt{m}, \sqrt{n}) \) are given as follows:

(i) if \((m, n) \equiv (m_1, n_1) \equiv (1, 1) \pmod{4}\), the integers are
\[\frac{1}{4}(x_0 + x_1 \sqrt{m + x_2 \sqrt{n + x_3 \sqrt{m_1 n_1}}}), \]
where \(x_0 \equiv x_1 \equiv x_2 \equiv x_3 \pmod{2} \), \(x_0 - x_1 + x_2 - x_3 \equiv 0 \pmod{4} \);

(ii) if \((m, n) \equiv (1, 1), (m_1, n_1) \equiv (3, 3) \pmod{4}\), the integers are
\[\frac{1}{4}(x_0 + x_1 \sqrt{m + x_2 \sqrt{n + x_3 \sqrt{m_1 n_1}}}), \]
where \(x_0 \equiv x_1 \equiv x_2 \equiv x_3 \pmod{2} \), \(x_0 - x_1 - x_2 - x_3 \equiv 0 \pmod{4} \);

(iii) if \((m, n) \equiv (1, 2) \pmod{4}\), the integers are
\[\frac{1}{4}(x_0 + x_1 \sqrt{m + x_2 \sqrt{n + x_3 \sqrt{m_1 n_1}}}), \]
where \(x_0 \equiv x_1, x_2 \equiv x_3 \pmod{2} \);

(iv) if \((m, n) \equiv (2, 3) \pmod{4}\), the integers are
\[\frac{1}{4}(x_0 + x_1 \sqrt{m + x_2 \sqrt{n + x_3 \sqrt{m_1 n_1}}}), \]
where \(x_0 \equiv x_2 \equiv 0, x_1 \equiv x_3 \pmod{2} \);

(v) if \((m, n) \equiv (3, 3) \pmod{4}\), the integers are
\[\frac{1}{4}(x_0 + x_1 \sqrt{m + x_2 \sqrt{n + x_3 \sqrt{m_1 n_1}}}), \]
where \(x_0 \equiv x_3, x_1 \equiv x_2 \pmod{2} \).

Proof. Let \(\theta \) be an integer of \(Q(\sqrt{m}, \sqrt{n}) \), where \(m, n \) satisfy (1). Then \(\theta \) can be written
\[\theta = a_0 + a_1 \sqrt{m} + a_2 \sqrt{n} + a_3 \sqrt{m_1 n_1}, \]
where \(a_0, a_1, a_2, a_3 \in Q \). As \(\theta \) is an integer of \(Q(\sqrt{m}, \sqrt{n}) \) so are its conjugates over \(Q \), namely,
\[\begin{align*}
\theta' &= a_0 + a_1 \sqrt{m} - a_2 \sqrt{n} - a_3 \sqrt{m_1 n_1}, \\
\theta'' &= a_0 - a_1 \sqrt{m} + a_2 \sqrt{n} - a_3 \sqrt{m_1 n_1}, \\
\theta''' &= a_0 - a_1 \sqrt{m} - a_2 \sqrt{n} + a_3 \sqrt{m_1 n_1}.
\end{align*} \]
The three quantities
\[
\begin{align*}
\theta + \theta' &= 2a_0 + 2a_1 \sqrt{m} \in Q(\sqrt{m}), \\
\theta + \theta^* &= 2a_0 + 2a_2 \sqrt{n} \in Q(\sqrt{n}), \\
\theta + \theta'' &= 2a_0 + 2a_3 \sqrt{m_1n_1} \in Q(\sqrt{m_1n_1}),
\end{align*}
\]
are therefore all integers of \(Q(\sqrt{m}, \sqrt{n})\). Hence they must be integers of \(Q(\sqrt{m})\), \(Q(\sqrt{n})\), \(Q(\sqrt{m_1n_1})\) respectively.

We consider the cases \((m, n)\equiv(1, 2), (2, 3), (3, 3) \pmod{4}\) first so that at least two of \(m, n, m_1n_1\) are not congruent to 1 \(\pmod{4}\), and so at least two of (4) have integral coefficients. Since \(2a_0\) is common to all three of (4), the third one must also have integral coefficients. Hence \(2a_0, 2a_1, 2a_2, 2a_3\) are all integers and we can write (2) as
\[
\theta = \frac{1}{2}(b_0 + b_1 \sqrt{m} + b_2 \sqrt{n} + b_3 \sqrt{m_1n_1}),
\]
where \(b_0, b_1, b_2, b_3\) are all integers. Let us define
\[
\begin{align*}
\epsilon &= b_0^2 - m_1n_1b_3^2, \\
d &= b_0^2 - mb_1^2 - nb_2^2 + m_1n_1b_3^2, \\
e &= 2(b_0b_3 - b_1b_2),
\end{align*}
\]
so that \(\theta\) satisfies
\[
\theta^4 - 2b_0\theta^3 + \left(c + \frac{d}{2}\right)\theta^2 + \frac{b_0^2m_1n_1e - b_0d}{2} + \frac{(d^2 - m_1n_1e^2)}{16} = 0.
\]
If \(\theta \in Q(\sqrt{m}), Q(\sqrt{n})\) or \(Q(\sqrt{m_1n_1})\) the theorem is easily verified so we suppose that \(\theta \notin Q(\sqrt{m}), Q(\sqrt{n}), Q(\sqrt{m_1n_1})\). Thus the coefficients of (7) must all be integers, that is, we must have
\[
d^2 - m_1n_1e^2 \equiv 0 \pmod{16},
\]
since as \(e\) is even this implies that \(d\) must be even too.

If \((m, n)\equiv(1, 2) \pmod{4}\), so that \(l \equiv 1 \pmod{2}\), \(m_1n_1 \equiv 2 \pmod{4}\), (8) is equivalent to \(d \equiv e \equiv 0 \pmod{4}\), or
\[
\begin{align*}
&b_0^2 - b_1^2 - 2b_2^2 + 2b_3^2 \equiv 0 \pmod{4}, \\
&b_0b_3 - b_1b_2 \equiv 0 \pmod{2}.
\end{align*}
\]
If \(b_0 \neq b_1 \pmod{2}\) then \(b_0^2 - b_1^2 \equiv 1 \pmod{2}\) and (9a) is insoluble. Thus we must have \(b_0 \equiv b_1 \pmod{2}\), so \(b_0^2 - b_1^2 \equiv 0 \pmod{4}\) and (9a) implies \(2(b_2^2 - b_3^2) \equiv 0 \pmod{4}\), that is \(b_2 \equiv b_3 \pmod{2}\). Clearly (9b) is then satisfied and this proves case (iii) of the theorem.

If \((m, n)\equiv(2, 3) \pmod{4}\), so that \(l \equiv 1 \pmod{2}\), \(m_1n_1 \equiv 2 \pmod{4}\), (8) is equivalent to \(d \equiv e \equiv 0 \pmod{4}\), or
\[
\begin{align*}
&b_0^2 - 2b_1^2 + b_2^2 + 2b_3^2 \equiv 0 \pmod{4}, \\
&b_0b_3 - b_1b_2 \equiv 0 \pmod{2}.
\end{align*}
\]
If either \(b_0 \) or \(b_2 \) is odd (10a) implies that the other is odd too. Then (10b) implies \(b_1 \equiv b_3 \pmod{2} \) and (10a) becomes \(1 - 2b_1^2 + 1 + 2b_3^2 \equiv 0 \pmod{4} \), which is impossible. Thus \(b_0 \equiv b_2 \equiv 0 \pmod{2} \) and so \(b_1 \equiv b_3 \pmod{2} \). This proves case (iv) of the theorem.

If \((m, n) \equiv (3, 3) \pmod{4} \), so that \(j \equiv 1 \pmod{2} \), \(m_1n_1 \equiv 1 \pmod{4} \), (8) is equivalent to \(d \equiv e \pmod{4} \), or

\[
b_0^2 + b_1^2 + b_2^2 + b_3^2 \equiv 2(b_0b_3 - b_1b_2) \pmod{4},
\]
or

\[
(b_0 - b_3)^2 + (b_1 + b_2)^2 \equiv 0 \pmod{4}.
\]

Thus we have \(b_0 \equiv b_3 \), \(b_1 \equiv b_2 \pmod{2} \), which proves case (v) of the theorem.

We now consider the case \((m, n) \equiv (1, 1) \pmod{4} \), which has been excluded up to this point. We have \(m_3n_1 \equiv 1 \pmod{4} \) so that \(2a_0, 2a_1, 2a_2, 2a_3 \) are either all integers or all halves of odd integers.

If \(2a_0, 2a_1, 2a_2, 2a_3 \) are all integers then as in the case \((m, n) \equiv (3, 3) \pmod{4} \) we have \(d \equiv e \pmod{4} \), that is,

\[
b_0^2 + b_1^2 - b_2^2 + b_3^2 \equiv 2(b_0b_3 - b_1b_2) \pmod{4},
\]
or

\[
(b_0 - b_3)^2 - (b_1 - b_2)^2 \equiv 0 \pmod{4},
\]
which implies

\[
b_0 - b_3 \equiv b_1 - b_2 \pmod{2}
\]
or

\[
b_0 - b_3 \equiv b_1 + b_2 - b_0 \equiv 0 \pmod{2}.
\]

This gives \(\theta \) in the form \(\frac{1}{4}(c_0 + c_1 \sqrt{m} + c_2 \sqrt{n} + c_3 \sqrt{m_1n_1}) \), with \(c_0, c_1, c_2, c_3 \) integers such that

\[
c_0 \equiv c_1 \equiv c_2 \equiv c_3 \equiv 0 \pmod{2}, \quad c_0 - c_1 \pm c_2 \mp c_3 \equiv 0 \pmod{4}.
\]

If \(2a_0, 2a_1, 2a_2, 2a_3 \) are all halves of odd integers we can write (2) as

\[
\theta = \frac{1}{4}(c_0 + c_1 \sqrt{m} + c_2 \sqrt{n} + c_3 \sqrt{m_1n_1}),
\]
where \(c_0, c_1, c_2, c_3 \) are integers such that \(c_0 \equiv c_1 \equiv c_2 \equiv c_3 \equiv 1 \pmod{2} \). We have

\[
c = \frac{c_0^2 - m_1n_1c_3^2}{4}, \quad d = \frac{c_0^2 - m_1n_1c_3^2 - nc_3^2 + m_1n_1c_3^2}{4},
\]

\[
e = \frac{c_0c_3 - c_1c_2}{2}.
\]
These are all integers as \(c_0 \equiv c_1 \equiv c_2 \equiv c_3 \equiv l \equiv 1 \pmod{2}\) and \(m \equiv n \equiv m_1 n_1 \equiv 1 \pmod{4}\). Moreover
\[
c_3^2 - m c_1^2 - n c_2^2 + m_1 n_1 c_3^2 \equiv 1 - m - n + m_1 n_1 \pmod{8}
\equiv 1 - m - n + l^2 m_1 n_1 \pmod{8}
= 1 - m - n + mn
= (1 - m)(1 - n)
\equiv 0 \pmod{8},
\]
so that \(d\) is even. Now \(\theta\) satisfies
\[
\theta^4 - c_0 \theta^3 + \left(\frac{e + d}{2}\right) \theta^2 + \left(\frac{c_2 m_1 n_1 e - c_6 d}{4}\right) \theta + \left(\frac{d^2 - m_1 n_1 e^2}{16}\right) = 0.
\]
Clearly \(\theta \notin Q(\sqrt{m}), Q(\sqrt{n}), Q(\sqrt{m_1 n_1})\) so that the coefficients of (13) must all be integers, that is, we must have
\[
d^2 - m_1 n_1 e^2 \equiv 0 \pmod{16},
\]
(14) since (14) implies, as \(d \equiv 0 \pmod{2}\), \(m_1 n_1 \equiv 1 \pmod{4}\), that \(d \equiv e \pmod{4}\) and so
\[
c_2 m_1 n_1 e - c_6 d \equiv c_2 e - c_6 d \equiv d(c_3 - c_0) \equiv 0 \pmod{4}.
\]
Clearly as \(d \equiv 0 \pmod{2}\), (14) is equivalent to \(d \equiv e \pmod{4}\).

Writing \(c_i = 2d_i + 1 \quad (i = 0, 1, 2, 3)\) we have
\[
d = (d_0^2 - m d_1^2 - n d_2^2 + m_1 n_1 d_3^2) + (d_0 - m d_1 - n d_2 + m_1 n_1 d_3) + \frac{(1 - m - n + m_1 n_1)}{4}
\equiv (d_0^2 - d_1^2 - d_2^2 + d_3^2) + (d_0 - d_1 - d_2 + d_3) + \frac{(1 - m - n + m_1 n_1)}{4} \pmod{4},
\]
and
\[
e = (2d_0 d_3 - 2d_1 d_2) + (d_0 - d_1 - d_2 + d_3) + \frac{1 - l}{2}.
\]
Thus if \(l \equiv 1 \pmod{4}\), so that \((m_1, n_1) \equiv (1, 1) \pmod{4}\), we have
\[
d \equiv (d_0^2 - d_1^2 - d_2^2 + d_3^2) + (d_0 - d_1 - d_2 + d_3) + \frac{1 - l}{2} \pmod{4},
\]
\[
e \equiv (2d_0 d_3 - 2d_1 d_2) + (d_0 - d_1 - d_2 + d_3) + \frac{1 - l}{2} \pmod{4},
\]
and so \(d \equiv e \pmod{4}\) gives
\[
(d_0 - d_3)^2 - (d_1 - d_2)^2 \equiv 0 \pmod{4},
\]
that is
\[
d_0 - d_3 \equiv d_1 - d_2 \pmod{2},
\]
or
\[
c_0 - c_1 + c_2 - c_3 \equiv 0 \pmod{4},
\]
which completes the proof of case (i) of the theorem.
If \(l \equiv 3 \pmod{4} \), so that \((m_1, n_1) \equiv (3, 3) \pmod{4}\), we have
\[
d \equiv (d_0^2 - d_1^2 - d_2^2 + d_3^2) + (d_0 - d_1 - d_2 + d_3) + \frac{1 + l}{2} \pmod{4},
\]
\[
e \equiv (2d_0d_3 + 2d_1d_2) + (d_0 + d_1 + d_2 + d_3) + \frac{1 - l}{2} \pmod{4},
\]
and so \(d \equiv e \pmod{4} \) gives
\[
(d_0 - d_3)^2 - (d_1 + d_2)^2 - 2(d_1 + d_2) - 1 \equiv 0 \pmod{4},
\]
that is,
\[
d_0 - d_3 \equiv d_1 + d_2 + 1 \pmod{2},
\]
or
\[
c_0 - c_1 - c_2 - c_3 \equiv 0 \pmod{4},
\]
which completes the proof of case (ii) of the theorem.

We give three simple examples of Theorem 1.

Example 1. \(\theta = \frac{1}{4}(5 + 3\sqrt{5} + \sqrt{13} + 3\sqrt{65}) \) is an integer of \(Q(\sqrt{5}, \sqrt{13}) \). \(\theta \) satisfies \(\theta^4 - 5\theta^3 - 71\theta^2 + 120\theta + 1044 = 0 \).

Example 2. \(\theta = \frac{1}{4}(1 + \sqrt{21} + \sqrt{33} - \sqrt{77}) \) is an integer of \(Q(\sqrt{21}, \sqrt{33}) \). \(\theta \) satisfies \(\theta^4 - \theta^3 - 16\theta^2 + 37\theta - 17 = 0 \).

Example 3. The integers of \(Q(\sqrt{2}, \sqrt{-1}) \) are of the form \(a_0 + a_1\sqrt{2} + a_2\sqrt{-1} + a_3\sqrt{-2} \), where \(a_0, a_2 \) are both integers and \(a_1, a_3 \) are both integers or both halves of odd integers (see [2] for example).

As a consequence of Theorem 1 we have

Theorem 2. An integral basis for \(Q(\sqrt{m}, \sqrt{n}) \) is given by

(i) \(\left\{ \frac{1}{2}, \frac{1 + \sqrt{m}}{2}, \frac{1 + \sqrt{n}}{2}, \frac{1 + \sqrt{m} + \sqrt{n} + \sqrt{m_n}}{4}, \right\}, \) if \(\left(m, n \right) \equiv (1, 1), (m_1, n_1) \equiv (1, 1) \pmod{4}, \)

(ii) \(\left\{ \frac{1}{2}, \frac{1 + \sqrt{m}}{2}, \frac{1 + \sqrt{n}}{2}, \frac{1 + \sqrt{m} - \sqrt{n} + \sqrt{m_n}}{4}, \right\}, \) if \(\left(m, n \right) \equiv (1, 1), (m_1, n_1) \equiv (3, 3) \pmod{4}, \)

(iii) \(\left\{ \frac{1}{2}, \sqrt{m}, \sqrt{n}, \frac{\sqrt{m} + \sqrt{m_n}}{2}, \right\}, \) if \(\left(m, n \right) \equiv (1, 2) \pmod{4}, \)

(iv) \(\left\{ \sqrt{m}, \sqrt{n}, \frac{\sqrt{m} + \sqrt{m_n}}{2}, \right\}, \) if \(\left(m, n \right) \equiv (2, 3) \pmod{4}, \)

(v) \(\left\{ \sqrt{m}, \frac{\sqrt{m} + \sqrt{n}}{2}, \frac{\sqrt{m} + \sqrt{n}}{2}, \right\}, \) if \(\left(m, n \right) \equiv (3, 3) \pmod{4}. \)
Proof. We just give the proof of (i) since the other four cases are very similar. By Theorem 1 the general integer of \(Q(\sqrt{m}, \sqrt{n}) \) can be written \(\frac{1}{4}(x_0 + x_1 \sqrt{m} + x_2 \sqrt{n} + x_3 \sqrt{m_1 n_1}) \), where \(x_0, x_1, x_2, x_3 \) are integers such that
\[
x_0 \equiv x_1 \equiv x_2 \equiv x_3 \pmod{2}, \quad x_0 - x_1 + x_2 - x_3 \equiv 0 \pmod{4}.
\]
Write \(z_3 = x_0 \). As \(x_0 \equiv x_1 \equiv x_2 \equiv z_3 \pmod{2} \) there are integers \(y, z_1, z_2, \) such that
\[
x_0 = z_3 + 2y, \quad x_1 = z_3 + 2z_1, \quad x_2 = z_3 + 2z_2.
\]
But as \(x_0 - x_1 + x_2 - z_3 \equiv 0 \pmod{4} \) we have \(y \equiv z_1 + z_2 \pmod{2} \), so there is an integer \(z_0 \) such that \(y = 2z_0 + z_1 + z_2 \). Hence
\[
\frac{1}{4}(x_0 + x_1 \sqrt{m} + x_2 \sqrt{n} + x_3 \sqrt{m_1 n_1})
\]
\[
= z_0 + z_1 \left(\frac{1 + \sqrt{m}}{2} \right) + z_2 \left(\frac{1 + \sqrt{n}}{2} \right) + z_3 \left(\frac{1 + \sqrt{m} + \sqrt{n} + \sqrt{m_1 n_1}}{4} \right),
\]
which proves the result as
\[
1, \quad \frac{1 + \sqrt{m}}{2}, \quad \frac{1 + \sqrt{n}}{2}, \quad \frac{1 + \sqrt{m} + \sqrt{n} + \sqrt{m_1 n_1}}{4},
\]
are integers of \(Q(\sqrt{m}, \sqrt{n}) \).

We illustrate Theorem 2 with a simple example.

Example 4. An integral basis for \(Q(\sqrt{5}, \sqrt{13}) \) is
\[
\{a_0, a_1, a_2, a_3\} = \left\{ 1, \frac{1 + \sqrt{5}}{2}, \frac{1 + \sqrt{13}}{2}, \frac{1 + \sqrt{5} + \sqrt{13} + \sqrt{65}}{4} \right\}
\]
and the integer \(\frac{1}{4}(5 + 3\sqrt{5} + \sqrt{13} + 3\sqrt{65}) \) is given in terms of this integral basis as \(a_0 - a_2 + 3a_3 \).

Finally as the discriminant of an algebraic number field is just the discriminant of an integral basis of the field, we have

Theorem 3. The discriminant of \(Q(\sqrt{m}, \sqrt{n}) \) is given by
\[
(i) \ 16m^2n_1^2, \quad \text{if } (m, n) \equiv (1, 1) \pmod{4},
(ii) \ 16l^2m^2n_1^2, \quad \text{if } (m, n) \equiv (1, 2), \text{ or } (3, 3) \pmod{4},
(iii) \ 64l^2m^2n_1^2, \quad \text{if } (m, n) \equiv (2, 3) \pmod{4}.
\]
Thus, for example, we have

Example 5. The discriminant of \(Q(\sqrt{2}, \sqrt{-1}) \) is 256.
REFERENCES

Carleton University,
Ottawa, Ontario